
echT PressScience

Doi:10.32604/cmc.2025.059733

ARTICLE

DMHFR: Decoder with Multi-Head Feature Receptors for Tract Image
Segmentation

Jianuo Huang1,2 , Bohan Lai2 , Weiye Qiu3 , Caixu Xu4 and Jie He1,5,*

1Department of Endoscopy Center, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
2School of Computing and Data Science, Xiamen University Malaysia, Sepang, 43900, Malaysia
3School of Computer Science and Techonology, Tongji University, Shanghai, 200092, China
4Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou, 543002, China
5Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
*Corresponding Author: Jie He. Email: he.jie@zsxmhospital.com
Received: 15 October 2024; Accepted: 18 December 2024; Published: 06 March 2025

ABSTRACT: The self-attention mechanism of Transformers, which captures long-range contextual information, has
demonstrated significant potential in image segmentation. However, their ability to learn local, contextual relationships
between pixels requires further improvement. Previous methods face challenges in efficiently managing multi-scale fea-
tures of different granularities from the encoder backbone, leaving room for improvement in their global representation
and feature extraction capabilities. To address these challenges, we propose a novel Decoder with Multi-Head Feature
Receptors (DMHFR), which receives multi-scale features from the encoder backbone and organizes them into three
feature groups with different granularities: coarse, fine-grained, and full set. These groups are subsequently processed
by Multi-Head Feature Receptors (MHFRs) after feature capture and modeling operations. MHFRs include two Three-
Head Feature Receptors (THFRs) and one Four-Head Feature Receptor (FHFR). Each group of features is passed
through these MHFRs and then fed into axial transformers, which help the model capture long-range dependencies
within the features. The three MHFRs produce three distinct feature outputs. The output from the FHFR serves
as auxiliary auxiliary features in the prediction head, and the prediction output and their losses will eventually be
aggregated. Experimental results show that the Transformer using DMHFR outperforms 15 state of the arts (SOTA)
methods on five public datasets. Specifically, it achieved significant improvements in mean DICE scores over the
classic Parallel Reverse Attention Network (PraNet) method, with gains of 4.1%, 2.2%, 1.4%, 8.9%, and 16.3% on the
CVC-ClinicDB, Kvasir-SEG, CVC-T, CVC-ColonDB, and ETIS-LaribPolypDB datasets, respectively.

KEYWORDS: Medical image segmentation; feature exploration; feature aggregation; deep learning; multi-head feature
receptor

1 Introduction
Colorectal cancer (CRC) is one of the leading causes of mortality worldwide, with early detection

and removal of precursors, such as polyps, being crucial for improving survival rates. Timely and accurate
localization of polyps during colonoscopy can significantly reduce the incidence of CRC. However, manual
inspection of colonoscopy images is often subjective, tedious, time-consuming, and prone to errors. There-
fore, developing automatic and accurate polyp detection systems is urgent to assist physicians and reduce
diagnostic mistakes. This problem is typically framed as a dense prediction task, which create segmentation
maps of the organs or lesions by performing classification of pixel-wise. Methods based on convolutional
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neural networks (CNNs) have seen significant success in computer vision tasks [1–5], largely due to their
inductive bias and ability to maintain translation invariance. One of the most notable methods is U-Net [1],
which has made significant contributions to image detection and segmentation tasks through its encoder-
decoder architecture. However, the receptive field of a CNN may restrict the model’s focus to a localized
area [4]. To address this issue, some works integrate attention mechanisms into their model [2,6,7] to enhance
pixel-level features for better classification. While these methods have led to performance improvements,
their ability to capture long-range dependencies can still be insufficient.

In addition to the aforementioned studies, the vision transformer [8], a novel transformer model, has
made significant breakthroughs in medical image segmentation. By leveraging self-attention mechanisms
to learn relationships among all tokens, it effectively addresses previous challenges in capturing long-range
dependencies in medical images by its unique multi-head self-attention and multi-head perception fusion
modules. Numerous vision-related tasks have adopted transformers in place of CNNs for feature extraction,
achieving impressive performance [9–11]. MedCLIP [12] demonstrates impressive performance on small-
scale pre-training data by separating text and images for multimodal contrastive learning. Moreover, recent
advancements in hierarchical vision transformers have helped reduce computational costs. Notable examples
include the Swin transformer [9], which employs window attention mechanisms, and the pyramid vision
transformer [13], which utilizes spatial reduction attention mechanisms. However, transformers may lose
some fine-grained details and local pixel relationships during the encoding process due to downsampling
and lack the ability to model these local details as effectively as CNNs, leading to suboptimal performance
in some specific segmentation tasks. Although models like PVTv2 [11] and SegFormer [14] have embedded
convolutional layers to attempt to overcome this limitation, the discriminative capability of these meth-
ods is restricted by the positioning of convolutional layers, which may limit their ability to effectively
model features. Additionally, there is still room for improvement in processing multi-scale features from
the encoder.

To address these challenges, we propose a novel Decoder with Multi-Head Feature Receptors (DMHFR),
which receives pyramid features from the encoder backbone. We integrate the Frequency Channel Attention
Network (FcaNet) [15] into the DMHFR. Before passing through the MHFRs, FcaNet models the features
in the frequency domain, emphasizing and learning the most important frequency components through a
frequency channel attention module. This enables the network to better capture image details and texture
information. The Multi-Head Feature Receptors (MHFRs) consist of two Three-Head Feature Receptors
(THFRs) and one Four-Head Feature Receptor (FHFR). THFRs process finer and coarser granularity features
separately, while FHFR receives all the features from the encoder backbone. These receptors perceive and fuse
multiple sets of features of varying granularity in parallel. Each MHFR produces an output, and the features
passing through the FHFR are ultimately used to generate an auxiliary prediction map in the prediction head.
Axial transformers are integrated after the MHFRs to capture long-range dependencies in the feature map.
This enhances overall feature representation, helping the model to focus on both the boundaries and internal
textures of polyps. This capability is crucial for detecting polyps of various shapes and sizes and significantly
contributes to the generalization ability of DMHFR. The superiority and effectiveness of DMHFR were
validated through experiments on five public colorectal polyp datasets, where it achieved SOTA results in
polyp segmentation. The proposed method contributing to the development of the field of medical image
segmentation, and early diagnosis and treatment of colorectal cancer. Our contributions can be summarized
as follows:

• A novel network architecture, we propose a novel Decoder with Multi-Head Feature Receptors
(DMHFR) for 2D medical image segmentation, offering high accuracy and robustness, and can be
integrated with other hierarchical visual encoders to enhance network performance.
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• A novel method to process multi-scale features, our DMHFR groups four multi-scale features into three
feature groups with different granularities: coarse, fine-grained, and full set. This way of handling multi-
scale features can help global and local features to be better perceived and integrated.

• Two novel modules, The THFR and FHFR modules, collectively referred to as MHFRs, enhance feature
representation by perceiving and aggregating feature maps at multiple resolutions, which offers great
potential for improving deep learning in medical image segmentation.

• Experimental results show that the proposed method exhibits outstanding learning ability and general-
ization ability compared with the SOTA methods on five public polyp datasets.

2 Related Work

2.1 Traditional Methods for Polyp Segmentation
Early polyp segmentation techniques primarily relied on low-level feature processing, such as texture,

color, and geometric characteristics [1]. Methods to focus on these features include region growing,
watershed, and active contour analysis. The method of Sasmal et al. [16] consists of principal component
pursuit and active contour model. The region-based method [17] divides the image into multiple regions
to judge the features within regions respectively. A commonly used morphology-based method [17] is
to perform preprocessing and subsequent processing on images to enhance edge features. The polyp
segmentation method proposed by Gross et al. [18] combines Canny operator, nonlinear diffusion filtering,
and other methods. However, due to the high similarity between polyps and the surrounding tissue,
these traditional methods often struggle with accuracy, leading to an increased likelihood of missed or
incorrect detections.

2.2 CNNs for Polyp Segmentation
CNN-based methods [19–23] have made significant contributions to the development of polyp segmen-

tation and have outperformed traditional methods in feature modeling, noise suppression, inference speed,
and generalization ability. Akbari et al. [24] proposed a polyp segmentation model using a fully convolutional
neural network, which used a new image patch selection method in the training phase, and the probability
map generated by the network was effectively post-processed in the test phase. Brandao et al. [25] obtained
the shape through a shading strategy and used it to recover the depth, and used the RGB model to receive the
result to enrich the feature representation. Encoder-decoder-based models have demonstrated impressive
performance in image segmentation. UNet [1] aggregates the encoder features with the upsampled features
of the decoder through skip connections to generate high-resolution segmentation maps. UNet++ [3] links
the encoder and decoder through nested and dense skip connections. The skip connections of UNet 3+ [5]
include full-size internal connections between decoder blocks. Dilated convolutions extract and aggregate
high-level semantic features with resolution preservation to achieve improvements in the encoder network.
With the advancement of computer vision, ResNet [4] has become a widely adopted backbone in medical
image segmentation methods. In our proposed PVT-DMHFR, the PreActBottleneck of ResNet is employed
to optimize feature perception in MHFRs. Mask R-CNN [26] was adapted with a deeper feature extractor [27]
for polyp segmentation. PraNet [2] generated a global attention feature map by inverting attention and
used it to derive boundary information. PNS-Net [28] incorporated temporal and spatial cues based on
self-attention for video polyp segmentation, while Spatial-Temporal Feature Transformation [29] aggregated
features from adjacent frames to achieve notable performance in video polyp segmentation. U-KAN [30]
redesigned the UNet by integrating the dedicated Kolmogorov-Arnold Networks (KAN) layers on the
tokenized intermediate representation to improve segmentation performance. GCN-DE [31] projects both
support and query images into a feature space, computes long-range and short-range dependencies within
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a global correlation module that processes the embeddings to reduce complexity and applies discriminative
regularization to draw features of the same foreground class closer together, enhancing the accuracy of few-
shot medical image segmentation. Polyp-Net [32] utilized a local gradient weighting-embedded level-set
method, effectively reducing false-positive instances caused by high-intensity regions during prediction.
UACANet [33] modified the U-Net shape network, and in its prediction module, the foreground, background
and uncertainty region maps are aggregated with features, and the saliency map that provides this calculation
assistance is calculated and propagated to the next prediction module. SANet [34] minimized the impact of
irrelevant features on predictions through color transformation. MSNet [35] reduced complementary and
redundant information across multi-scale features via a multi-scale subtraction network. While these CNN-
based networks have achieved good results, they share a common limitation: an inability to efficiently capture
both global information and fine details simultaneously. The decoder struggles to effectively aggregate
global features for enhanced information supplementation, the overall generalization performance is not
satisfactory, and the results in polyp segmentation also require further improvement.

2.3 Transformer for Polyp Segmentation

Transformer-based methods outperform CNN-based approaches due to their advantages in integrating
global context, capturing long-range dependencies, and modeling features more effectively. DC-Net [36]
is a dual context network that enhances segmentation performance by reshaping the original image and
multiscale feature maps and integrating global and multiscale contextual information. Transfuse [10]
combined CNN and transformer architectures through sequential and parallel connections in the encoder,
performing well but limited in scalability due to the resulting increase in network size. Many methods
[37–40] use PVTv2 as the encoder backbone. SSFormer [37] sought to simplify the structure of the
transformer encoder’s backend, aiming to reduce model parameters while enhancing local information.
However, this simplification led to a decline in performance. HSNet [38] combined CNN and Transformer
in parallel within the decoder, though it did not fully address the differences in representation between
the two architectures. Polyp-PVT [39] utilized the Cascaded Fusion Module (CFM) and Camouflage
Identification Module (CIM) to merging features and directly extract intricate details from low-level features,
respectively. Additionally, the Similarity Aggregation Module (SAM) was implemented to investigate higher-
order relationships between the local features of low-level from CIM and the cues of high-level from
CFM. Nevertheless, Polyp-PVT did not thoroughly explore and augment the encoder’s output information,
resulting in suboptimal feature aggregation by CFM. Furthermore, CIM’s direct extraction of detailed
information from low-level features introduced noise. PVT-CASCADE [40] accurately identified the most
critical local features through its CASCADE module, which included an Attention Gate (AG), a multi-stage
loss and feature aggregation component, as well as an upconv module. However, the upconv module risked
losing fine-grained details, and the CASCADE module could result in redundant features, especially when
dealing with objects with indistinct edges.

In conclusion, although previous methods have yielded impressive results in addressing the polyp
segmentation challenge, they often fall short of effectively bridging the semantic gap between Transformer
and CNN architectures. This unresolved gap can negatively affect network performance. Additionally,
many Transformer-based polyp segmentation models struggle to adequately process the four pyramid
features of varying granularities generated by the encoder backbone, which encapsulates rich spatial
details and semantic information. To address these issues, we propose a novel decoder with multi-headed
feature receptors.
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3 Method
This section first presents the overall architecture of the PVT-DMHFR. Then the proposed method

MHFRs (THFR and FHFR) is described in detail.

3.1 Overall Architecture
The network architecture of PVT-DMHFR is illustrated in Fig. 1. It consists primarily of a Transformer

encoder and DMHFR. DMHFR mainly consists of MHFRs, FcaNet, and axial transformers. PVTv2 [11]
functions as the Transformer encoder to capture features that represent long-range dependencies across
multiple scales from the input image. As shown in Fig. 1a,b, DMHFR receives four pyramid features from
the PVTv2 encoder (X1, X2, X3, and X4), which are then modeled in the frequency domain by FcaNet [15] to
effectively capture the details and texture information of the image. These features are subsequently divided
into two sets of three-element features: {X

′

4, X
′

3, X
′

2}, {X
′

3, X
′

2, X
′

1}, as well as one set of four-element features:
{X

′

4, X
′

3, X
′

2, X
′

1}, they are respectively coarse-grained feature group, fine-grained feature group, and full-
set feature group. These feature sets are fed into THFR32, THFR64, and FHFR128, which receive groups of
features with the channel unified as 32, 64, and 128 respectively, then output after passing through the axial
transformer [41].

Figure 1: Architecture of PVT-DMHFR network. (a) Backbone: PVTv2-b2 Encoder; (b) DMHFR decoder

DMHFR allows features of multiple different dimensional combinations to be perceived in parallel and
be fused, retaining the features in the input image to a high degree, and most of the context output by MHFRs
can be calculated in parallel by the axial transformer to express the global dependencies of features. This
architecture achieves SOTA performance on several polyp segmentation benchmarks. Details are presented
in the experimental section.

3.2 Transformer Encoder
Recent studies [8,13,14,42] on vision tasks have demonstrated that transformer-based pyramid struc-

tures are better than CNNs in terms of generalization, robustness, and capturing multi-scale and multi-level
features. In this proposed method, PVTv2 [11] is employed to extract multi-scale features. Unlike traditional
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Transformers, PVTv2 does not use a patch embedding module but uses convolution operations to consis-
tently capture spatial information, delivering state-of-the-art performance across various dense prediction
applications. PVTv2 generates pyramid features Xi ∈ {(88, 88, 64), (44, 44, 128), (22, 22, 320), (11, 11, 512)}
according to input image I ∈ RH×W×3. These features are subsequently fed into the DMHFR.

3.3 Decoder with Multi-Head Feature Receptors (DMHFR)
Due to the high similarity between polyps and backgrounds and the limited ability of existing

Transformer-based models to process (local) contextual information among pixels, the localization of local
features with higher discrimination in the segmentation task is challenging. To address this challenge, we
propose a novel Decoder with Multi-Head Feature Receptors (DHMFR) for pyramid features.

As Fig. 1b shows, DHMFR includes FcaNet [15] to model features in the frequency domain, perceive
details and texture information of images, our proposed MHFRs (two THFRs and one FHFR) to perceive
and fuse pyramid features in parallel, and axial transformer [41] to keep the full expressiveness of joint
distribution over features. The features of four different dimensions from the encoder backbone are passed
through four FcaNet blocks, and then the four features are grouped into two three-element feature groups
and one four-element feature group, these three feature groups are coarse-grained feature group, a fine-
grained feature group, and full-set feature group. The channel of each feature in feature groups: {X

′

4, X
′

3, X
′

2},
{X

′

3, X
′

2, X
′

1}, and {X
′

4, X
′

3, X
′

2, X
′

1} are adjusted to 32, 64, and 128, respectively, and they are passed to
THFR32, THFR64, and FHFR128 accordingly. In MHFRs, the features within each group are perceived and
fused in parallel, generating three output features. Next, these features are processed in parallel by the axial
transformer, allowing the model to capture the global dependencies among features while preserving the
full expressiveness of their joint distribution. Then, the channel of the output features will be adjusted to 32.
Notably, the feature processed by FHFR128 is copied as an auxiliary prediction. This is because FHFR128
perceives and fuses all pyramid features in parallel, so its output is assumed to have a higher priority and
designed to carry greater weight in the prediction output. Finally, the three output features P1 , P2, P3, and an
auxiliary output feature P3_aux are sent to the prediction head, and the four different predictions are fused to
generate the final segmentation map.

3.3.1 Integration of Frequency Channel Attention Network (FcaNet)
In our proposed method, we integrate FcaNet [15] into our network architecture by feeding the features

from the PVTv2 encoder into FcaNet, as shown in Fig. 1, this integration enhances the model’s feature
extraction capabilities, by leveraging frequency domain attention, the network becomes more sensitive to
subtle texture and boundary details of polyps. Despite the additional frequency processing, the integration of
FcaNet ensures that the network remains computationally efficient. It selectively applies attention to only the
most important frequency components, minimizing overhead while boosting performance. The flexibility
of FcaNet’s frequency-based attention mechanism also improves the model’s generalization ability across
diverse polyp datasets and imaging conditions. The incorporation of FcaNet into our segmentation network
plays a crucial role in enhancing the accuracy and robustness of polyp segmentation tasks by providing a
more detailed and contextually aware feature extraction process. This process is formulated as Eq. (1):

x
′

i = FcaNet (x
′

i) , i ∈ {1, 2, 3, 4} (1)

3.3.2 Multi-Head Feature Receptor (MHFR)
To effectively perceive and fuse multi-scale features, we propose the three-head feature receptor

(THFR) and the four-head feature receptor (FHFR), collectively referred to as Multi-Head Feature Receptors
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(MHFRs). MHFRs are primarily composed of PreActBottleneck blocks [43], which is an enhanced version of
the bottleneck structure originally developed in ResNet [4]. These blocks combine element-wise operations
such as addition, multiplication, and concatenation. Due to the simplicity of these operations, this approach
only results in a slight increase in resource demands and significantly enhances segmentation accuracy.
This design effectively bridges spatial and semantic information, balancing the increased resource require-
ments with notable improvements in segmentation quality. The PreActBottleneck blocks help improve
representation capabilities and allow efficient training through better gradient flow. The collaboration of
these components allows the model to perceive and aggregate feature maps at multiple resolutions, thereby
enhancing feature representation. Additionally, MHFRs are versatile and can be easily adapted to process
pyramid features in other models by adjusting the channel setting of MHFRs, offering significant potential
to enhance deep learning performance in various medical image segmentation tasks.

Three-Head Feature Receptor (THFR)
In PVT-DMHFR, we assume that adjacent features within the pyramid structure exhibit higher

correlation, therefore, THFR receives two sets of features: three adjacent finer-grained features {X
′

3, X
′

2, X
′

1}
and three adjacent coarser-grained features {X

′

4, X
′

3, X
′

2}. This design allows THFR to capture more detailed
and original information from the image.

As shown in Fig. 2, THFR receives three features of different sizes, with the height and width of each
feature being double that of the next. The input channel and channel of the features need to be uniformly set
to multiples of 32. The finest-grained feature, X1, is processed through PreActBottleneck blocks, all features
are fused and output after various element-wise operations between features. This process can be expressed
as Eq. (2):

Figure 2: Details of the introduced THFR, X1, X2, and X3 are multi-scale features, each with spatial dimensions that
are double those of the preceding feature

⎧⎪⎪⎪⎨⎪⎪⎪⎩

XT
12 = (Concat((U2x(U2x (X1) ⊕ X2) ⊗ X2), U4x(PAB2(PAB1(X1)))))

⊕(Concat(((U2x (X1) ⊕ X2) ⊗ X2), U2x(PAB2(PAB1(X1)))))
OutputT = (X3 ⊕ XT

12) ⊗ X3

(2)

where XT
12 refers to the feature generated by the initial fusion of X1 and X2 in THFR, “⊕” denotes the element-

wise addition, “⊗” denotes the element-wise multiplication, U4x(⋅) denotes the bilinear interpolation
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quadruple upsampling operation, U2x(⋅) denotes the bilinear interpolation double upsampling operation,
Concat(⋅) indicates the concatenation operation on the channel dimension, and PAB(⋅) indicates the
PreActBottleneck block.

Four-Head Feature Receptor (FHFR)
As shown in Fig. 3, FHFR etends this approach to four encoder layers to receive four features of different

sizes, with all pyramid features being perceived and fused within it. Therefore, we assume that the FHFR
output holds a higher priority and carries more weight in the prediction output, to achieve this, we duplicate
the output prediction to create an auxiliary prediction, which is then fused into the final prediction. Same as
THFR, the height, and width of each feature are double that of the next. The input channel and channel of
the features need to be uniformly set to multiples of 32. The finest-grained feature, X1, is processed through
PreActBottleneck blocks, all features are fused and output after various element-wise operations between
features. This process can be expressed as Eq. (3):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

XF
12 = Concat((U2x(U2x (X1) ⊕ X2) ⊗ X2), U4x(PAB2(PAB1(X1))))

X1234 = (U2x((X3 ⊕U4x (X1) ⊕U4x (X1)) ⊕U2x((U2x (X1) ⊕ X2) ⊗ X2) ⊕U2x (X2) ⊕ X3)
⊕U8x (X1) ⊕ X4) ⊗ X4

OutputF = (Conv(Concat(X1234 , XF
12) ⊕ Concat(X1234 , XF

12)) ⊕ X1234) ⊗ X1234

(3)

where XF
12 refers to the feature generated by the initial fusion of X1 and X2 in FHFR, X1234 refers to the feature

generated by the initial fusion of X1, X2, X3, X4, Conv(⋅) denotes a convolutional layer with a kernel size of 3.

Figure 3: Details of the introduced FHFR, X1, X2, X3, and X4 are multi-scale features, each with spatial dimensions
that are double those of the preceding feature

3.3.3 Integration of Axial Transformer
In our proposed method, we integrate axial transformers into our network architecture by feeding the

features processed by MHFRs into the axial transformers to capture long-range dependencies of the feature
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maps, as shown in Fig. 1, thereby enhancing the overall feature representation. This integration allows the
model to focus on both the boundaries and internal textures of polyps. By applying axial attention across
the feature maps, the model efficiently captures the long-range dependencies crucial for detecting polyps in
various shapes and sizes, even in cases where polyps are small or occluded by other tissues. This process can
be written as Eq. (4):

{at (conv (Xi)) , i = 3
at(conv(D0.5x(conv(Xi)))), i < 3 , i ∈ {1, 2, 3} (4)

where at(⋅) refers to axial transformer, conv(⋅) refers to the convolutional layer with a kernel size of 1,
D0.5x(⋅) denotes a bilinear interpolation half-scale downsampling operation.

3.4 Loss function and feature fusion
We utilize additive aggregation with four prediction heads to compute the final prediction map, as

expressed in Eq. (5):

output = pw1 × P1 + pw2 × P2 + pw3 × P3 + pw4 × P3_aux (5)

where P1, P2, P3, and P3_aux represent feature maps from four prediction heads, and pw1, pw2, pw3 and pw4
denote the weights assigned to each feature map in the final prediction map. In PVT-DMHFR, pwi = 1.0, i ∈
{1, 2, 3, 4}.

The loss function for feature maps of each prediction head can be expressed as Eq. (6):

lossp = LwIoU (P, G) + LwBCE (P, G) (6)

where lossP refers to each loss for prediction heads, LwIoU(⋅) denotes weight intersection over union (IoU)
loss, and LwBCE(⋅) denotes weight binary cross entropy (BCE) loss, this combination of loss functions
imposes restrictions on the prediction map regarding local details (pixel level) and global structure (object
level). The final loss for each prediction head is separately computed and then aggregated as Eq. (7):

loss = lw1 × lossP1 + lw2 × lossP2 + lw3 × loss2 + lw4 × lossP3_aux (7)

where lwi = 1.0, i ∈ {1, 2, 3, 4}.

4 Experiment
In this section, we first experimentally evaluate the performance of our proposed DMHFR decoder by

comparing its results with those of state-of-the-art methods. Additionally, we conduct ablation studies to
assess the effectiveness of the DMHFR decoder.

4.1 Datasets
We validate the performance of the proposed method on five public polyp datasets: CVC-ClinicDB [44]

has 612 polyp images extracted from 31 colonoscopy videos. Kvasir-SEG [45] has 1000 polyp images collected
from the Kvasir dataset’s polyp class. CVC-T [46], a subset of the EndoScene dataset, has 60 polyp images.
CVC-ColonDB [47] has 380 polyp images. ETIS-LaribPolypDB [48] has 196 polyp images.

4.2 Evaluation Metrics
We utilize several key metrics as PraNet [2] used to assess the performance of our proposed method

comprehensively. Mean Dice (mDic) [49] quantifies the overlap between predicted and ground truth



4850 Comput Mater Contin. 2025;82(3)

segmentations, producing a score between 0 and 1, with higher values indicating better accuracy. Mean
intersection over union (mIoU) also measures overlap but is more stringent, providing a ratio of the inter-
section to the union of the predicted and actual regions. Mean absolute error (MAE) calculates the average
absolute differences between predictions and ground truth, providing insight into overall accuracy. Weighted
F-measure (Fω

β ) [50] balances precision and recall, particularly useful in scenarios with class imbalance.
S-measure (Sα) [51] evaluates structural similarity by considering region and boundary adherence, while E-
measure (Eξ) [52,53] extends this by incorporating boundary precision and region consistency, we report the
both mean value of E-measure (mEξ) and max value of E-measure (maxEξ). The equation of mDic is given
in Eq. (8), and the equation of mIoU is given in Eq. (9):

mDic (P, G) = 2 × ∣A⋂B∣
∣A∣ + ∣B∣ =

2 × TP
2 × TP + FP + FN

(8)

mIoU (P, G) = A⋂B
A⋃B

= TP
TP + FP + FN

(9)

where P refers to prediction map, G refers to the Ground Truth, TP denotes true positive instances, FP
denotes false positive instances, FN denotes false negative instances. The equation of Fω

β is given in Eq. (10):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = TP
TP + FN

P = TP
TP + FP

Fω
β =
(1 + β2)Pω ⋅ Rω

β2 ⋅ Pω + Rω

(10)

where R refers to recall, P refers to precision, β is a parameter to trade-off R and P. The MAE score is
computed by Eq. (11):

MAE = 1
H ×W

H
∑
x=1

W
∑
y=1
∣P (x , y) −G(x , y)∣ (11)

where H refers to height of images, W refers to width of images. The Sα is computed by Eq. (12):

Sα = αS0 + (1 − α)Sr (12)

where Sr and S0 refers to the region-aware and object-aware similarity measure, and the trade-off coefficient,
α, is set to 50 by default. The equation of Eξ is given in Eq. (13):

Eξ =
1

H ×W

H
∑
x=1

W
∑
y=1

ϕ(x , y) (13)

where ϕ(x , y) denotes the enhanced alignment matrix that capture pixel-level matching and image-
level statistics.
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4.3 Implementation Details
Our proposed method is implemented using the PyTorch 2.0.0 framework. The model is trained using

an NVIDIA RTX 3090 GPU with 24 GB of memory. We use the Adam optimizer [54] and set the learning
rate to 5 × 10−5 without decay. Following Polyp-PVT [39], we use a multi-scale {0.75, 1.0, 1.25} training
strategy with gradient clipping set to 0.5, configure the batch size to 16, set the maximum number of epochs
to 100, and resize input images to 352 × 352 pixels. To ensure fairness in our comparative experiments, we
adopt the same data division method as used in PraNet. A total of 900 images from Kvasir-SEG and 548
images from CVC-ClinicDB are used as training sets, while the remaining 100 images from Kvasir-SEG and
64 images from CVC-ClinicDB are reserved as test sets for evaluating the model’s learning ability. We further
assess the model’s generalization ability on three additional datasets: CVC-ColonDB, CVC-T, and ETIS-
Larib. In this paper, we compare the proposed method with 15 state-of-the-art image segmentation models,
including UNet [1], UNet++ [3], PraNet [2], MSNet [35], SANet [34], Transfuse [10], UACANet [33], TMF-
Net [55], C2F-Net [21], Polyp-PVT [39], SSFormer [37], ColonFormer [56], ESFPNet [57], FCBFormer [58],
and PVT-CASCADE [40].

4.4 Quantitative Analysis of Learning Ability
Table 1 presents the quantitative results of the feature modeling capabilities comparison between

PVT-DMHFR and 15 different SOTA methods trained on the ClinicDB and Kvasir-SEG datasets. The
PVT-DMHFR exhibits superior feature modeling performance compared to other methods. Compared to
the transformer-based method PVT-Cascade, our approach improves the mDic and mIoU on the CVC-
ClinicDB dataset by 1.2% and 2.1%, respectively. Additionally, it increases the Fω

β by 1.4%, enhances the Sα
by 1.2%, improves the mEξ by 1.3%, improves the maxEξ by 1.5%, and reduces the MAE by 0.6%.

Table 1: Quantitative results on CVC-ClinicDB and Kvasir-SEG datasets. The best result of each evaluation metric is
bolded

Model CVC-ClinicDB Kvasir-SEG

mDic mIoU F ω
β Sα mEξ maxEξ MAE mDic mIoU Fω

β Sα mEξ maxEξ MAE

U-Net [1] 0.833 0.754 0.812 0.903 0.924 0.939 0.019 0.816 0.742 0.797 0.845 0.863 0.877 0.051
U-Net++ [3] 0.901 0.843 0.898 0.929 0.958 0.973 0.015 0.823 0.744 0.815 0.856 0.891 0.898 0.044

PraNet [2] 0.897 0.859 0.895 0.938 0.961 0.976 0.010 0.897 0.846 0.883 0.910 0.944 0.948 0.029
MSNet [35] 0.922 0.862 0.904 0.943 0.973 0.986 0.009 0.889 0.834 0.881 0.907 0.937 0.942 0.034
SANet [34] 0.914 0.855 0.902 0.937 0.971 0.975 0.011 0.902 0.849 0.892 0.913 0.945 0.950 0.032

Transfuse [10] 0.900 0.839 0.893 0.936 0.964 0.968 0.010 0.907 0.855 0.898 0.911 0.948 0.954 0.025
UACANet [33] 0.911 0.854 0.912 0.948 0.970 0.979 0.009 0.913 0.862 0.897 0.914 0.949 0.958 0.027
TMF-Net [55] 0.899 0.842 0.885 0.937 0.952 0.959 0.011 0.877 0.814 0.849 0.897 0.922 0.929 0.034
C2F-Net [21] 0.922 0.865 0.929 0.941 0.975 0.981 0.008 0.901 0.839 0.896 0.911 0.938 0.944 0.029

Polyp-PVT [39] 0.935 0.887 0.933 0.949 0.982 0.986 0.006 0.907 0.863 0.903 0.914 0.956 0.961 0.027
SSFormer [37] 0.925 0.869 0.919 0.940 0.965 0.971 0.015 0.910 0.854 0.907 0.918 0.952 0.955 0.024

ColonFormer [56] 0.924 0.866 0.918 0.946 0.974 0.978 0.009 0.914 0.858 0.910 0.919 0.958 0.962 0.026
ESFPNet [57] 0.913 0.855 0.902 0.931 0.957 0.963 0.010 0.881 0.813 0.872 0.886 0.927 0.934 0.038

FCBFormer [58] 0.901 0.847 0.887 0.917 0.956 0.961 0.013 0.912 0.857 0.905 0.915 0.951 0.956 0.024
PVT-Cascade [40] 0.926 0.871 0.921 0.937 0.972 0.974 0.012 0.916 0.862 0.908 0.921 0.957 0.960 0.024

PVT-DMHFR (Ours) 0.938 0.892 0.935 0.949 0.985 0.989 0.006 0.919 0.866 0.910 0.924 0.958 0.960 0.023

On the Kvasir-SEG dataset, compared to the best CNN-based method, UACANet, our method achieves
a 0.6% improvement in the mDic, a 0.4% increase in mIoU, a 1.3% rise in the Fω

β , a 1.0% gain in the Sα , a
0.9% boost in the mEξ, improves the maxEξ by 0.2%, and a 0.4% reduction in the MAE. In conclusion, our
approach delivers top performance across most metrics on the Kvasir-SEG dataset, with the exception of the
maxEξ. On the ClinicDB dataset, our method outperforms all others, achieving the highest scores across all
evaluation metrics.
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4.5 Quantitative Analysis of Generalization Ability
Tables 2 and 3 present the results of performance comparison between our PVT-DMHFR and 15

methods on three unseen datasets: CVC-T, CVC-ColonDB, and ETIS-Larib. On the CVC-T dataset, our
method achieves an mDic score of 0.8% higher than the best CNN-based method, SANet, and 0.7% higher
than the best transformer-based method, PVT-Cascade. Our method performs best on all metrics, except
for maxEξ and MAE, where it lags ColonFormer by 0.9% in maxEξ and SSFormer by 0.1% in MAE. On the
CVC-ColonDB dataset, our method surpasses the best CNN-based method, SANet, by 5.7% in mDic, and
the transformer-based method, PVT-Cascade, by 0.9%. Our method performs best on all metrics except
Sα and MAE, which lag behind Polyp-PVT by 0.2% and 0.3%. On the ETISLarib dataset, our method
achieves a mDic score of 4.4% higher than the best CNN-based method SANet and 0.6% higher than the
best transformer-based method PVT-Cascade. Our method performs best on all metrics, except for MAE,
which lags behind PVT-Cascade by 0.3%.

Table 2: Quantitative results on CVC-T and CVC-ColonDB datasets. The best result of each evaluation metric is bolded

Model CVC-T CVC-ColonDB

mDic mIoU F ω
β Sα mEξ maxEξ MAE mDic mIoU Fω

β Sα mEξ maxEξ MAE

U-Net [1] 0.758 0.685 0.742 0.864 0.893 0.908 0.017 0.637 0.549 0.592 0.746 0.776 0.819 0.053
U-Net++ [3] 0.794 0.732 0.767 0.869 0.899 0.915 0.011 0.631 0.553 0.614 0.765 0.774 0.812 0.048

PraNet [2] 0.883 0.819 0.868 0.923 0.953 0.973 0.007 0.722 0.649 0.716 0.824 0.852 0.877 0.041
MSNet [35] 0.873 0.801 0.852 0.930 0.952 0.968 0.008 0.748 0.682 0.728 0.836 0.861 0.868 0.043
SANet [34] 0.889 0.814 0.843 0.927 0.956 0.974 0.008 0.754 0.680 0.734 0.837 0.867 0.876 0.040

Transfuse [10] 0.881 0.803 0.857 0.928 0.954 0.971 0.007 0.762 0.683 0.742 0.839 0.873 0.879 0.037
UACANet [33] 0.876 0.799 0.852 0.931 0.951 0.962 0.008 0.750 0.674 0.739 0.831 0.864 0.898 0.039
TMF-Net [55] 0.882 0.803 0.844 0.927 0.955 0.967 0.008 0.715 0.629 0.697 0.821 0.845 0.864 0.041
C2F-Net [21] 0.871 0.809 0.860 0.917 0.961 0.969 0.009 0.724 0.657 0.713 0.822 0.838 0.867 0.045

Polyp-PVT [39] 0.886 0.816 0.863 0.930 0.958 0.966 0.009 0.809 0.728 0.794 0.863 0.909 0.914 0.024
SSFormer [37] 0.888 0.818 0.867 0.931 0.956 0.965 0.007 0.773 0.702 0.765 0.854 0.846 0.855 0.036

ColonFormer [56] 0.891 0.829 0.879 0.929 0.958 0.976 0.008 0.799 0.721 0.786 0.848 0.897 0.901 0.032
ESFPNet [57] 0.883 0.812 0.863 0.925 0.945 0.953 0.009 0.787 0.709 0.748 0.840 0.871 0.883 0.037

FCBFormer [58] 0.884 0.816 0.860 0.924 0.953 0.961 0.009 0.793 0.716 0.754 0.846 0.882 0.892 0.033
PVT-Cascade [40] 0.892 0.826 0.874 0.931 0.957 0.964 0.008 0.802 0.726 0.791 0.853 0.901 0.906 0.030

PVT-DMHFR (Ours) 0.897 0.833 0.880 0.934 0.963 0.967 0.008 0.811 0.731 0.798 0.861 0.911 0.915 0.027

Table 3: Quantitative results on ETIS-LaribPolypDB dataset. The best result of each evaluation metric is bolded

Model ETIS-LaribPolypDB

mDic mIoU Fω
β Sα mEξ maxEξ MAE

U-Net [1] 0.496 0.417 0.452 0.733 0.726 0.762 0.033
U-Net++ [3] 0.536 0.476 0.503 0.748 0.717 0.773 0.031

PraNet [2] 0.631 0.567 0.601 0.786 0.788 0.816 0.029
MSNet [35] 0.642 0.579 0.608 0.807 0.804 0.832 0.055
SANet [34] 0.747 0.655 0.687 0.852 0.883 0.899 0.017

Transfuse [10] 0.675 0.590 0.614 0.807 0.832 0.867 0.033
UACANet [33] 0.684 0.602 0.638 0.813 0.856 0.890 0.017
TMF-Net [55] 0.643 0.584 0.616 0.783 0.837 0.869 0.024
C2F-Net [21] 0.679 0.614 0.653 0.814 0.829 0.884 0.031

Polyp-PVT [39] 0.782 0.709 0.746 0.873 0.894 0.901 0.016
SSFormer [37] 0.771 0.713 0.742 0.879 0.891 0.899 0.019

(Continued)
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Table 3 (continued)

Model ETIS-LaribPolypDB

mDic mIoU Fω
β Sα mEξ maxEξ MAE

ColonFormer [56] 0.783 0.707 0.740 0.871 0.886 0.894 0.020
ESFPNet [57] 0.768 0.672 0.719 0.848 0.870 0.885 0.017

FCBFormer [58] 0.756 0.669 0.708 0.842 0.867 0.883 0.018
PVT-Cascade [40] 0.785 0.711 0.754 0.870 0.895 0.900 0.013

PVT-DMHFR
(Ours)

0.791 0.718 0.756 0.870 0.901 0.904 0.016

Table 4 presents the results of performance of combination of DMHFR and different backbones, includ-
ing hierarchical transformer-based backbones (PVTv2b1 [11], PVTv2b2 [11], PVTv2b3 [11], PVTv2b4 [11],
PVTv2b5 [11], mitb5 [14]), transformer-based backbone (R50+ViT-B_16 [8]), and CNN-based backbone
(ResNetV2 [43]). The results demonstrate that hierarchical transformer-based backbones, particularly
PVTv2b3 and PVTv2b2, consistently outperform both transformer-based (R50+ViT-B_16) and CNN-based
(ResNetV2) backbones across all datasets and metrics.

Table 4: Quantitative results using different backbones for DMHFR, the top two results are highlighted in red and blue

Hierarchical transformer-based backbone Transformer-based
backbone

CNN-based
backbone

Dataset Metric PVTv2b1
[11]

PVTv2b2
[11]

PVTv2b3
[11]

PVTv2b4
[11]

PVTv2b5
[11]

mitb5
[14]

R50+ViT-B_16 [8] ResNetV2 [43]

CVC-ClinicDB mDic 0.931 0.938 0.943 0.924 0.929 0.930 0.931 0.905
mIoU 0.885 0.892 0.899 0.876 0.884 0.887 0.881 0.851

Kvasir-SEG mDic 0.916 0.919 0.913 0.906 0.922 0.909 0.886 0.865
mIoU 0.865 0.866 0.864 0.858 0.876 0.859 0.824 0.798

CVC-T mDic 0.902 0.897 0.896 0.909 0.889 0.890 0.825 0.840
mIoU 0.837 0.833 0.830 0.843 0.824 0.821 0.741 0.759

CVC-ColonDB mDic 0.770 0.811 0.793 0.811 0.823 0.802 0.720 0.704
mIoU 0.695 0.731 0.714 0.731 0.747 0.724 0.643 0.623

ETIS-LaribPolypDB mDic 0.757 0.791 0.794 0.787 0.783 0.789 0.582 0.566
mIoU 0.688 0.718 0.715 0.716 0.714 0.714 0.508 0.491

For example, PVTv2b3 achieves the highest mDic (0.943) and mIoU (0.899) on the CVC-ClinicDB
dataset, while PVTv2b5 excels on Kvasir-SEG with mDic of 0.922 and mIoU of 0.876. Additionally, mitb5
demonstrates well-balanced and strong performance across all five datasets. In contrast, the transformer-
based backbone typically performs significantly worse than its hierarchical counterparts, achieving top
scores only in one case (an mDic of 0.931 on CVC-ClinicDB). Meanwhile, the CNN-based backbone consis-
tently underperforms, underscoring their limited effectiveness in these tasks when working in conjunction
with DMHFR. This performance disparity can be attributed to the alignment between the hierarchical
transformer-based backbones and DMHFR’s input requirements. The hierarchical transformer-based back-
bones naturally produce outputs with dimensions that align with DMHFR’s architecture, minimizing the
need for extensive preprocessing or additional layers. Conversely, both transformer-based and CNN-based
backbones require supplementary adjustments, such as additional transformations or layers, to ensure
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compatibility with DMHFR. These modifications not only introduce computational overhead but may also
disrupt the original feature distributions, leading to reduced performance.

By contrast, the seamless integration of hierarchical transformer-based backbones with DMHFR
enhances efficiency and preserves the integrity of feature representations. This synergy allows for streamlined
processing and optimized information flow, resulting in superior performance across diverse datasets.

Overall, the combination of DMHFR and hierarchical transformer-based backbones demonstrates
remarkable adaptability and effectiveness across diverse datasets.

Based on the above analysis, our PVT-DMHFR shows impressive learning and generalization capa-
bilities on the challenging task of polyp segmentation, as well as performance that is superior to other
SOTA methods.

4.6 Analysis of Visual Results

To thoroughly evaluate the performance of our proposed method, we compared our PVT-DMHFR
with SOTA methods in terms of visual results. As shown in Fig. 4, our PVT-DMHFR demonstrates several
advantages over these SOTA methods: First, the transformer-based encoder backbone we employed, PVTv2,
enhances polyp localization accuracy. Second, PVT-DMHFR consistently produces segmentation results
with high accuracy for polyps of various sizes and shapes. This stability and accuracy are largely attributed
to the proposed MHFRs, which effectively capture and fuse multiple groups of multi-scale information.
Additionally, the integration of FcaNet and the axial transformer, applied before and after the MHFRs,
strengthens the model’s ability to extract features from the encoder backbone and capture long-range
dependencies within the feature map, significantly improving overall feature representation.

Figure 4: Visualization results of SOTA methods on five datasets
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4.7 Analysis of Computational Efficiency

We comprehensively evaluate PVT-DMHFR and SOTA methods in terms of floating-point operations
(FLOPs) and the number of parameters (Params). As shown in Table 5, the proposed PVT-DMHFR
demonstrates an advantage over several strong competitors (e.g., PVT-Cascade, ColonFormer, SSFormer,
FCBFormer, and ESFPNet) in terms of Params. However, it is slightly less efficient in FLOPs, surpassing only
FCBFormer in this aspect. Overall, PVT-DMHFR achieves a well-balanced trade-off between computational
efficiency and segmentation accuracy.

Table 5: Comparison results of computational efficiency

Method FLOPs (G) Param (M)
U-Net [1] 103.49 31.04

U-Net++ [3] 377.45 47.18
PraNet [2] 13.15 30.50
MSNet [35] 16.97 27.69
SANet [34] 11.27 23.90

Transfuse [10] 21.75 8.65
UACANet [33] 59.65 67.11
TMF-Net [55] 28.78 52.89
C2F-Net [21] 36.13 25.21

Polyp-PVT [39] 10.02 25.11
SSFormer [37] 32.68 65.96

ColonFormer [56] 22.98 52.95
ESFPNet [57] 21.94 61.69

FCBFormer [58] 73.30 52.94
PVT-Cascade [40] 15.40 35.27

PVT-DMHFR (Ours) 55.84 30.05

4.8 Ablation Studies

We performed ablation experiments to assess the contribution of each component in our method. The
mDic and mIoU metrics were selected to represent network performance, and the results are summarized
in Table 6. When the FcaNet modules were removed, the mDic and mIoU scores on the CVC-ClinicDB
dataset dropped by 0.4% and 0.5%, respectively. This indicates that passing features through the FcaNet mod-
ule before processing them with the MHFRs helps the model learn and represent features more effectively.
On the ETIS-LaribPolypDB dataset, the mDic and mIoU scores decreased by 0.3% and 1.1%, respectively,
suggesting that FcaNet improves the model’s generalization ability through superior feature capture. After
removing the MHFRs, the mDic and mIoU scores fell by 1.1% and 0.8%, respectively, on the CVC-ClinicDB
dataset, and by 1.4% and 1.6% on the CVC-ColonDB dataset. These results demonstrate that MHFRs play
a crucial role in fusing multiple feature sets at various resolutions, leading to a significant improvement in
segmentation accuracy. When the axial transformers were excluded, the mDic and mIoU scores on the CVC-
ClinicDB dataset dropped by 0.5% and 1.6%, respectively. The mDic and mIoU scores on the CVC-ColonDB
dataset dropped by 0.8% and 0.7%. This underscores the importance of axial transformersin capturing long-
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range dependencies within feature maps post-MHFR processing, further enhancing feature representation
and improving both segmentation accuracy and generalization.

Table 6: Quantitative results for ablation studies on five polyp datasets

Dataset Metric PVT-DMHFR w/o FcaNet w/o MHFRs w/o axial
transformers

Baseline

CVC-ClinicDB mDic 0.938 0.934 0.923 0.930 0.901
mIoU 0.892 0.887 0.879 0.882 0.848

Kvasir-SEG mDic 0.919 0.917 0.916 0.914 0.910
mIoU 0.866 0.864 0.859 0.861 0.854

CVC-T mDic 0.897 0.892 0.889 0.895 0.873
mIoU 0.833 0.832 0.827 0.828 0.804

CVC-ColonDB mDic 0.811 0.809 0.795 0.803 0.792
mIoU 0.731 0.721 0.715 0.724 0.709

ETIS-LaribPolypDB mDic 0.791 0.788 0.776 0.785 0.774
mIoU 0.718 0.707 0.710 0.712 0.670

We present visualization results to better demonstrate the impact of our proposed MHFRs and inte-
gration of FcaNet modules and axial transformers in PVT-DMHFR. As illustrated in Fig. 5, the removal of
any module from PVT-DMHFR results in a noticeable decline in segmentation accuracy. This performance
degradation may stem from several factors: excluding FcaNet reduces the model’s capacity to capture
detailed features, removing the axial transformers diminishes its ability to account for long-range feature
dependencies, and omitting MHFRs impairs the fusion of multi-level features from the encoder backbone,
leading to the loss of crucial semantic information.

Figure 5: (Continued)
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Figure 5: Segmentation results under different configurations of PVT-DMHFR

Additionally, we explore the impact of replacing the Axial-Transformer with four alternative widely-
used attention mechanisms: SE-Attention [62], CoT-Attention [59], EMA [60], and PSA [61], to evaluate their
performance. As shown in Table 7, none of these attention mechanisms outperforms the Axial-Transformer.
For instance, on CVC-ClinicDB, Axial-Transformer achieves the highest mDic (0.938) and mIoU (0.892),
while PSA and CoT-Attention fall slightly short with mDic values of 0.936 and 0.932, and mIoU values of
0.889 and 0.887, respectively. Similarly, on the CVC-T dataset, the Axial-Transformer maintains its lead with
mDic and mIoU scores of 0.897 and 0.833, respectively. While EMA and PSA achieve marginal improvements
in mIoU on Kvasir-SEG and ETIS-LaribPolypDB, these gains are isolated and do not match the overall
performance of the Axial-Transformer.

The consistent underperformance of SE-Attention and CoT-Attention reflects their limited ability to
model global dependencies. In addition, while EMA and PSA perform better, their results lack consistency
across datasets. Axial-Transformer’s superior ability to model long-range dependencies and spatial features
explains its dominance, making it the most effective attention mechanism in this study.
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Table 7: Quantitative results of using different widely-used attention mechanisms after MHFRs

Dataset Metric Axial-transformer
[41]

SE-attention
[40]

CoT-attention
[59]

EMA
[60]

PSA
[61]

CVC-ClinicDB mDic 0.938 0.913 0.932 0.925 0.936
mIoU 0.892 0.867 0.887 0.882 0.889

Kvasir-SEG mDic 0.919 0.904 0.901 0.918 0.916
mIoU 0.866 0.842 0.848 0.869 0.854

CVC-T mDic 0.897 0.889 0.872 0.893 0.891
mIoU 0.833 0.816 0.804 0.825 0.828

CVC-ColonDB mDic 0.811 0.798 0.805 0.793 0.796
mIoU 0.731 0.713 0.730 0.711 0.722

ETIS-LaribPolypDB mDic 0.791 0.784 0.762 0.787 0.795
mIoU 0.718 0.711 0.684 0.715 0.719

5 Conclusion
In this paper, we propose the DMHFR for the aggregation of pyramid features. The MHFRs (THFR

and FHFR), perceive and fuse multiple sets of pyramid features from fine to coarse granularity, as well
as the full set. Before these features are processed by the MHFRs, they pass through FcaNet to achieve
better feature modeling. After the features are processed MHFRs, they are fed into axial transformers to
capture the global dependencies of the features. Our experimental results demonstrate that the proposed
PVT-DMHFR outperforms 15 SOTA methods across five public polyp datasets, highlighting its superior
generalization and learning capabilities. Specifically, when trained and tested on visible datasets (CVC-
ClinicDB and Kvasir-SEG) to assess learning ability, PVT-DMHFR achieves mDic scores of approximately
0.92 and 0.94, respectively. On unseen datasets (CVC-T, ColonDB, and ETIS), used to evaluate generalization
capabilities, the PVT-DMHFR achieves mDic scores of 0.897, 0.811, and 0.791, respectively. Furthermore, our
MHFRs are versatile and can be easily adapted to process pyramid features in other models by adjusting the
channel setting of MHFRs, offering significant potential to enhance deep learning performance in various
medical image segmentation tasks. Beyond medical imaging, the DMHFR decoder can also be applied to
enhance transformer features in broader medical applications and general computer vision.
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