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ABSTRACT: Infrared and visible light image fusion technology integrates feature information from two different
modalities into a fused image to obtain more comprehensive information. However, in low-light scenarios, the
illumination degradation of visible light images makes it difficult for existing fusion methods to extract texture detail
information from the scene. At this time, relying solely on the target saliency information provided by infrared
images is far from sufficient. To address this challenge, this paper proposes a lightweight infrared and visible light
image fusion method based on low-light enhancement, named LLE-Fuse. The method is based on the improvement
of the MobileOne Block, using the Edge-MobileOne Block embedded with the Sobel operator to perform feature
extraction and downsampling on the source images. The intermediate features at different scales obtained are then
fused by a cross-modal attention fusion module. In addition, the Contrast Limited Adaptive Histogram Equalization
(CLAHE) algorithm is used for image enhancement of both infrared and visible light images, guiding the network
model to learn low-light enhancement capabilities through enhancement loss. Upon completion of network training,
the Edge-MobileOne Block is optimized into a direct connection structure similar to MobileNetV1 through structural
reparameterization, effectively reducing computational resource consumption. Finally, after extensive experimental
comparisons, our method achieved improvements of 4.6%, 40.5%, 156.9%, 9.2%, and 98.6% in the evaluation metrics
Standard Deviation (SD), Visual Information Fidelity (VIF), Entropy (EN), and Spatial Frequency (SF), respectively,
compared to the best results of the compared algorithms, while only being 1.5 ms/it slower in computation speed than
the fastest method.

KEYWORDS: Infrared images; image fusion; low-light enhancement; feature extraction; computational resource
optimization

1 Introduction
The distinct working principles of various imaging modalities lead to unique characteristics in the scenes

they capture [1]. Visible light images capture light reflected from objects, offering rich texture and structural
details, alongside an intuitive visual experience. However, their reliance on ambient lighting makes them
vulnerable to environmental factors, such as smoke, which can compromise image quality and usability. In
contrast, infrared images are generated by detecting thermal radiation emitted by objects, enabling consistent
image quality across different conditions, independent of external light sources. Despite their advantages,
infrared images often exhibit lower resolution and a lack of intricate background textures, limiting their
effectiveness in some applications. By merging infrared and visible light images, it is possible to harness the
complementary strengths of both modalities, resulting in a fused image that combines information from
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each source [2]. This integrated image not only retains rich scene details but also enhances target recognition
and clarity. Consequently, such fusion significantly improves the comprehensiveness and accuracy of visual
information, thereby increasing the practical value of the images.

Fig. 1 provides an example of a low-light scenario. In Fig. 1a, the visible and infrared images captured
under low illumination are presented. The result shown in Fig. 1b stems from a contemporary image fusion
technique, which, when confronted with inadequate lighting, leads to substantial degradation in the visible
light image, thus lacking sufficient detail for effective fusion. Although Fig. 1c displays the results after
enhancing the low-light image with the advanced Zero-DCE (Zero-Reference Deep Curve Estimation)
enhancement algorithm [3] prior to fusion, it still falls short of producing a visually satisfying outcome.
In contrast, Fig. 1e illustrates the result from the proposed algorithm, which significantly enhances visual
quality. Additionally, Fig. 1d,f demonstrates the performance of the YOLOv5s (You Only Look Once)
detection algorithm [4] in Fig. 1c,e, respectively, revealing that the proposed method achieves superior
pedestrian identification. An effective image fusion approach should not only aim for aesthetic quality but
also ensure the preservation of essential information from the source images while highlighting critical
targets. This balance is vital for facilitating higher-level visual tasks, such as target detection. By catering to the
needs of both human and machine perception, image fusion technology can greatly expand its utility across
various practical applications, including pedestrian re-identification [5], target detection [6], and semantic
segmentation [7].

(a) VI (Visible) /

IR (Infrared)

(b) ICAFusion

(TMM2023)

(c) Zero-DCE +

ICAFusion

(d) Zero-DCE +

ICAFusion

+ YOLOv5s

(e) Ours
(f) Ours +

YOLOv5s

Figure 1: Fusion and target detection results in the LLVIP’s (Visible-infrared paired dataset for low-light vision) low-
light scenario #010042 using ICAFusion (Iterative cross-attention guided feature fusion) and the method proposed in
this paper

Recently, the integration of deep learning into image fusion has significantly transformed the field,
moving away from conventional techniques like multi-scale transformation [8], subspace transformation [9],
sparse representation [10], and saliency analysis [11]. These new methods typically offer superior visual out-
comes. Deep learning-based fusion approaches can be classified into four primary categories: autoencoder
(AE)-based, convolutional neural network (CNN)-based, generative adversarial network (GAN)-based, and
unified architecture-based techniques. In the initial phase of combining deep learning with image fusion,
AE-based methods relied on pre-trained encoders and decoders for extracting features and reconstructing
images, applying specific strategies for fusing these features. On the other hand, CNN-based approaches
execute feature extraction, fusion, and reconstruction in a seamless end-to-end process, leveraging carefully
designed network architectures and customized loss functions to produce unique fusion effects. Further-
more, GAN-based methods enhance CNN techniques by adding a generative adversarial component, where
the generator and discriminator engage in adversarial training, allowing the fusion outputs to approximate
the source images’ probability distribution in an unsupervised context.

While current deep learning-based fusion techniques are capable of effectively merging the comple-
mentary information from infrared and visible light images, several challenges remain unresolved. One
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key issue is that many existing methods operate on the premise that texture details primarily originate
from visible light images, while salient features are sourced from infrared images. This assumption is
valid under typical lighting conditions; however, in low-light or nighttime environments, the absence of
sufficient illumination leads to significant degradation in visible light image quality, often obscuring crucial
texture details. Consequently, these fusion methods struggle to retrieve necessary texture information, which
ultimately compromises the quality of the fused output. One approach to mitigate this issue is to apply
advanced low-light enhancement algorithms to improve the quality of visible light images before fusing them
with infrared data. However, such enhancements can create compatibility challenges, as illustrated in Fig. 1c,
where the low-light enhancement algorithm modifies the color distribution of light sources, potentially
exacerbating the problem. Furthermore, using stacked network models that are tailored for different tasks
may hinder the practical application and advancement of image fusion techniques. Thus, there remains a
significant need to focus on designing lightweight network architectures that can address these concerns
more effectively.

To address the shortcomings of current image fusion algorithms, we present a novel lightweight
network for fusing infrared and visible light images, termed LLE-Fuse, specifically designed for low-light
enhancement. The proposed method features a dual-branch architecture that separately extracts features
from infrared and visible light images while performing downsampling at various levels. These multi-
scale features are then combined through a cross-modal attention fusion module. The fused information
is subsequently used to reconstruct the final image via an upsampling network. In addition, the CLAHE
algorithm is employed to enhance both infrared and visible light images. The network is trained to improve
its capabilities in enhancing and fusing images under low-light conditions by utilizing a combination of
enhancement loss and correlation loss. To further enhance the network’s representational power while
keeping it lightweight, an Edge-MobileOne Block is introduced based on structural re-parameterization,
functioning as both the encoder and decoder. This design aims to boost fusion performance without
incurring additional computational costs during inference. The primary contributions of this paper are
summarized as follows:

• This paper proposes a lightweight infrared and visible light image fusion framework based on low-
light enhancement (LLE-Fuse), which can rapidly enhance the visual perception of low-light scenes,
generating fused images with high contrast and clear textures.

• This paper introduces an enhancement loss designed to guide the network model to learn the intensity
distribution and edge gradients of CLAHE-enhanced results, thereby enabling the model to end-to-
end generate fused images with low-light enhancement effects. This effect does not incur additional
computational costs during the testing phase.

• This paper designs the Edge-MobileOne Block (EMB) as the encoder and decoder of the network model,
significantly improving fusion performance without increasing the computational burden during the
inference phase. Additionally, this paper designs a Cross-Modality Attention Fusion Module (CMAM)
that effectively integrates information from heterogeneous image modalities.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of the
related work in image fusion and low-light enhancement. Section 3 delves into a detailed exposition of the
proposed LLE-Fuse, including its specific modules. Section 4 presents an extensive experimental comparison
demonstrating the superior performance of our method in comparison to other approaches, followed by a
summary in Section 5.
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2 Related Work

2.1 Deep Learning-Based Fusion Methods
Methods based on autoencoder (AE) leverage a pre-trained encoder and decoder to facilitate feature

extraction and image reconstruction. These methods utilize custom-designed fusion rules tailored to the
specific attributes of the source images, ensuring the effective completion of the fusion process. A notable
example of an AE-based fusion method is DenseFuse [12], which incorporates DenseNet [13] as its backbone
and employs addition and l1-Norm as its fusion strategies. To further enhance the feature extraction
capabilities of the autoencoder architecture, Li et al. [14] introduced NestFuse. This approach features a
nested connection encoder and a spatial channel attention fusion module, allowing the network to capture
finer detail features more effectively. Additionally, Li et al. [15] developed RFN-Nest, which utilizes residual
fusion networks along with detail preservation and feature enhancement loss functions to ensure that rich
texture details are maintained in the fusion outputs. Recognizing the interpretability challenges associated
with fusion strategies, Xu et al. [16] proposed a learnable fusion rule designed to assess the significance of
each pixel concerning classification outcomes, thereby enhancing the interpretability of the fusion network.
Furthermore, the MUFusion method introduced by Cheng et al. [17] addresses the severe degradation issues
encountered during training by implementing an adaptive loss function that combines content loss with
memory loss.

Methods for fusing infrared and visible light images that are based on convolutional neural networks
(CNNs) utilize intricate loss functions and sophisticated network architectures to facilitate feature extraction,
integration, and reconstruction. For instance, STDFusionNet [18] incorporates saliency target masks to
enhance the fusion process, which helps in better preserving essential features from the images. RXD-
NFuse [19] merges the structural benefits of ResNet (Residual Network) [20] and DenseNet [13], enabling
more comprehensive multi-scale feature extraction for effective image fusion. Li et al. [21] implemented a
meta-learning strategy, allowing a single CNN model to perform image fusion across various resolutions,
significantly improving the model’s adaptability. Additionally, Tang et al. [22] proposed a novel semantic loss
function aimed at enhancing the suitability of fused images for high-level visual tasks. In subsequent work,
Tang et al. [23] revisited the integration of image fusion models with those designed for high-level visual tasks
to further enhance fusion performance. Therefore, evaluating image fusion should encompass not only the
visual quality and performance metrics of the results but also consider the requirements of machine vision
for future high-level tasks.

Given their ability to estimate probability distributions in unsupervised learning, generative adversarial
networks (GANs) have emerged as promising tools for various applications, including image fusion. Fusion-
GAN [24] was the pioneering model to leverage GAN technology for this purpose, establishing a generative
adversarial framework that enhances the textural representation of the fused images. However, relying solely
on this adversarial approach can result in imbalances between the modalities in the fusion output. To tackle
this issue, Ma et al. [25] introduced a dual discriminator conditional generative adversarial network (DDc-
GAN), which integrates both infrared and visible light images into the adversarial training process, thereby
achieving a more balanced fusion outcome. Expanding on the DDcGAN concept, AttentionFGAN [26]
incorporated a multi-scale attention mechanism designed to better retain foreground target information
from infrared images while preserving background details from visible light images. Although training
models with dual discriminators present certain complexities, Ma et al. [27] further advanced the field by
proposing a GAN framework that employs multi-class constraints to effectively balance the information
derived from both infrared and visible light images. Despite these advancements in visual quality, many of
these methods do not fully account for how the fusion results impact subsequent high-level visual tasks. To
address this gap, Liu et al. [28] developed a model that merges fusion with detection, employing a dual-layer
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optimization strategy. This paper aims to achieve optimal fusion results by meticulously designing a range
of network architectures and loss functions, enabling CNN-based methods to implement image fusion with
low-light enhancement effects.

2.2 Low-Light Scenarios-Based Fusion Methods
In scenarios where lighting conditions are inadequate, visible light images frequently undergo signif-

icant degradation during nighttime, complicating the task for current fusion methods to extract detailed
texture information effectively. This often results in low-quality fused images. Research specifically address-
ing low-light image fusion within the image fusion domain remains sparse. For example, PIAFusion [29]
acknowledges lighting conditions but relies on a simplified model that fails to adjust effectively to complex
lighting environments. To counteract the detrimental effects of low light, Liu et al. [30] incorporated a visual
enhancement module following the fusion network, enhancing the representation of image information.
Additionally, Tang et al. [31] developed the first architecture dedicated to scene illumination fusion, which
integrates low-light enhancement with dual-modality fusion to yield more informative fused images, thereby
enhancing performance in subsequent visual tasks. Furthermore, Chang et al. [32] proposed an image
decomposition network aimed at correcting the illumination component of the fused image, leading to
improved fusion quality.

Additionally, the aforementioned fusion methods tailored for low-light scenarios primarily achieve
image fusion by connecting two distinct network pipelines, each designed for different tasks. However, this
type of solution often employs complex network models and loss functions to constrain the final fusion
outcome, potentially leading to increased computational demands. This could limit the practical application
of image fusion in real-world scenarios.

2.3 Lightweight-Based Fusion Methods
Currently, research on lightweight fusion model-based studies primarily focuses on designing network

models that reduce model parameters and convolutional dimension channels. IFCNN [33] achieves feature
extraction and image reconstruction with only two convolutional layers in both the encoder and decoder,
adjusting fusion rules based on the type of source images to implement a unified network for various
fusion tasks. PMGI [34] extracts information through gradient and intensity ratio preservation, reusing, and
fusing features extracted from each convolutional layer. SDNet [35] addresses fusion tasks by reconstructing
the generated fusion image into the squeezed network structure of the source images, forcing the fusion
image to contain more information from the source images. SeAFusion [23] performs feature extraction
through gradient residual dense blocks and guides the training of the fusion network using semantic
segmentation task losses. FLFuse [36] completes the generation of fusion images in a lightweight and rapid
manner through a weight-sharing encoder and feature exchange training strategy. However, these methods,
in pursuit of lightweight design, set the network channel dimensions to be relatively shallow and employ
simple fusion strategies, which fail to fully extract and fuse image features, resulting in poor performance
in visual effects and performance metrics. Secondly, these overly simplistic network structures are not
conducive to the training of deep learning networks, but overly complex networks are difficult to lightweight,
requiring an effective method to balance the two. Structural re-parameterization technology, represented by
RepVGG [37], is a new method characterized by high performance during the training phase and fast speed
during the inference phase, achieving good results in multiple advanced visual tasks. However, directly using
structural re-parameterization blocks designed for advanced visual tasks brings little improvement to the
fusion task of infrared and visible light images. Therefore, targeted structural re-parameterization modules
need to be designed for the fusion task to rapidly extract feature information from the source images.
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To tackle those challenges, this paper explicitly adopts the principle of lightweight models in network
design, employing simpler and more effective approaches to accomplish the task of low-light image fusion.

3 Methods

3.1 Problem Formulation
In low-light conditions, visible light images often suffer from illumination degradation, leading to

challenges for existing fusion algorithms in effectively extracting background texture details. Simply relying
on infrared images to compensate for this loss proves inadequate. Consequently, the critical challenge
in fusing infrared and visible light images at night lies in efficiently utilizing the information from the
source images to guide the fusion network toward producing higher-quality results. One straightforward yet
effective approach to address this issue is through histogram equalization. In this context, the present study
employs Contrast Limited Adaptive Histogram Equalization (CLAHE) [38] for enhancing both infrared
and visible light images. The network model is directed by the loss function to produce fusion images
with similar characteristics, enabling it to learn low-light enhancement capabilities without adding to the
inference workload.

This section aims to clarify the function of CLAHE in enhancing infrared and visible light images by
showcasing visual results related to image intensity and edge details. In particular, for a registered pair of
low-light infrared and visible light images, the maximum intensity and gradient outcomes derived during
the computation of intensity loss and gradient loss can be expressed as follows:

Iint = Max (Iir , Iv i), (1)
Igrad = Max (∇Iir , ∇Iv i). (2)

In the equation, ∇ represents the Sobel operator, which is used to extract edge gradient information
from images.

Most fusion algorithms are designed based on the assumption that visible images contain a wealth of
background texture details and that they have prominent target information. This assumption holds true in
most imaging environments with sufficient lighting. However, in low-light scenarios, visible images suffer
from severe degradation and are unable to provide effective texture detail information. Consequently, models
trained under such conditions are inevitably incapable of generating high-quality fusion images.

To better utilize the information obscured in low-light scene images, enhancing visible light images with
low-light enhancement techniques is a widely adopted strategy. Among these, Contrast Limited Adaptive
Histogram Equalization (CLAHE) stands out as a straightforward yet highly effective method for low-
light enhancement. It significantly boosts image contrast and improves overall visual quality. Following the
enhancement of both infrared and visible light images using CLAHE, the next step involves calculating the
maximum intensity and maximum gradient results, which can be expressed as follows:

Ien
int = Max (Ien

ir , Ien
v i ), (3)

Ien
grad = Max (∇Ien

ir , ∇Ien
v i ). (4)

Fig. 2 provides an example of a typical low-light scenario, illustrating the comparison of intensity and
gradient before and after processing infrared and visible light images with CLAHE.∇ represents the image’s
edge gradient, ‘En’ denotes the image enhanced using the CLAHE, and Max (⋅) signifies the selection of the
maximum pixel value.
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Figure 2: Intensity and gradient comparison of infrared and visible light images before and after CLAHE processing

Fig. 2 illustrates that both Fig. 2c,d exhibit superior visual quality compared to Fig. 2a,b. This indicates
that the CLAHE method effectively enhances both infrared and visible light images in low-light conditions,
significantly enriching the texture detail of the scene. Consequently, this study will utilize the images
in Fig. 2k,l as pseudo-labels for the fusion network. By assessing the intensity distribution and edge gradients
between the fusion image and the pseudo-label via an enhancement loss, the network can acquire low-light
enhancement capabilities akin to those of the CLAHE method. This process enables the network to not only
integrate information from both infrared and visible light images but also to better tackle fusion challenges in
low-light scenarios. Furthermore, this method of guiding network training with a loss function ensures that
the fusion network achieves low-light enhancement effects without incurring additional computational costs.

3.2 Network Architecture
3.2.1 Overall Network

To improve the network model’s representational capability while adhering to lightweight requirements,
the LLE-Fuse framework is illustrated in Fig. 3. This framework effectively and efficiently carries out the
image fusion task in a streamlined manner.

During the training process, the network receives infrared and visible light images through separate
branches for feature extraction. The initial step involves a 1 × 1 convolution to capture shallow features,
which are then processed in the Edge-MobileOne Block (EMB) for deeper extraction of texture and
salient features. Throughout this extraction phase, the Cross-Modal Attention Module (CMAM) effectively
integrates feature information from multiple stages, combining both common and distinct features while
minimizing computational demands. Next, a decoder performs upsampling to merge features of varying
scales, facilitating image reconstruction. Subsequently, CLAHE is applied to enhance both infrared and
visible light images in low-light conditions, supporting the training of the fusion network through the loss
function. Upon completing the training phase, structural re-parameterization optimizes the entire network,
preparing it for the inference stage.
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Figure 3: The overall network framework of LLE-Fuse comprises the Edge-MobileOne Block (EMB) and the Cross-
Modal Attention Fusion Module (CMAM)

3.2.2 Edge-MobileOne Block
The model proposed in this paper is composed of multiple Edge-MobileOne Blocks (EMB), which are

improved based on the MobileOne Block [39]. The specific structure of this module is shown in Fig. 4.
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Figure 4: The network structure of the Edge-MobileOne Block (EMB)

In low-light scenarios, the feature network should fully extract the texture information and salient
targets from infrared images to compensate for the severe degradation of visible light images. Therefore, the
network should extract features at different levels, but a multi-scale feature extraction network would increase
the computational load. To this end, a multi-scale network structure, MobileOne Block, is introduced in the
network to enrich the representational capacity of the network model during the training phase. To further
reduce computational resource consumption, deep convolutional parts and point convolutions are included.
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Similarly, in low-light conditions, the background texture details of visible light images are lost, making
the extraction of texture particularly important during the feature extraction phase. Therefore, in EMB,
we replace the original structure with the Sobel operator, which enhances the expression of texture details
and strengthens the network’s ability to represent texture during the feature extraction phase. Concurrently,
structural re-parameterization technology simplifies the multi-branch network in the training phase into
a direct connection network during the inference phase, enriching the network model’s representational
capacity without increasing additional computational resource consumption in the inference phase.

Specifically, the EMB is primarily composed of a depthwise convolution section and a pointwise
convolution section, with each section further expanded into k sub-branches, thereby implicitly enhancing
the network’s representational capacity. Through multiple experiments, k = 4 has been selected as the
parameter for the EMB. This process can be formulated as follows:

Y = Act (PConvk (Act (DWConvk (X)))), k = {1, 2, 3, 4}, (5)

PConv (⋅) =
n
∑
k=1

Convk
1×1 (x), k = {1, 2, 3, 4}, (6)

DWConv (⋅) = x + Conv1×1 (x) + Sobel (x) +
n
∑
k=1

Convk
3×3 (x), k = {1, 2, 3, 4}, (7)

where, Act (⋅) represents the activation function LeakyReLU; Sobel (⋅) represents the Sobel edge gradi-
ent operator.

Strengthening image edge textures often effectively facilitates the progress of fusion tasks, but con-
volutional layers trained by the network also find it challenging to extract edge information parameters,
necessitating the introduction of prior knowledge parameters capable of extracting edge information.
Inspired by Chen et al. [40], an additional Sobel operator branch was incorporated into the depthwise
convolution branch of the EMB to enhance the module’s edge detection capabilities. It should be noted
that the computation of this Sobel operator is consistent with that of DWConv (Depthwise Convolution).
Therefore, the modified EMB, like the MobileOne Block, can be optimized into the network structure of
MobileNetV1 through structural re-parameterization technology. Such an operation can further reduce
the computational resource consumption of the model during the inference phase, and the performance
improvement brought by the added Sobel branch is cost-free. After the equivalent transformation through
structural re-parameterization technology, the processing procedure of the EMB is formulated as follows:

Y = Act (PConv′ (Act (DWConv′ (X)))). (8)

3.2.3 Cross-Modal Attention Fusion Module
The fusion layer in our approach incorporates the Cross-Modal Attention Fusion Module (CMAM),

with its specific structure depicted in Fig. 3. The encoder of the fusion network extracts intermediate
feature information at various scales from both infrared and visible light images. Given that these features
originate from different modalities, they each emphasize distinct aspects of the scene while containing both
complementary and shared information. The primary objective of the fusion module is to effectively integrate
this complementary data from the distinct modalities, along with the shared information. A critical challenge
lies in leveraging the unique complementary information found in one modality to effectively merge these
two sets of features. For thermal targets illuminated adequately, it is essential to enhance both sets of feature
information during the fusion process. However, applying methods that address complementary information
similarly may risk diminishing one of the feature sets.
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To effectively tackle the challenge of fusing information from diverse modalities, our approach utilizes
element-wise addition to capture the complementary information present in the images from different
sources. Simultaneously, element-wise multiplication is applied to extract the shared information between
these modalities. The mathematical representations for both operations are as follows:

Xadd = Xv i + Xir , (9)
Xmul = Xv i × Xir , (10)

where, Xv i , Xir represents the depth features of infrared and visible light images extracted by the encoder.
The element-wise addition Xadd refers to handling the complementary information from different modalities
through an element-wise addition operation on the visible light features and the thermal target features.
On the other hand, the element-wise multiplication Xmul signifies strengthening the common information
across different modalities by performing an element-wise multiplication operation on the visible light
features and the thermal target features.

Using the Channel and Modality Attention Module (CMAM), the extracted common and comple-
mentary features are combined to create a feature vector, which is subsequently processed through a
1 × 1 convolutional layer for channel feature compression. Following this, the Channel Attention Module
(SEBlock) [41] directs the network’s attention toward the relevant regions, thereby improving the contrast of
the identified targets. This procedure can be illustrated as follows:

Y = SE (Conv (Cat (Xv i , Xir))), (11)

where, Cat (⋅) denotes the feature cascading operation; Conv (⋅) represents the 1 × 1 convolutional
block followed by the LeakyReLU activation function; SE (⋅) refers to the SEBlock, which is the channel
attention module.

3.3 Loss Function
In the design of fusion networks based on convolutional neural networks, the selection and design of

the loss function have a crucial impact on the network’s performance. The loss function not only guides
the weight updates during the network training process but also directly affects the feature representations
learned by the network and the final output results. This paper employs an enhanced loss function Len and a
correlation loss function Lcorr to jointly constrain the training of the network. The formula for the total loss
is as follows:

Loss = Len + γLcorr , (12)

where, γ represents the weight coefficient for balancing the two losses.
The enhanced loss aims to instruct the network model in effectively learning low-light enhancement

while preserving high contrast and intricate texture details. To achieve this, the model must consider both
the intensity distribution and edge gradient of the fused images. This enhanced loss is composed of intensity
loss and gradient loss, represented by the following formulas:

Len = αLInt + βLGrad , (13)

where, α and β are the weight coefficients for balancing these two losses.
In order to enhance the model’s ability to learn low-light enhancement effects, this study utilizes CLAHE

to elevate the quality of both infrared and visible light images. This approach not only boosts the local contrast
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but also significantly minimizes noise, producing processed images with improved visual appeal, enhanced
texture details, and more uniform contrast. Therefore, CLAHE will be employed to enhance both the visible
light and infrared images, aiming to optimize the brightness and edge features of the fused images for superior
quality in image fusion.

The intensity loss plays a crucial role in regulating the overall brightness of the fused image. To enhance
the low-light effects in the fused output, this study substitutes the original infrared and visible light images
with their enhanced counterparts in the common intensity loss calculation. By doing so, the maximum
intensity is computed to inform the training process of the fusion network. The formula used to calculate the
intensity loss is presented below:

LInt =
1

HW
∥I f −Max (Ien

ir , Ien
v i )∥1 , (14)

where, I f represents the fused image; Ien
ir , Ien

v i represent the infrared and visible light images enhanced by the
CLAHE algorithm, respectively; Max (⋅) denotes the selection of the maximum pixel value; H, W refer to
the height and width of the input images; ∥⋅∥1 signifies the l1-Norm.

To enrich the edge texture details of the fused image, the edge gradient of the fused image should be
directed towards the maximum edge gradient of the enhanced infrared and visible light images. The formula
for the edge gradient loss is as follows:

LGrad =
1

HW
∥∣∇I f ∣ −Max (∣∇Ien

ir ∣ , ∣∇Ien
v i ∣)∥1 , (15)

where,∇ represents the edge texture of the image, and in this chapter, the Sobel gradient operator is used to
extract the edges of the image.

Furthermore, to better preserve the information of the source images, this paper also introduces a
regularization term to strengthen the correlation between the fused image and the source images. The
formula is as follows:

LCorr =
1

corr (I f , Iir) + corr (I f , Iv i)
, (16)

where, this paper uses corr (x , y) to calculate the correlation between the fused image and the source image.

4 Experiments and Analysis
This section outlines the experimental framework for training the network, covering aspects such as

the dataset, experimental protocols, comparative algorithms, and evaluation criteria. Subsequently, both
comparative fusion experiments and generalization tests are conducted to showcase the advantages of the
proposed method. An efficiency comparison is then presented to highlight the lightweight characteristics of
the approach. Finally, an ablation study is conducted to assess the effectiveness of the proposed techniques.

4.1 Experimental Setup
4.1.1 Dataset

To assess the effectiveness and generalizability of our method, comparative experiments were performed
using three publicly available datasets: LLVIP [42], TNO [43], MSRS [29] and M3FD [28]. For the training
phase, the LLVIP dataset, which comprises registered pairs of infrared and visible light images, was utilized.
For ease of training, the image pairs from the LLVIP dataset were cropped to a resolution of 224 pixels by
224 pixels, resulting in twenty thousand pairs of images, and the CLAHE algorithm was applied to enhance
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the low-light conditions of these cropped images. In addition to the comparative experiments conducted on
the LLVIP dataset, generalization tests were carried out using the TNO, MSRS and M3FD datasets to further
validate the performance of the proposed approach.

4.1.2 Experimental Details
The method proposed in this paper is an end-to-end model, with the network optimizer being AdamW,

epoch = 100, learning rate = 1 × 10−3. The loss function parameters are denoted by α = 21, β = 43, γ = 5. The
testing set comprises publicly available datasets for fusing infrared and visible light images: LLVIP, TNO,
MSRS and M3FD, from which 50, 42, 30, and 50 image pairs were chosen for the algorithm comparison
experiments, respectively. These experiments were carried out on a GeForce RTX 2080Ti 11 GB and an Intel
Core i5-12600KF, utilizing the PyTorch deep learning framework. All algorithms compared in this study were
configured as specified in their respective original publications.

4.1.3 Comparative Algorithms
To further validate the superiority of the algorithm presented in this paper, LLE-Fuse was compared

with 12 mainstream fusion methods, including one traditional method GTF [44], one AE-based method
(DenseFuse [12]), six CNN-based methods (IFCNN [33], PMGI [34], SDNet [35], STDFusionNet [18],
FLFuse [36], and U2Fusion [45]), and four GAN-based methods (FusionGAN [24], GANMcC [27], UMF-
CMGR [46], and ICAFusion [47]). The performance of the algorithm in this paper was primarily measured
against mainstream fusion methods through both visual results and evaluation metrics.

4.1.4 Evaluation Metrics
Since fusing infrared and visible light images lacks a reference image, relying on a single evaluation

metric is inadequate to demonstrate the quality of the fusion results. Thus, this paper incorporates five widely
recognized image quality metrics: Standard Deviation (SD), Visual Information Fidelity (VIF), Average
Gradient (AG), Entropy (EN), and Spatial Frequency (SF). Each metric offers a distinct perspective on the
fusion outcomes. SD evaluates the overall contrast and distribution of the fused image. VIF measures the
amount of information retained between the fused and source images by considering natural scene statistics
and human visual perception. AG and SF assess image clarity through gradient and frequency analysis,
respectively, while EN quantifies the informational content of the fused image. All these metrics are positively
correlated; higher values indicate superior image quality. By employing these comprehensive evaluation
metrics, the performance of various fusion algorithms can be assessed and compared more objectively.

4.2 Comparative Experiments
The performance of image fusion in nighttime settings is vital for this task. Consequently, the LLVIP

dataset, designed specifically for urban street scenes at night, was chosen for comparative analysis. Fig. 5
illustrates the visual results obtained from the proposed method alongside ten other algorithms using the
LLVIP dataset. In these figures, background texture details are highlighted with green frames, while infrared
salient targets are outlined in red. To enhance clarity, some images framed in solid lines have been enlarged
for better detail visibility.

The comparative results are depicted in Fig. 5. Upon examining the background details within the
enlarged green frames, it can be observed that the edge details within the green frames are nearly indis-
cernible in GTF, FusionGAN, and FLFuse; PMGI does render the edges visible, but the contrast between
the edges and the background is low, making them easily overlooked. The remaining methods are capable



Comput Mater Contin. 2025;82(3) 4081

of identifying the edges in the background, but they are clearly outperformed by the clarity of our method.
Focusing on the enlarged red frames, only FusionGAN, PMGI, and our method have preserved the high
contrast of the infrared source images, while other methods have diminished the infrared targets to varying
degrees. Overall, the fused images generated by our method are the clearest, and our method is able to extract
the most information from both the background and infrared targets, thus offering a significant advantage
over other methods.

(a) VI (b) IR (c) GTF (d) DenseFuse (e) FusionGAN

(f) IFCNN (g) PMGI (h) GANMcC (i) SDNet (j) STDFusionNet

(k) FLFuse (l) U2Fusion (m) UMF-CMGR (n) ICAFusion (o) Ours

Figure 5: The comparative results of the algorithm proposed in this paper and 12 mainstream algorithms on the LLVIP
dataset #210149

Table 1 presents the quantitative comparison results of our method with 12 mainstream fusion methods
on the LLVIP dataset. The data in Table 1 demonstrate that our method has a significant advantage across all
evaluation metrics. Specifically, our method outperformed the second-best PMGI by 4 percentage points in
SD, indicating that the images generated by our method have higher contrast. In terms of VIF, our method
improved by 40 percentage points compared to the best-performing DenseFuse, suggesting that the fusion
results are more natural and aligned with the human visual system. Regarding the gradient assessment metric,
our method showed a 156 percentage point increase compared to the top-performing IFCNN, which fully
illustrates that the fusion results have extracted more gradient information. In addition, the improvements in
EN and SF are also substantial, indicating that our method has a significant advantage in both visual effects
and metric performance.

Table 1: The quantitative comparison results in the LLVIP dataset. The best results are marked in bold, and the second-
best results are underlined

Dataset Algorithm SD VIF AG EN SF
GTF 9.0931 0.6063 2.2577 6.5562 0.0327

DenseFuse 9.2490 0.8317 2.7245 6.8727 0.0363
FusionGAN 8.3299 0.5322 1.9442 6.3078 0.0271

(Continued)
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Table 1 (continued)

Dataset Algorithm SD VIF AG EN SF
IFCNN 8.6038 0.8094 4.1833 6.7336 0.0565
PMGI 9.7091 0.7697 2.6571 6.9990 0.0332

GANMcC 9.0244 0.7155 2.1196 6.6894 0.0267
LLVIP SDNet 8.9238 0.6537 3.4359 6.6793 0.0474

STDFusionNet 6.2734 0.5222 2.9843 5.2143 0.0459
FLFuse 8.8942 0.6337 1.2916 6.4600 0.0162

U2Fusion 7.7951 0.5631 2.2132 5.9464 0.0287
UMF-
CMGR

8.0539 0.5796 2.5040 6.4619 0.0389

ICAFusion 7.8053 0.7300 2.4907 6.1222 0.0367
Ours 10.1525 1.1682 10.7486 7.6459 0.1122

4.3 Generalization Comparative Experiments
The generalization capability of deep learning methods is also indicative of model performance. There-

fore, in addition to comparative experiments on the LLVIP dataset, this paper also conducted experiments
on the TNO, MSRS, and M3FD datasets. It is noteworthy that our method was trained on the LLVIP dataset
and tested on the TNO, MSRS, and M3FD datasets.

4.3.1 TNO Dataset
The TNO dataset is the most classic collection of infrared and visible light images. The visual results

of the comparative algorithms and our method are shown in Fig. 6. From the visual results in Fig. 6, it can
be observed that the fusion results of FusionGAN, GANMcC, and UMF-CMGR are relatively blurry, with
a loss of scene details; DenseFuse, PMGI, SDNet, STDFusionNet, and U2Fusion retain more background
details, but the scenes are still limited by the illumination degradation of visible light images, resulting in low
contrast; while IFCNN, CUFD, and ICAFusion do provide better scene contrast, they still fail to offer a more
visually pleasing experience. In contrast, our method demonstrates surprisingly effective results in the TNO
dataset, not only providing rich background texture details and salient thermal targets but also maintaining
high contrast and illuminating the entire scene.

(a) VI (b) IR (c) GTF (d) DenseFuse (e) FusionGAN

(f) IFCNN (g) PMGI (h) GANMcC (i) SDNet (j) STDFusionNet

Figure 6: (Continued)



Comput Mater Contin. 2025;82(3) 4083

(k) FLFuse (l) U2Fusion (m) UMF-CMGR (n) ICAFusion (o) Ours

Figure 6: The comparative results of the algorithm proposed in this paper and 12 mainstream algorithms on the TNO
dataset #Kaptein_1123

The quantitative comparison results of different methods on the TNO dataset are presented in Table 2.
The data from Table 2 indicate that our method underperforms only in the VIF metric on the TNO dataset,
but demonstrates significant advantages in several other evaluation metrics, an outcome attributed to the
low-light enhancement capabilities of our method. Specifically, the improvements in AG and SF, which assess
gradient information, are substantial, with increases of 160 and 139 percentage points, respectively. This
suggests that the EMB module and enhancement loss of our method play a crucial role in extracting texture
details. Furthermore, the improvements in SD and EN, with increases of 7 and 2 percentage points compared
to the best-performing methods, indicate a certain advantage in the comprehensiveness of image information
extraction.

Table 2: The quantitative comparison results in the TNO dataset. The best results are marked in bold, and the second-
best results are underlined

Dataset Algorithm SD VIF AG EN SF

TNO

GTF 9.4788 0.7439 3.4941 6.7632 0.0373
DenseFuse 9.2424 0.8175 3.5600 6.8193 0.0352

FusionGAN 8.6736 0.6541 2.4211 6.5580 0.0246
IFCNN 9.0581 0.7864 5.1154 6.8533 0.0508
PMGI 9.6029 0.8689 3.6004 7.0181 0.0344

GANMcC 9.0532 0.7123 2.5441 6.7359 0.0242
SDNet 9.0698 0.7592 4.6117 6.6948 0.0457

STDFusionNet 9.0451 0.9746 4.3846 6.9031 0.0455
FLFuse 9.2611 0.8084 3.3691 6.3924 0.0339

U2Fusion 8.8553 0.6787 3.4891 6.4230 0.0327
UMF-CMGR 8.7085 0.7121 2.9727 6.5325 0.0321

ICAFusion 9.5750 1.0757 4.6253 7.1372 0.0470
Ours 10.3190 0.7849 13.3298 7.3418 0.1218

4.3.2 MSRS Dataset
The MSRS dataset includes some low-light scenes with insufficient illumination. This paper has selected

a typical example, and the visual results of different algorithms are shown in Fig. 7. Our method is capable of
providing brighter scenes with prominent targets and fully exploring the background information hidden in
the darkness. From the enlarged green frames, it can be seen that, aside from PMGI and our method, other
methods almost fail to reveal the background details hidden in the dark. Overall, while existing mainstream
fusion methods maintain the information of the source images to varying degrees, only our method provides
rich texture information while maintaining the prominence of infrared targets.



4084 Comput Mater Contin. 2025;82(3)

(a) VI (b) IR (c) GTF (d) DenseFuse (e) FusionGAN

(f) IFCNN (g) PMGI (h) GANMcC (i) SDNet (j) STDFusionNet

(k) FLFuse (l) U2Fusion (m) UMF-CMGR (n) ICAFusion (o) Ours

Figure 7: The comparative results of the algorithm proposed in this paper and 12 mainstream algorithms on the MSRS
dataset #01023N

Table 3 compares LLE-Fuse’s performance with other methods on the MSRS dataset across five metrics,
showing LLE-Fuse’s superiority in all. Its SD score reflects high contrast in fused images, while its VIF score
indicates good alignment with human visual perception. LLE-Fuse’s EN score also indicates rich information
capture. Its AG and SF scores demonstrate effective texture preservation. Collectively, these results validate
LLE-Fuse’s efficacy on the MSRS dataset.

Table 3: The quantitative comparison results in the MSRS dataset. The best results are marked in bold, and the second-
best results are underlined

Dataset Algorithm SD VIF AG EN SF

MSRS

GTF 5.6669 0.4219 1.6344 5.1236 0.0218
DenseFuse 7.5090 0.7317 2.2024 6.0225 0.0255

FusionGAN 5.7942 0.4671 1.4470 5.4631 0.0172
IFCNN 6.6247 0.6904 3.6574 5.8457 0.0450
PMGI 7.5838 0.6348 2.7487 6.1807 0.0301

GANMcC 8.0840 0.6283 1.9036 6.0204 0.0212
SDNet 5.6207 0.4149 2.5085 5.1713 0.0317

STDFusionNet 6.5162 0.5298 2.4355 5.3721 0.0366
FLFuse 6.6117 0.4791 1.7241 5.5299 0.0189

U2Fusion 5.7280 0.3902 1.8871 4.7535 0.0243
UMF-CMGR 5.9766 0.3836 2.1143 5.5499 0.0272

ICAFusion 7.8528 0.5961 1.9544 5.7254 0.0261
Ours 9.3456 0.9212 8.9116 7.3362 0.0789
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4.3.3 M3FD Dataset
In addition to the TNO and MSRS datasets, the M3FD dataset encompasses scenes with insufficient

lighting, characteristic of low-light conditions. This paper presents a typical example, with the visual results
from various algorithms depicted in Fig. 8.

(a) VI (b) IR (c) GTF (d) DenseFuse (e) FusionGAN

(f) IFCNN (g) PMGI (h) GANMcC (i) SDNet (j) STDFusionNet

(k) FLFuse (l) U2Fusion (m) UMF-CMGR (n) ICAFusion (o) Ours

Figure 8: The comparative results of the algorithm proposed in this paper and 12 mainstream algorithms on the M3FD
dataset #00621

Upon examining the enlarged green frames, it is evident that methods such as GTF, FusionGAN,
PMGI, SDNet, and FLFuse conceal background details, rendering certain background elements nearly
indistinguishable in the darkness. From the enlarged red frames, it is apparent that DenseFuse, GANMcC,
IFCNN, U2Fusion, and UMF-CMGR all exhibit varying degrees of attenuation in the prominence of infrared
targets. Beyond this, ICAFusion demonstrates certain advantages in preserving background textures, but
overall, our method significantly outperforms other approaches in depicting scene elements like “cars” and
“buildings”.

The quantitative comparison results on the M3FD dataset are presented in Table 4. According to the
results in Table 4, our LLE-Fuse demonstrates a distinct advantage across all five evaluation metrics. The top
ranking in the SD metric indicates that our method can produce fusion images with high contrast. The
leading position in the VIF metric suggests that the fusion results align well with the human visual perception
system. The first place in the EN metric indicates that our method can encompass rich information. The top
rankings in both the AG and SF metrics indicate that our method can effectively preserve texture information
from the source images in terms of gradient and frequency. In summary, the results from both qualitative
and quantitative analyses substantiate the generalizability of LLE-Fuse.

4.4 Efficiency Comparative Experiment
This paper conducted a runtime test on 50 images of the LLVIP dataset with a resolution of 1280 ×

1024 to further evaluate the operational efficiency of the proposed algorithm compared to mainstream fusion
algorithms. The average comparison results of the runtime are shown in the Table 5.



4086 Comput Mater Contin. 2025;82(3)

Table 4: The quantitative comparison results in the M3FD dataset. The best results are marked in bold, and the second-
best results are underlined

Dataset Algorithm SD VIF AG EN SF

M3FD

GTF 9.5301 0.7366 2.7378 7.0239 0.0333
DenseFuse 9.5467 0.8808 2.9959 6.9198 0.0327

FusionGAN 8.8368 0.5800 2.2012 6.4545 0.0255
IFCNN 9.5598 0.9026 4.8314 6.9699 0.0522
PMGI 9.3560 0.8057 2.6775 6.8907 0.0296

GANMcC 9.7510 0.8084 2.5959 6.8776 0.0278
SDNet 9.3117 0.7517 3.5530 6.7397 0.0399

STDFusionNet 8.4282 0.8938 3.9550 6.1387 0.0470
FLFuse 9.4282 0.8087 2.0650 6.8111 0.0229

U2Fusion 9.4868 0.8224 3.4411 6.7633 0.0358
UMF-CMGR 9.5780 0.8071 2.5522 6.8253 0.0300

ICAFusion 9.1569 1.0264 3.7208 6.6036 0.0439
Ours 10.1738 1.1702 11.5864 7.3626 0.1199

Table 5: The operational efficiency comparison results of the algorithm proposed in this paper and 12 mainstream
algorithms on the LLVIP dataset

Algorithm Running time (ms)
GTF No data1

DenseFuse 267.26 ± 472.11
FusionGAN 341.21 ± 546.12

IFCNN 20.42 ± 2.13
PMGI 218.26 ± 306.99

GANMcC 726.51 ± 972.39
SDNet 111.22 ± 338.89

STDFusionNet 284.86 ± 517.61
FLFuse 1.77 ± 14.18

U2Fusion 511.95 ± 774.04
UMF-CMGR 260.55 ± 440.31

ICAFusion 1456.16 ± 395.66
Ours 3.27 ± 3.54

Note: 1Since the average runtime of GTF exceeds 2 s, it is not included in the statistics.

As the table indicates, although the average runtime of the algorithm proposed in this paper is slightly
worse than that of FLFuse, the smaller standard deviation suggests that the method is more stable. Moreover,
the fusion performance of the proposed method is significantly better than that of FLFuse, making this
minor difference acceptable. The algorithm presented in this paper is based on the concept of structural re-
parametrization and is equivalently optimized into a MobileNetV1 [48] structure during the inference phase,
which can greatly reduce the fusion time.
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Additionally, this paper compared the runtime, forward propagation memory requirements, number of
parameters, weight size, and per-pixel cumulative deviation of the fusion results before and after structural re-
parametrization on the LLVIP dataset. The comparison results of the model parameters are shown in Table 6.
According to the data in Table 6, it can be seen that the method proposed in this paper can effectively reduce
the computational resource consumption of the network through structural re-parametrization techniques
while maintaining the same fusion effect.

Table 6: Comparison of model parameters before and after structural re-parametrization

Re-parametrization Runtime Forward memory Parameters Weight size Deviation
× 6.43 ms 14,770.00 MB 82,081 0.31 MB /√

3.27 ms 5620.18 MB 47,089 0.18 MB 2.8 × 10−3

4.5 Ablation Study
To further validate the effectiveness of the various modules designed in our approach, ablation studies

were conducted in this section. Experiment 1 represents our method, Experiment 2 replaces the CLAHE-
enhanced images in the enhancement loss with the original source images, Experiment 3 removes the
Cross-Modality Attention Module (CMAM) from the setup of Experiment 2, and Experiment 4 further
removes the Edge-MobileOne Block (EMB) from the configuration of Experiment 3. The qualitative and
quantitative results of the experiments are depicted in Fig. 9 and Table 7, respectively.

(a) VI/IR (b) Experiment1 (c) Experiment2 (d) Experiment3 (e) Experiment4

Figure 9: The ablation experimental results of the algorithm proposed in this paper on the LLVIP dataset

The enhancement loss guides the network in generating fused images with low-light enhancement
effects. Consequently, compared to the results of our method (Experiment 1), as shown in Fig. 9c, the scenes
in the results of Experiment 2 are noticeably darker, with relatively fewer texture details. Secondly, as depicted
in Fig. 9d, when the Cross-Modality Attention Module (CMAM) is removed from the basis of Experiment
2, the saliency of the fusion results is diminished. Lastly, Fig. 9e illustrates that when the Edge-MobileOne
Block (EMB) is removed from the basis of Experiment 3, the fusion network fails to effectively extract target
information from the infrared image, leaning the overall scene more towards the visible light image modality.

Additionally, the evaluation metrics in Table 7 show varying degrees of decline in Experiments 2–4,
further demonstrating the effectiveness of each module. In summary, both qualitative and quantitative results
indicate that each module plays a promotional role in the overall network.
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Table 7: The quantitative evaluation metric results of the ablation experiments on the LLVIP dataset. The best results
are marked in bold, and the second-best results are underlined

Experiment Evaluation methods

No. EMB CMAM Len SD VIF AG EN SF
1

√ √ √
10.1213 1.1624 11.3551 7.6509 0.1183

2
√ √ × 9.8140 0.9353 7.6129 7.4839 0.0771

3
√ × × 9.5538 1.0152 4.0657 7.3336 0.0543

4 × × × 9.0162 0.8351 6.3087 7.0437 0.0780

5 Conclusions

This study introduced a novel lightweight infrared and visible light image fusion network, termed LLE-
Fuse, specifically designed to address the challenges of image fusion under low-light conditions. The network
employed a dual-branch architecture with Edge-MobileOne Blocks embedded with the Sobel operator
for feature extraction and utilized a Cross-Modality Attention Fusion Module to integrate information
from heterogeneous sources. Furthermore, this research incorporated pseudo-labels from CLAHE low-
light enhancement and correlation loss into the enhanced loss function to guide the network in learning
enhancement fusion capabilities in low-light scenarios. The experimental results confirmed that LLE-Fuse
was capable of generating fused images with high contrast and clear textures under both low-light and
normal lighting conditions while maintaining the lightweight nature of the network. This provided an
effective solution for enhancing the performance and model lightweight of deep learning-based image fusion
technology in low-light environments.

Despite the significant advancements achieved by the LLE-Fuse proposed in this study in the realm
of low-light image fusion, certain limitations were noted. Specifically, the method was primarily tailored to
address image fusion issues under low-illumination conditions, and it may exhibit overexposure phenomena
under normal lighting conditions, leading to suboptimal fusion outcomes in brighter scenes. Additionally,
if images of low-light scenes with noise are enhanced using the CLAHE method, it can amplify the image
noise, thereby affecting the fusion results. This is also an issue that needs further consideration. To address
this issue, future research endeavors will focus on refining the algorithm. Potential solutions include the
design of network architectures capable of adapting to the varying light source distributions under both
low-illumination and normal lighting conditions, thereby enabling adaptive image fusion across different
lighting scenarios. Consequently, we plan to further develop an illumination classification module in the
future to enhance the network’s adaptability and robustness to complex environments, thereby achieving
superior image fusion results under a broad range of lighting conditions.
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