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ABSTRACT: Image enhancement utilizes intensity transformation functions to maximize the information content of
enhanced images. This paper approaches the topic as an optimization problem and uses the bald eagle search (BES)
algorithm to achieve optimal results. In our proposed model, gamma correction and Retinex address color cast issues
and enhance image edges and details. The final enhanced image is obtained through color balancing. The BES algorithm
seeks the optimal solution through the selection, search, and swooping stages. However, it is prone to getting stuck
in local optima and converges slowly. To overcome these limitations, we propose an improved BES algorithm (ABES)
with enhanced population learning, position updates, and control parameters. ABES is employed to optimize the core
parameters of gamma correction and Retinex to improve image quality, and the maximization of information entropy
is utilized as the objective function. Real benchmark images are collected to validate its performance. Experimental
results demonstrate that ABES outperforms the existing image enhancement methods, including the flower pollination
algorithm, the chimp optimization algorithm, particle swarm optimization, and BES, in terms of information entropy,
peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and patch-based contrast quality index (PCQI).
ABES demonstrates superior performance both qualitatively and quantitatively, and it helps enhance prominent features
and contrast in the images while maintaining the natural appearance of the original images.
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1 Introduction
Various factors often affect images, such as defects in recording devices, transmission media, and

imaging systems [1,2]. These images exhibit low brightness, weakened detail, and poor contrast, all of which
significantly impact the efficiency of computer vision systems [3,4]. Incomplete processing methods may
lead to image degradation, while image enhancement techniques are essential to image processing. Their
primary goal is to enhance the appearance of low-quality images and improve visual effects [5,6].

Image enhancement is important in many real-world applications, including medical image processing,
satellite image analysis, remote sensing, and video processing [7,8]. It improves the visual quality of an image
by expanding its intensity range. The region of interest can be easily observed in an image with good contrast.
The key challenge in improving image quality is to maintain the essential features and brightness of images
while performing contrast enhancement operations [9,10].

Image enhancement techniques are mainly divided into the following categories: i) Histogram equal-
ization (HE) methods [11]. These methods improve contrast, and they are fast to process. However, they
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can easily cause over-enhancement and loss of details due to grayscale merging. ii) Retinex methods [12,13].
The most classic methods include the single scale Retinex (SSR) algorithm, the multi-scale Retinex (MSR)
algorithm, and the MSR with color restoration (MSRCR) algorithm. SSR uses Gaussian filtering for esti-
mation, while MSR can be seen as a linear combination of multiple SSRs at different scales. MSR improves
contrast and brightness, but it results in lower edge sharpness and some color distortion. MSRCR introduces
color restoration to MSR to prevent distortion, but the colors may deviate from the original ones. Due to its
excellent performance in enhancing contrast, brightness, and details, Retinex has been widely used in recent
years. Therefore, the algorithm proposed in this paper is based on the Retinex technique.

Metaheuristic algorithms are utilized to solve complex problems by simulating optimization processes
observed in nature [14–16]. These algorithms typically find near-optimal solutions across a wide range of
potential solution spaces, and they have global search capabilities. In image enhancement, metaheuristic
algorithms are widely used to optimize parameters such as brightness, contrast, and color balance. For
instance, genetic algorithm (GA) [17], particle swarm optimization (PSO) [18,19], and bat algorithm
(BA) [20] can effectively adjust the parameters of image enhancement techniques to improve visual quality.
These algorithms enhance image quality by improving details and overall appearance.

It is not easy to enhance color images because it requires a large number of evaluations of an objective
function that measures the quality of the enhanced image. To overcome limitations in current metaheuristic
algorithms, such as their tendency to get trapped in local optima, slow convergence, and insufficient
optimization of essential parameters for high-quality image enhancement, we propose an advanced bald
eagle search (ABES) algorithm based on population learning, position updates, and control parameters.
This algorithm allows for better exploration and exploitation within the solution space. ABES optimizes key
parameters in gamma correction and Retinex to address color cast and enhance edge detail. It enhances
prominent features and contrast more effectively while preserving the natural appearance of images. The
primary contributions of this study are as follows:

1. The proposed image enhancement model is adaptable to a wide range of image types and it is not
limited to any specific application. ABES incorporates an innovative position update mechanism, skillfully
balancing global exploration with local search to enhance convergence speed over the original BES algorithm.
This approach enables ABES to refine image details effectively and produces enhanced brightness and
contrast consistency across various types of images.

2. ABES has been shown to be superior to other methods in terms of information entropy, peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and patch-based contrast quality index (PCQI)
according to experimental results. The image quality has been improved both quantitatively and qualitatively,
and ABES successfully enhances image details.

The main structure of this paper is as follows: Section 2 introduces the latest research on color image
enhancement, and Section 3 presents the improved BES algorithm for image enhancement. Section 4
discusses the experiments and statistical analysis conducted on multiple images, and Section 5 provides a
summary and perspective on the work presented in this paper.

2 Related Works
Image enhancement algorithms enable images to have more vivid colors and higher detail clarity. In

this section, we will briefly introduce the latest research progress in image enhancement.
Zhang et al. considered image enhancement as an optimization problem and utilized the PSO algorithm

to acquire the optimal solution [21]. Individual, local, and global optimizations adjust the flight direction
of particles in PSO. The three channels of R, G, and B in color images are represented by quaternion
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matrices, and the transformation parameters are optimized using an improved PSO. The flower pollination
algorithm (FPA) is a well-known metaheuristic algorithm, but its operators may lead to false optimal
positions on multi-modal surfaces. Das et al. enhanced FPA using fitness-based dynamic inertia weight and
two popular differential evolution (DE) mutation techniques [22]. The modified FPA (PMFPA) balances
evolutionary stages and locates the optimal values. It has been applied in image enhancement to measure
its efficiency. Prakash et al. used an improved measurement method to enhance low-contrast images [23].
Chaotic mapping is incorporated into the crow search method to improve global optimization. Krill herd
optimization is used to fine-tune the parameters in the new fitness function. Multi-scale Retinex is one of the
most popular image enhancement methods. The control parameters, including Gaussian kernel size, gain,
and offset, must be adjusted carefully based on the image content. Matin et al. introduced a multi-objective
PSO method to optimize these parameters [24]. This method iteratively validates the visual quality of the
enhanced image in terms of brightness, contrast, and color.

Low illumination in deep water often leads to poor clarity and low contrast in underwater images. The
inherent wavelength absorption characteristics of water cause underwater images to have a blue-green tint.
Therefore, it is a challenging task to study them. Sethi et al. proposed a method that uses multi-objective
PSO (MOPSO) to adjust the contrast and information content of underwater images [25]. The objective
functions of MOPSO correct color and contrast without introducing artifacts. The enhanced images contain
more information and contrast. In coal mines, poor lighting conditions and high dust suspension lead to
images with uneven lighting and low differentiation of facial features. Dai et al. proposed an improved image
enhancement method [26]. Median filtering is selected for noise reduction based on the characteristics
of coal mine images. Then, a gamma function and a fractional-order operator are introduced, and a PSO
algorithm is proposed for image enhancement. Liu et al. introduced a hybrid image enhancement algorithm
based on Retinex to improve the quality of drone images [27]. The algorithm uses a two-stage evolutionary
computation to adjust the hyperparameters of the MSRCR model automatically. The Rao-2 algorithm is
employed for global search, and solutions are obtained by maximizing the objective function. The Nelder-
Mead simplex method is used to refine the solutions through local search. The algorithm’s performance
is validated using real, low-quality drone images. Sathananthavathi et al. enhanced retinal fundus images
with uneven illumination by adjusting brightness and contrast using PSO [28]. The proposed technique
incorporates gamma correction in the Hue Saturation Value (HSV) color space and contrast adjustment in
the Lab Color Space (LAB) color space. The PSO algorithm enhances manual and automatic image analysis
systems by optimizing the contrast.

In the aforementioned studies, such as PSO and FPA, image enhancement capabilities have significantly
improved in different fields. These algorithms excel at optimizing image brightness, contrast, and color
correction, which are essential for improving visual quality. However, they also have some drawbacks.
Although they are flexible and capable of adapting to specific challenges, these methods often involve
increased computational complexity. For example, MOPSO may require significant computational resources,
particularly when optimizing multiple parameters simultaneously. These algorithms can be prone to overfit-
ting, especially when applied to highly specific image types, and they face difficulty in generalizing to other
domains. Additionally, the parameters of these algorithms are highly dependent on the image features, and
they require extensive manual intervention or experimentation to achieve optimal results. Recent works
suggest that gamma correction and Retinex are essential for image enhancement. BES, as a new metaheuristic
algorithm, has strong global search capabilities. However, there are still few reports on its application in
image enhancement. In this study, we employ BES, gamma correction, and Retinex to enhance color images.
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3 Proposed Image Enhancement Model
This study first applies gamma correction to images to address the phenomenon of color deviation.

Then, the Retinex algorithm is used to adjust the hue of images to produce enhanced images. The parameters
in gamma correction and Retinex significantly impact the quality of the enhanced images, so we optimize
the key parameters using the BES algorithm. The image enhancement process is depicted in Fig. 1.

Evaluate the image

Gamma  correctionColor image

Retinex

ABES optimizes the 
parameters

Figure 1: The image enhancement process

3.1 Objective Function
3.1.1 Gamma Correction

Gamma correction is a nonlinear operation used to encode and decode luminance or color values in
images [29]. It adjusts the brightness and contrast of an image to achieve a more natural-looking result. The
pixel values of an image are transformed using the following equations:

Ir(x) = Ir(x)α (1)
Ig(x) = Ig(x)β (2)
Ib(x) = Ib(x)γ (3)

where Ir , Ig , and Ib represent the pixel values of the red, green, and blue channels, respectively. The
parameters α, β, and γ control the brightness and contrast of an image. As these parameters increase, the
contrast in the darker areas of an image diminishes, resulting in a darker appearance. Conversely, when these
parameters decrease, the contrast in the brighter areas drops, causing the image to appear more colorful.
These parameters are very important for image enhancement, but it isn’t easy to accurately set them.

3.1.2 Retinex
Retinex is a widely used image enhancement approach based on the theory that an object’s color

is determined by its ability to reflect light at different wavelengths [30]. Retinex balances dynamic range
compression, edge enhancement, and color consistency. It is computed as follows:

1. Input the original image I(x , y).

2. Construct a Gaussian surround function G(x , y) = Ke
−x2
−y2

2σ2 , where σ is the scale parameter, and K
is a normalization constant, ensuring ∫ ∫ G(x , y)dxd y = 1.

3. Apply the Gaussian surround filter separately to the R, G, and B channels to get the illumination
component: L(x , y) = I(x , y) ∗G(x , y).
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4. Take the logarithm and subtract the illumination component from the original image: log R(x , y) =
log I(x , y) − log L(x , y).

5. Perform an exponential transformation R′(x , y) = e log R(x , y). In practice, Retinex calculates the
maximum (Max) and minimum (Min) values of log R(x , y), and then linearly scales each value: R(x , y) =
Value −Min
Max −Min

× 255.

6. Output the reflectance component as the final enhanced image.
σ directly influences the algorithm’s performance by controlling the scale of illumination estimation.

However, it is usually set simply between [80, 120], which impacts the algorithm’s enhancement effectiveness.

3.1.3 Objective Function
The amount of information or complexity in an image is measured by information entropy. For a

grayscale image with L grayscale levels, entropy is defined as follows:

P(xi) =
Number of pixels with value i

Total number of pixels in an image
(4)

H_(X) = −
L
∑
i=1

P(xi) log2 P(xi) (5)

where H_(X) represents the entropy of the pixel X. So the information entropy of color images is defined as
follows:

H(X) = ∑
3
i=1 H_(X)

3
(6)

where H(X) represents the average entropy of the three channels in a color image.
The higher the information entropy, the greater the complexity and information content in an image.

When the entropy is zero, it means that the image is completely uniform, and all pixel values are the same.
This study uses information entropy as an objective function. The value ranges of the six core parameters

are as follows: α, β, and γ ∈ [0.8, 2.2], σ1 ∈ [2, 50], σ2 ∈ [51, 100], and σ3 ∈ [101, 255], where σ1, σ2, and σ3 are
three Gaussian kernels.

3.2 Advanced Bald Eagle Search Algorithm
BES mimics the hunting strategies and intelligent social behaviors of bald eagles when fishing [31,32].

BES consists of three stages during the predation process. In the selection stage, bald eagles choose a space
with the most prey to search. Then, in the search stage, the eagles move within the selected space to hunt for
prey. Finally, in the swooping stage, they move from the optimal position determined during the search stage.

In BES, individuals learn from anyone to enhance search capability but reduce the algorithm’s conver-
gence speed. We propose a new learning method to improve the balance between global and local searches of
the BES algorithm. The population is evenly divided into three parts (P1, P2, and P3) based on the objective
function values. P1 and P3 consist of the best and worst individuals, respectively, and P2 consists of the rest.
In the proposed ABES algorithm, only the individuals in P3 update their positions, while those in P1 and P2
are responsible for guiding P3 to search. Algorithm 1 describes the pseudocode of ABES.
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Algorithm 1: ABES
1 Initialize the population size N, the number of evaluations fs;
2 Initialize the population pop;
3 nt = 0;
4 Execute the objective function and save the values to cost;
5 nt = nt +N;
6 [, index] = sort(cost);
7 Acquire the global optimal solution;
8 P1 = pop(index(1:N/3),:);
9 P2 = pop(index(N/3+1:2*N/3),:);
10 P3 = pop(index(2*N/3+1: N),:);
11 While nt <= f s do
12 % the selection stage
13 Update the positions of P3 with Eq. (7);
14 Execute the objective function for P3;
15 nt = nt + N/3;
16 Update cost;
17 [, index] = sort(cost);
18 P1 = pop(index(1:N/3),:);
19 P2 = pop(index(N/3+1:2*N/3),:);
20 P3 = pop(index(2*N/3+1: N),:);
21 % the search stage
22 Update the positions of P3 with Eq. (8);
23 Execute the objective function for P3;
24 nt = nt +N/3;
25 Update cost;
26 [, index] = sort(cost);
27 Acquire the global optimal solution;
28 P1 = pop(index(1:N/3),:);
29 P2 = pop(index(N/3+1:2*N/3),:);
30 P3 = pop(index(2*N/3+1: N),:);
31 % the swooping stage
32 P4 = [pop(1:3,:), mean(pop(1:3,:))] ;
33 Update the positions of P3 with Eq. (11);
34 Execute the objective function for P3;
35 Update cost;
36 nt = nt +N/3;
37 [, index] = sort(cost);
38 Acquire the global optimal solution;
39 P1 = pop(index(1:N/3),:);
40 P2 = pop(index(N/3+1:2*N/3),:);
41 P3 = pop(index(2*N/3+1: N),:);
42 end
43 Output the global optimal solution;
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3.2.1 Selection Stage
P1 guides the search of P3. In ABES, multiple optimal solutions participate in the population search,

so they significantly improve the global search ability and robustness of the algorithm. This approach
enhances population diversity and effectively prevents premature convergence. Furthermore, it provides
various near-optimal solutions in complicated search spaces of image enhancement and keeps a balance
between exploration and exploitation. ABES flexibly adjusts the search direction and improves the final
solution quality and global optimization capability.

Xi(t + 1) = Xbest(t) + 2 ∗ rand(). ∗ (Xp(t) − Xi(t)) (7)

where Xi(t)means the position of i at the t-th iteration. Xbest presents the global optimal solution, and Xp
is a random solution from P1.

3.2.2 Search Stage
P1 and P2 guide the search process of P3. In ABES, optimal and sub-optimal solutions collabo-

ratively participate in the population search to improve the algorithm’s global exploration ability and
search efficiency. Optimal solutions direct the population toward high-quality regions and the algorithm
converges rapidly on excellent solutions. Sub-optimal solutions assist in maintaining population diversity
and extending the search range to explore potentially better solutions. This method achieves a balance
between exploration and exploitation in complex and multi-modal search spaces and prevents the algorithm
from prematurely converging on local optima.

Xi(t + 1) = Xi(t) + yi ∗ (Xi(t) − Xp(t)) +wi ∗ (Xi(t) − Xr(t)) (8)

y = (a ∗ π ∗ rand(N) + R ∗ rand(N)) ∗ sin(a ∗ π ∗ rand(N))
max(∣(a ∗ π ∗ rand(N) + R ∗ rand(N)) ∗ sin(a ∗ π ∗ rand(N))∣)

(9)

w = (a ∗ π ∗ rand(N) + R ∗ rand(N)) ∗ cos(a ∗ π ∗ rand(N))
max(∣(a ∗ π ∗ rand(N) + R ∗ rand(N)) ∗ cos(a ∗ π ∗ rand(N))∣)

(10)

where N is the population size, and a and R are two coefficients. Xr is a random solution from P2.

3.2.3 Swooping Stage
To guide the search for P3, we utilize four global optimal solutions and their average position (P4), which

is inspired by the EO algorithm [33]. They can enhance the algorithm’s global search ability and convergence
speed. The optimal solutions guide the population toward the potential areas, while the average position
reduces the risk of over-convergence on a single solution.

Xi(t + 1) = rand() ∗ Xbest(t) + vi ∗ (Xi(t) − 2 ∗ Xo(t)) + qi ∗ (Xi(t) − 2 ∗ Xbest(t)) (11)
th = a ∗ π ∗ ex p(rand(N)) (12)

v = th ∗ sinh(th)
max(∣th ∗ sinh(th)∣)

(13)

q = th ∗ cosh(th)
max(∣th ∗ cosh(th)∣)

(14)

where Xo is a random solution from P4.
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3.2.4 Analysis of the Values of th
In the swooping stage, the position update is influenced by th. According to Eq. (12), its value range

is between [10 ∗ π, 10 ∗ e ∗ π]. Fig. 2 shows the sinh and cosh functions within this range. The appearance
of a curve is due to the overlap of these two functions. It can be concluded that the values of parameters v
and q are the same, and they lead to the same impact of P4 and the global optimal solution on individuals
in Eq. (11), which reduces the algorithm’s diversity. To address this issue, we randomly generate th each time
v and q are generated, as depicted in Eqs. (15) and (16).

v = a ∗ π ∗ ex p(rand(N)) ∗ sinh(a ∗ π ∗ ex p(rand(N)))
max(∣a ∗ π ∗ ex p(rand(N)) ∗ sinh(a ∗ π ∗ ex p(rand(N)))∣)

(15)

q = a ∗ π ∗ ex p(rand(N)) ∗ cosh(a ∗ π ∗ ex p(rand(N)))
max(∣a ∗ π ∗ ex p(rand(N)) ∗ cosh(a ∗ π ∗ ex p(rand(N)))∣)

(16)

Figure 2: The values of th

3.2.5 Computational Complexity
The ABES algorithm primarily consists of position updates and objective function evaluations, which

results in a time complexity of O( f s*dim+ f s*log(N/3)) and O( f s*g), respectively. f s means the number
of evaluations, g represents the execution time of the objective function, and N denotes the population size.
Therefore, the overall maximum time complexity of the AEO algorithm is O( f s*dim+ f s*log(N/3)+ f s*g).

4 Experimental Results and Analysis
We compare the proposed algorithm with the original BES algorithm and three other recent image

enhancement algorithms: PSO [21], chimp optimization algorithm (ChOA) [34], and PMFPA [22]. The pop-
ulation size for the algorithms is set to 30, and the maximum number of evaluations is 3000. Table 1 displays
the main parameter configurations. We randomly select ten images from the benchmark datasets [35,36] as
test images, as shown in Fig. 3.
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Table 1: The main configurations of the compared algorithms

Algorithm Key parameters
ChOA G1 = G2 =1.95; G3 = G4 =2.5;
PSO c1 = 2; c2 = 2; Vmax = 6; wmax = 0.9; wmin = 0.2;

PMFPA p = 0.5;
BES & ABES lm = 2; a =10; R =1.5;

(a) Img1 (b) Img2 (c) Img3

(d) Img4 (e) Img5 (f) Img6

(g) Img7 (h) Img8 (i) Img9

(j) Img10

Figure 3: The test images
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4.1 Experimental Analysis
Table 2 presents the average values of the objective function obtained by the algorithms. Among these,

the ABES algorithm stands out, consistently outperforming ChOA, PSO, PMFPA, and BES in Img2, Img3,
Img5, Img6, Img7, Img9, and Img10. ABES is particularly effective in optimizing the enhancement process
across multiple images, and it is robust and adaptable when handling different image characteristics. In
contrast, BES and PSO also demonstrate strong performance in 2 and 1 images, respectively. PMFPA falls
behind, and it has the poorest image enhancement performance. The data reveals that the algorithms achieve
the highest objective function value in Img5, which is notable for its rich details, diverse color distribution,
and high contrast. Conversely, Img7 shows a uniform color distribution and fewer detail changes, so the
algorithms receive the lowest objective function value. Overall, these findings underscore the significant
differences in performance between ABES and the comparison algorithms. ABES performs less effectively
than BES in Img1 and Img8, but it outperforms BES in the remaining eight images. ABES successfully
improves image quality, and the modifications of ABES have positively impacted its overall effectiveness in
image processing tasks.

Table 2: The object function values of the algorithms

Image ChOA PSO PMFPA BES ABES
Img1 6.9313208 6.9313095 6.9309973 6.9314881 6.9314770
Img2 6.7784891 6.7784892 6.7784889 6.7784891 6.7784904
Img3 6.4391635 6.4391155 6.4391875 6.4391875 6.4391876
Img4 6.4590452 6.4590457 6.4590417 6.4590447 6.4590452
Img5 7.1397678 7.1397128 7.1397706 7.1397630 7.1398275
Img6 6.4134771 6.4134580 6.4134659 6.4134877 6.4135075
Img7 2.8151249 2.8151431 2.8150839 2.8151448 2.8151477
Img8 5.9185526 5.9184551 5.9184577 5.9186020 5.9185982
Img9 6.3087092 6.3087188 6.3086964 6.3087114 6.3087198
Img10 6.9671808 6.9671794 6.9671693 6.9671806 6.9671825

The Wilcoxon rank sum test is employed to assess the similarity of data among the algorithms due
to the inherent randomness of metaheuristic algorithms and the closely clustered experimental results,
as shown in Table 3. ‘−’ indicates optimal solutions, and ‘=’ and ‘−’ represents approximate and less than
optimal solutions. This test reveals that the algorithms demonstrate consistent performance in Img3 and
Img7. Notably, PSO and ABES show similar statistical data in several images, including Img3, Img4, Img7,
Img9, and Img10. Furthermore, ABES and BES yield comparable experimental outcomes in Img3, Img7,
Img9, and Img10. ChOA, PSO, PMFPA, BES, and ABES have the best performance in 3, 5, 2, 6, and 8
images, respectively.

Table 4 presents a detailed comparison of the computation times for five different algorithms applied
to the benchmark images. From the table, it is clear that the proposed ABES algorithm takes more time
to execute than the BES algorithm. This increase in computation time can be attributed to the enhanced
strategies we incorporated into the BES framework, which aims to optimize performance further. Despite this
longer processing time, ABES demonstrates significantly better effectiveness compared to PSO and PMFPA.
Specifically, ABES requires approximately 6% to 14% more time than the fastest algorithm (BES), so it remains
within an acceptable range for practical applications. This slight trade-off in computation time is justified
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by the improved results in image quality that ABES delivers, so it is a worthwhile choice for prioritizing
performance over speed in image enhancement.

Table 3: The Wilcoxon rank sum test of the algorithms

Image ChOA PSO PMFPA BES ABES
Img1 < < < − <
Img2 < < < < −
Img3 = = = = −
Img4 < − < < =
Img5 < < < < −
Img6 < < < < −
Img7 = = = = −
Img8 < < < − <
Img9 < = < = −
Img10 = = < = −

Table 4: The average running time of the algorithms (Second)

Image ChOA PSO PMFPA BES ABES
Img1 1866.4474308 1903.7601380 1916.6972753 1736.4951340 1946.1498832
Img2 5029.5122480 5146.1557750 5144.9533972 4576.2317771 5097.4275717
Img3 4992.8008616 5237.4601179 5128.7142667 4625.3296323 5115.6128347
Img4 6481.3384413 6459.2923668 6541.1921230 5889.0529270 6443.5308342
Img5 1499.7232139 1548.1359855 1574.3550040 1376.6786524 1492.5483674
Img6 2477.3369621 2533.1211209 2476.4649403 2248.6171799 2422.4248252
Img7 2185.2073501 2251.6667889 2179.5683065 2005.3000179 2298.6552435
Img8 2195.2893433 2448.7687880 2383.0096787 1973.2853856 2229.5729656
Img9 2313.6848186 2391.9349373 2395.2945390 2153.8249795 2328.8158131
Img10 2363.2564788 2463.9348643 2469.5228774 2244.6467335 2381.1878387

By improving population learning, position update, and control parameters in the BES algorithm, ABES
effectively balances exploration and exploitation. The algorithm fine-tunes the key parameters of gamma
correction and Retinex to achieve superior image enhancement results. They are critical for controlling
brightness, contrast, and color fidelity, especially in challenging lighting conditions or low-visibility images.
By dynamically adjusting these parameters, ABES can better preserve image details and enhance visual
quality. Additionally, ABES excels in its robust image structure and color information handling. The objective
function in ABES is optimized to prioritize information entropy and ensures that the structural integrity and
perceptual quality of the images are enhanced. Compared to ChOA, PSO, PMFPA, and BES, ABES produces
more apparent, sharper, and consistent results.

4.2 Image Quality Analysis
The algorithms’ performance is further validated with PSNR, SSIM, and PCQI. PSNR quantitatively

evaluates the degree of image change by calculating the differences between each pixel of the original
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and processed images. A higher PSNR indicates less noise interference and better image quality in image
processing. Table 5 clearly shows that the quality of images has significantly improved after being processed
by the metaheuristic algorithms, with the ABES algorithm standing out for its superior performance in
image enhancement. ABES performs better in Img6-Img10 than in Img1-Img5, and it demonstrates strong
adaptability when dealing with different levels of image complexity. Furthermore, ABES outperforms other
comparison algorithms in Img2, Img3, Img8, and Img9, and it exhibits high stability and reliability in image
processing. While ChOA and PSNR achieve excellent PSNR results in 2 and 4 images, respectively, ABES
shows more excellent overall stability.

Table 5: The PSNR values of the algorithms

Image ChOA PSO PMFPA BES ABES
Img1 9.3918142 9.3720433 9.3957096 9.3959188 9.3838143
Img2 10.6872203 10.6872211 10.6872185 10.6872119 10.6872212
Img3 14.0466240 14.0466240 14.0466240 14.0466240 14.0474260
Img4 12.2643151 12.2643160 12.2643151 12.2643148 12.2643143
Img5 14.0725460 14.0674727 14.0664681 14.0767969 14.0733683
Img6 25.5021196 25.5006838 25.5009926 25.5033078 25.5020583
Img7 27.4215791 27.4230672 27.4207334 27.4209367 27.4210585
Img8 23.2891802 23.2913151 23.2881264 23.2880990 23.2954840
Img9 25.1624661 25.1624368 25.1624600 25.1625016 25.1626558
Img10 28.2789785 28.2780548 28.2782187 28.2800405 28.2788401

SSIM is an image quality assessment method that aligns closely with human visual perception. Unlike
PSNR, SSIM evaluates the similarity between two images by comparing their structural information, and it
provides a more precise reflection of changes in perceived image quality. Table 6 displays the performance
of the algorithms using the SSIM metric. The results show that ABES outperforms other algorithms in Img3,
Img8, Img9, and Img10, particularly excelling compared to PMFPA and BES. In this experiment, ChOA, PSO,
PMFPA, and BES achieve the highest SSIM values in 1, 2, 1, and 2 images, respectively. Meanwhile, ABES also
demonstrates strong competitiveness in image enhancement. It achieves high similarity between enhanced
and original images in Img3, Img6, Img7, and Img10 and significantly improves the fidelity of image details.
Despite the fluctuation of ABES’s performance in SSIM, it still provides superior results for most images
compared to other algorithms.

PCQI is a non-reference image quality assessment method. It focuses on the contrast and local structural
information of images and measures the visual quality by evaluating the contrast changes in different regions
(patches). Table 7 displays their experimental statistical results. ChOA, PSO, PMFPA, BES, and ABES achieve
the highest PCQI values in 0, 4, 2, 3, and 1 images, respectively. Although ABES’s performance is not as good
as that of other algorithms, it demonstrates excellent stability. It ranks second in Img1, Img4, Img6, Img8,
and Img10. In contrast, PSO and BES are extremely unstable. PSO performs poorly in Img2, Img3, Img6, and
Img10, while BES struggles in Img1, Img4, Img5, Img6, Img8, Img9, and Img10. ABES has the highest average
ranking, followed by PSO, ChOA, BES, and PMFPA. The algorithms significantly enhance the contrast of
local patches in Img1 and Img5, and they effectively improve the visibility of details and edges. However, the
local contrast of Img3 is originally low.
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Table 6: The SSIM values of the algorithms

Image ChOA PSO PMFPA BES ABES
Img1 0.7668246 0.7671130 0.7664877 0.7664849 0.7668731
Img2 0.8414747 0.8414747 0.8414747 0.8414746 0.8414747
Img3 0.9119185 0.9119185 0.9119185 0.9119185 0.9119186
Img4 0.5795675 0.5795674 0.5795675 0.5795676 0.5795676
Img5 0.7384272 0.7383266 0.7382731 0.7388474 0.7386818
Img6 0.9461961 0.9461967 0.9461975 0.9461914 0.9461940
Img7 0.9802068 0.9802114 0.9802064 0.9802069 0.9802072
Img8 0.8233620 0.8233785 0.8233448 0.8233405 0.8234008
Img9 0.8954005 0.8953957 0.8954010 0.8954048 0.8954062
Img10 0.9755229 0.9755221 0.9755215 0.9755229 0.9755238

Table 7: The PCQI values of the algorithms

Image ChOA PSO PMFPA BES ABES
Img1 1.0545133 1.0546331 1.0544268 1.0545527 1.0545603
Img2 0.6291967 0.6288665 0.6288663 0.6296597 0.6290641
Img3 0.3480011 0.3479490 0.3478296 0.3481972 0.3479764
Img4 0.9457725 0.9457727 0.9457720 0.9457724 0.9457726
Img5 1.0450764 1.0450854 1.0450618 1.0450552 1.0451124
Img6 0.9168141 0.9168083 0.9168192 0.9168149 0.9168179
Img7 0.5508667 0.5508714 0.5508549 0.5508738 0.5508712
Img8 0.7778889 0.7781890 0.7778776 0.7777906 0.7779986
Img9 0.8792422 0.8792468 0.8792399 0.8792388 0.8792409
Img10 0.9026974 0.9026900 0.9027192 0.9026936 0.9027087

ABES maintains a balance between exploration and exploitation. It reduces the risk of premature
convergence, a common limitation of other algorithms. As a result, ABES can explore a broader range of
potential solutions and produce higher-quality image enhancements. The objective function values and their
Wilcoxon rank sum, running time, PSNR, SSIM, and PCQI demonstrate the high efficiency of ABES in color
image enhancement.

4.3 Evaluation of the Enhanced Images Visually
From Fig. 4, it can be observed that the images obtained by ABES show significant improvement

compared to the original images. Img1–Img5 are underwater images where the original images suffer
from severe color distortion. The enhanced images no longer exhibit these issues. In Img1, ABES clearly
distinguishes the fish from the surrounding corals, and details such as the fish scales, eyes, and lips are more
clearly portrayed. Although the objects in the enhanced Img2 appear somewhat blurry, they remain visually
distinguishable from the surroundings. Img3 has been improved, while many details are still missing. The
most noticeable improvements in Img4 are the clearer background and the more vivid appearance of the
fish. The colors in Img5 are well restored, and the edges are more distinct and clear. ABES enhances the
contrast in Img6–Img10, so they appear more realistic and vivid. The resulting image of Img6 effectively
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handles the problem of different window reflections. Img7 contains a lot of red content. The processed image
is unaffected by this color and enhances the stripes of the wooden slats. The sky in Img8 is gray, but the sky in
the enhanced image is blue. The colors of the flowers in the processed Img9 are more vibrant, and the green
of the leaves is intensified. Both the brightness and detail in Img10 have been significantly enhanced.

(a) Img1-ABES (b) Img2-ABES (c) Img3-ABES

(d) Img4-ABES (e) Img5-ABES (f) Img6-ABES

(g) Img7-ABES (h) Img8-ABES (i) Img9-ABES

(j) Img10-ABES

Figure 4: The enhanced images by ABES
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5 Conclusions
This study presents an improved BES algorithm for the multi-stage process of image enhancement.

By utilizing gamma correction and Retinex techniques, ABES significantly improves image quality and
optimizes core parameters to bring out details, contrast, and clarity. Through rigorous benchmarking, ABES
demonstrates superior performance over other metaheuristic algorithms in terms of key image quality
metrics, including information entropy, PSNR, SSIM, and PCQI. According to simulation results, the
proposed image enhancement method is less influenced by the original brightness of images and provides
better contrast and clarity than the comparison image enhancement methods. Although the ABES algorithm
improves image details and structural similarity, these benefits come at the cost of increased runtime. They
may limit its scalability and applicability to applications where speed and simplicity are critical.

In the future, the proposed image enhancement algorithm could be utilized to enhance low-light or
high-noise images from challenging environments like deep-sea or satellite images. ABES is also employed
to process large-scale and high-resolution images more efficiently in remote sensing and geospatial analysis.
We intend to integrate advanced learning techniques, such as deep learning-assisted parameter optimization,
to enable real-time adaptation to diverse image characteristics.
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