
echT PressScience

Doi:10.32604/cmc.2025.059718

ARTICLE

MMH-FE: A Multi-Precision and Multi-Sourced Heterogeneous
Privacy-Preserving Neural Network Training Based on Functional Encryption

Hao Li1,# , Kuan Shao1,# , Xin Wang2 , Mufeng Wang3 and Zhenyong Zhang1,2,*

1The State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025,
China
2Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science
Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
3China Industrial Control Systems Cyber Emergency Response Team, Beijing, 100040, China
*Corresponding Author: Zhenyong Zhang. Email: zhangzy@gzu.edu.cn
#These authors contributed equally to this work
Received: 15 October 2024; Accepted: 02 January 2025; Published: 06 March 2025

ABSTRACT: Due to the development of cloud computing and machine learning, users can upload their data to
the cloud for machine learning model training. However, dishonest clouds may infer user data, resulting in user
data leakage. Previous schemes have achieved secure outsourced computing, but they suffer from low computational
accuracy, difficult-to-handle heterogeneous distribution of data from multiple sources, and high computational cost,
which result in extremely poor user experience and expensive cloud computing costs. To address the above problems, we
propose a multi-precision, multi-sourced, and multi-key outsourcing neural network training scheme. Firstly, we design
a multi-precision functional encryption computation based on Euclidean division. Second, we design the outsourcing
model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity. Finally,
we conduct experiments on three datasets. The results indicate that our framework achieves an accuracy improvement
of 6% to 30%. Additionally, it offers a memory space optimization of 1.0 × 224 times compared to the previous
best approach.

KEYWORDS: Functional encryption; multi-sourced heterogeneous data; privacy preservation; neural networks

1 Introduction
Machine learning technology has been widely used in many fields, including computer vision, natural

language processing, and audio and speech processing, becoming a core component of the development of
modern technology. Many companies, such as Google and IBM, provide Infrastructure as a Service (IaaS) in
the current business environment. These services are designed to help users who lack computing resources
use cloud computing resources to train and deploy machine learning models. However, when using these
services, data privacy and security issues are particularly important, especially when dealing with sensitive
data such as medical or financial data. Therefore, meeting such privacy concerns of users as well as legal and
regulatory requirements poses a huge challenge to the implementation of machine learning solutions.

Suppose a bank wants to assess the credit risk of its users and decides to outsource this task to a company
that provides IaaS. In this scenario, the bank provides the user’s financial transaction history as input, and the
IaaS company uses this data to predict whether the user is likely to default. This data is extremely sensitive and

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.059718
https://www.techscience.com/doi/10.32604/cmc.2025.059718
mailto:zhangzy@gzu.edu.cn

5388 Comput Mater Contin. 2025;82(3)

cannot be directly disclosed to the service provider due to the personal financial information involved. In this
privacy-preserving environment, the credit risk assessment must be conducted without directly revealing
the transaction history to the company.

With the development of various intelligent devices [1]. To cope with the privacy issues that may arise
during this process, a privacy-preserving machine learning (PPML) framework needs to be implemented.
In the field of PPML, various technical approaches have been proposed to protect data privacy [2]. We
summarize some of the representative PPML methods in Table 1. As shown in the literature [3], non-
cryptographic solutions like differential privacy and federated learning require strong security parameters
for privacy. For example, differential privacy needs a strict privacy budget, reducing the usability of neural
network models. In contrast, cryptographic schemes, such as secure multi-party computation [4], provide
robust security. However, they have very high computational costs and require significant communication
overhead. This results in poor computational performance, making them less suitable for large-scale
applications. Homomorphic encryption schemes, such as those proposed in the literature [5,6], require
the execution of complex arithmetic operations and often utilize approximations to replace the activation
function, which limits both time efficiency and accuracy. Except for some existing functional encryption
methods (e.g., CryptoNN [7], NN-EMD [8]), most cryptographic methods address the privacy problem in
the prediction phase without focusing on the privacy problem in the training phase.

Table 1: Comparison of typical privacy-preserving neural network neural network methods

Research work Training Prediction Privacy target Multi-sourced Multi-precision Method
Phan et al. [9] No Yes Prediction data No No Differential privacy

Xu et al. [3] Yes No Training data Yes No Federated learning
SecureML [4] Yes Yes Training/Prediction data No No Secure multi-party

computing
CryptoNets [5,6] Yes Yes Prediction data No No Homomorphic

encryption
CryptoNN [7] Yes Yes Training/Prediction data No No Functional encryption
NN-EMD [8] Yes Yes Training/Prediction data Yes No Functional encryption

MMH-FE
(Our)

Yes Yes Training/Prediction data Yes Yes Functional encryption

In addition, existing solutions rarely consider such scenarios as multiple data sources under multiple
keys. That is, the data is provided by multiple clients, and all the provided data are finally combined to become
a complete training dataset. This is objectively present in real scenarios. For example, in a cross-agency
online credit approval system, a user’s credit score is derived from data provided by multiple independent
agencies. This data includes financial information from banks, credit history from credit scoring agencies,
and occupational income details from employers. To effectively protect this sensitive data, the proposed a
Multi-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on
Functional Encryption (MMH-FE) framework utilizes functional encryption technology to ensure that the
data from each source is processed in an encrypted state, preventing personal information leakage. Through
inner-product encryption, we can perform computations across multiple data sources without revealing
the raw data. The final credit score is derived by calculating the results of the encrypted data, effectively
preventing data leakage. Additionally, the fine-grained access control mechanism within the framework
ensures that each agency can only access the inner-product calculation results it is authorized to view,
preventing improper data misuse. To address the multi-data-source scenario, the framework supports a
multi-key mechanism, ensuring that each data source encrypts its data with a distinct key, further enhancing
the security of the data and the flexibility of the system. In addition, the existing solutions can only perform

Comput Mater Contin. 2025;82(3) 5389

the inner product computation of functional encryption at lower accuracy. We propose a new multi-
precision functional encryption computation based on Euclidean division. It allows inner product functional
encryption to be performed with higher accuracy and strong adaptability. This lays the foundation for high-
precision and high-accuracy training of inner product functional encryption neural networks. Specifically,
our contributions are as follows:

• We design a multi-precision functional encryption computation based on Euclidean division. This allows
the multiplication of original data to be decomposed. As a result, the computational cost is reduced, and
the accuracy is improved.

• We design a generic MMH-FE framework based on a multi-precision functional encryption to support
training neural networks on encrypted data. In essence, MMH-FE adds a multi-precision propagation
step in the training phase of the conventional training phase on neural networks to protect data privacy
from disclosure.

• We have evaluated the model on three datasets and performed a detailed analysis of the experimental
results, and the test results show that the scheme has a high computational accuracy.

The remainder of this paper is organized as follows: It summarizes related work in Section 2.
In Section 3, we introduce background knowledge and preliminaries. In Section 4, we propose the MMH-FE
framework and describe the technical details. In Section 5, we conduct experimental analyses and evaluate.
Finally, conclusions are drawn in Section 6.

2 Related Work

2.1 Functional Encryption

Functional encryption (FE) scheme was first proposed by Sahai et al. in [10], and an exhaustive formal
definition was provided by Boneh et al. in the literature [11]. Functional encryption has become an innovative
technique in public key cryptography as more and more scholars have invested in this area of research [12–14].
This technique constructs a theoretical framework that abstracts a variety of existing encryption mechanisms,
including fine-grained access control [15], dynamic decentralized functional encryption [16], and a new
paradigm of quadratic public-key functional encryption [17]. Unlike traditional encryption schemes, which
reveal either all plaintext or all ciphertext, functional encryption strategies have a unique feature. Their
decryption keys reveal only limited information about the plaintext. Specifically, they disclose the result of
a computation performed on the plaintext using a particular function. In addition, functional encryption
contrasts with homomorphic encryption techniques, which are widely used today, and which usually
consume a certain amount of resources to additionally decrypt the final result. In contrast, this unique
property of functional encryption brings new research and application prospects in the field of data privacy
and information security.

In the existing literature, a variety of functional encryption constructs have been proposed to handle
different types of functions, such as inner products [18], sequential comparisons [11], and access control [19].
In addition, researchers have also explored the use of secure multi-party computation [20] and multilinear
mapping [21,22] to construct functional encryption schemes, or the use of functional encryption techniques
to implement other cryptographic applications. However, most of these schemes are still in the theoretical
research stage and have not been sufficiently translated into practical applications. Compared with existing
work, our method is not only theoretically innovative but also practically feasible. The work presented in the
literature [23,24] is part of our cryptosystem underlying this paper.

5390 Comput Mater Contin. 2025;82(3)

2.2 Secure Neural Networks
In recent years, with the rapid development of neural network technology [25], the issue of data

security has received widespread attention. The homomorphic encryption [26–28] technique, as an advanced
encryption method, has attracted much attention from researchers for its application in privacy-preserving
ML. ML confidential [29] describes a binary classification mechanism that combines polynomial approxi-
mation and homomorphic encryption. Faster CryptoNets [30] accelerates prediction performance in deep
learning models by utilizing sparse representations in the underlying cryptosystem through techniques
of pruning and quantization. Secure Multi-Party Computing [4] discusses a privacy-preserving protocol
that uses SGD (Stochastic Gradient Descent) optimization algorithm to train a neural network model.
Homomorphic encryption and secure multi-party computation can both be applied to neural networks to
protect data privacy. However, homomorphic encryption incurs a high computational cost, as the process
of encrypting and decrypting data consumes substantial computational resources. In contrast, secure multi-
party computation requires a large number of messages to be exchanged between participants. As the number
of participants increases, the complexity and difficulty of implementing secure multi-party computation also
rise. Therefore, implementing secure neural networks on servers with limited computational resources is
not feasible.

This article focuses on the use of functional encryption as a way to build a secure neural network
training process. In an earlier study, Ligier et al. [31] developed an inner-product functional encryption
scheme for classifying encrypted data. They utilized Extreme Random Tree (ERT) classifiers trained on the
MNIST dataset, focusing primarily on private machine learning prediction using inner product functional
encryption. Following this, Dufour-Sans et al. [32] proposed a new quadratic encryption scheme, Ryffel
et al. [33] and Nguyen et al. [34] applied it to quadratic networks to classify encrypted data. In addition,
CryptoNN [7] investigated the possibility of applying functional encryption to train neural networks on the
MNIST dataset, which is comparable to the traditional MNIST model in terms of accuracy. NN-EMD [8]
used a multilayer perceptron (MLP) for neural network training on the same dataset, with the difference that
it uses a lookup table method to compute discrete logarithms during decryption. Its classification accuracy
also rivals the traditional MNIST model.

In this paper, we use Euclidean Division to reconstruct the data representation and achieve mod-
eration of the accuracy of the data in this framework. At the same time, the space cost of the lookup
table is significantly reduced during the function decoding process. To reduce the space cost in function
encryption computation, we implement this method in Single-Input Function Encryption and Multi-Input
Function Encryption. To improve the training accuracy of the model, we apply it in the neural network
training process.

3 Preliminaries

3.1 Single-Input Functional Encryption
The single-input functional encryption scheme(SIFE) for the inner-product function fSIIP(x , y) is

defined as the following four PPT algorithms: εSIFE = (εSIFE.Setup, εSIFE.DKGen, εSIFE.Enc, εSIFE.Dec).
The algorithm is implemented as follows:

• εSIFE.Setup(1λ , η): (G, p, g) ← GroupGen(1λ), and s = (s1 , ..., sη) ← Z
η
p on the security parameters λ

and η, and then set mpk = (g , hi = gsi)i∈[1, . . . ,η] and msk = s. Return the pair (mpk, msk).
• εSIFE.DKGen(msk, y): Return the function derived key dky = ⟨y, s⟩ by master secret key msk and vector

y.

Comput Mater Contin. 2025;82(3) 5391

• εSIFE.Enc(mpk, x): Choose a random number r ← Zp and compute ct0 = gr . Compute cti = hr
i ⋅ gxi for

each i ∈ [1, ..., η]. Return the ciphertext ct = (ct0, {cti}i∈[1, . . . ,η]).
• εSIFE.Dec(ct , dky): Compute C = ∏i∈[1, . . . ,η] ct yi

i /ctdk f
0 . The recovered result is f (x , y) = logg(C).

3.2 Multi-Input Functional Encryption
The multi-input functional encryption scheme(MIFE) for the inner-product fMIIP((x1 , ..., xn), y) is

defined as the following five PPT algorithms: εMIFE = (εMIFE.Setup, εMIFE.SKDist, εMIFE.DKGen, εMIFE.Enc,
εMIFE.Dec).

The algorithm is implemented as follows:

• εMIFE.Setup(1λ , η, n): G = (G, p, g) ← GroupGen(1λ), and then generate several samples as a ← Zp, a =
(1, a)⊺, ∀i ∈ [1, ..., n] ∶W i ← Z

ηi×2
p , u i ← Z

ηi
p . Generate the master public key mpk = (G , ga , gWa) and

master private key msk = (W , (u i)i∈[1, . . . ,n]).
• εMIFE.SKDist(mpk, msk, idi): Return partial private key ski = (G , ga , (Wa)i , u i) by idi .
• εMIFE.DKGen(mpk, msk, y): Partition y into (y1∣∣y2∣∣...∣∣yn), where ∣y i ∣ is equal to ηi . Return the

function derived key dk f , y = ({d⊺i ← y⊺i W i}, z ←∑ y⊺i u i).
• εMIFE.Enc(ski , x i): Choose a random number ri ← Zp. Return the ciphertext ct i = (t i ← gari , c i ←

gx i gu i g(Wa)i r i).
• εMIFE.Dec(ct , dk f , y): Compute C = ∏i∈[1, . . . ,n]([y

⊺
i c i]/[d⊺i t i])

z . The recovered result is f ((x1 , x2 , ..., xn), y) =
logg(C).

3.3 Multi-Precision Fixed-Point Arithmetic
Multi-precision fixed-point arithmetic is a common method for large-number multiplication. It is based

on the Karatsuba algorithm, which breaks large numbers into smaller ones for multiplication. Here we review
the double-precision fixed-point arithmetic technique.

Let m be integers. Decompose m into a pair of integers corresponding to the quotient and the remainder
of division pdiv, where pdiv is a positive integer.

ẑ = Quopdiv(z), ž = Rempdiv(z), m = pdiv ⋅ ẑ + ž, (1)

with ∣ž∣ ≤ pdiv/2. The multiplication of two decomposed integers z1 = pdiv ⋅ ẑ1 + ž1 and z2 = pdiv ⋅ ẑ2 + ž2
satisfies:

z1 ⋅ z2 = p2
div ⋅ ẑ1 ⋅ ẑ2 + pdiv ⋅ (ẑ1 ⋅ ž2 + ẑ2 ⋅ ž1) + ž1 ⋅ ž2. (2)

4 The Proposed MMH-FE Framework

4.1 Overview
This paper proposes a multi-precision and multi-sourced heterogeneity privacy-preserving neural

network (MMH-FE) framework. Three main entities are involved: the client, the server, and the key
generation authority(KGA).

• Client: The client has two ways to provide data: The first is by supplying horizontal data, where each
data owner holds a complete sample that includes all feature information. The second is by supplying
longitudinal data, where each data owner holds a sample that contains only a subset of the features.
When combined, these partial datasets form the full dataset.

5392 Comput Mater Contin. 2025;82(3)

• Server: After the server integrates the encrypted data sets uploaded by the client, it uses this data to
construct a knowledge system for the model. This process ultimately generates a prediction model with
high accuracy and strong privacy protection.

• KGA: The KGA is mainly responsible for initializing the underlying cryptosystem, setting up key
credentials, and distributing the relevant public keys to the client and the server. In the training phase,
KGA will interact with the server to obtain the functional private key and get the functional encryption
result. However, from start to finish, KGA cannot obtain or access the encrypted training data, thus
effectively guaranteeing the confidentiality of the data.

Fig. 1 depicts the details of our proposed MMH-FE framework. The whole architecture is built by
three entities including the client, the KGA, and the server. The client provides multi-sourced data for
model training. For multi-sourced data, if each data source contains complete information, the data will
be decomposed with multi-precision using the PMHC2 protocol in Fig. 2, and each data source will be
encrypted and protected using the underlying SIFE; If each data source is a subset of the complete message,
the data is encrypted and protected by multi-precision decomposition using the PMLC2 protocol in Fig. 3,
which utilizes the underlying MIFE. Also, the labels are stored in clear text information, which does not
reveal any private information as described in the literature [8]. The server uses appropriate metrics (e.g.,
learning rate, momentum, etc.) to train the model on the received multi-precision multi-sourced data and
optimize the parameters to get a good model result.

dataset 1
1 dataset = {

1

,
, … ,

(,)
}

... ...
Data Source Data Source Data Source

.........
...

...

...

...

Input Layer
Hidden Layer
Output Layer

Multi-Source and Multi-Precision Heterogeneity secure2pc computing protocols (PMHC2 /PMLC2)

Key Generation
Authority

Initializes and holds
mpk/msk

Public keys distribution

CTs of 1
1 CTs of & labels CTs of

n

labels { }

Server
Privacy Keys Services

(DPE) (DPE) (DPE)

Figure 1: An overview of the framework of our proposed effective methods for training neural networks with multi-
precision and multi-sourced hybridization

As shown in Fig. 4. We use Xdk
k to denote the dataset owned by Client k, the Client needs to perform

data processing and data encryption as follows:

• Data Processing: The Client k performs precision decomposition using Euclidean division for each data
xdk , i

k j
in dataset Xdk

k . The decomposition results in t datasets Xdk
k , l .

• Data Encryption: The Client k requests an encryption key from the KGA, and uses this key to encrypt
each decomposed dataset Xdk

k , l to obtain the ciphertext set CTs = {ctdk
k ,1 , ctdk

k ,2 , ⋅ ⋅ ⋅ , ctdk
k ,t} of the dataset

Xdk
k .

Comput Mater Contin. 2025;82(3) 5393

Figure 2: Describes in detail the execution of the PMHC2 protocol

5394 Comput Mater Contin. 2025;82(3)

Figure 3: Describes in detail the execution of the PMLC2 protocol

Comput Mater Contin. 2025;82(3) 5395

Figure 4: Data processing and data encryption

4.2 FE with Double Precision
Definition 1 (Vector-oriented Euclidean division). Let z ∈ Zn be a vector. By Euclidean division, z can be
expressed as:

z =
z ⊖ ž pd iv

pd iv
⋅ pd iv ⊕ ž pd iv , (3)

where ⊕ and ⊖ denote the Element-wise addition and subtraction, respectively.

According to Definition 1, the decomposition of a vector z is

DCPpdiv(z) = (ẑ , ž) ∈ Z2×n . (4)

Conversely, the recombination of (ẑ , ž) ∈ Z2×n is

RCBpdiv(ẑ , ž) = ẑ ⋅ pdiv ⊕ ž ∈ Zn . (5)

Further, it can be extended to high-precision decomposition for a vector z ∈ Zn , such as:

DCPt
pdiv
(z) = (ẑ t−1 , ⋅ ⋅ ⋅ , ẑ0) ∈ Zt×n , (6)

and high-precision decomposition recombination for a vector set {ẑ t−1 ∈ Zn , ⋅ ⋅ ⋅ , ẑ0}, such as:

RCBt
pdiv
(ẑ t−1 , ⋅ ⋅ ⋅ , ẑ0) = pt−1

div ẑ t−1 ⊕ ⋅ ⋅ ⋅ ⊕ p0
div ẑ0 ∈ Zn . (7)

Definition 2 (2-tuple Ciphertext base on Euclidean Division). Let ct = (ĉt1 , ĉt0) ∈ Z2×n
q be a 2-tuple

ciphertext. The remainder of ct by base is defined as:

ĉt j ← [ẑ i , j], j ∈ {0, 1}, (8)

where z i = p1
div ẑ i ,1 ⊕ p0

div ẑ i ,0 and [x] denotes the ciphertext of a vector x encrypted by Algorithm of Sections 3.1
and 3.2.

Lemma 1 (Double-precision inner-product function). Let ct = ([ẑ1,1], [ž1,0]) ∈ Z2×n
q be a 2-tuple ciphertext

of a vector z1. Let dk = (ŷ2, y̌2) = (⟨ẑ2, s⟩, ⟨ž2, s⟩) ∈ Z2
q be a functional derived key. Then:

RCB3
pdiv
(b2, b1 , b0) = ⟨z1 , z2⟩, (9)

where b2 = Dec([ẑ 1], ŷ2), b1 = Dec([ẑ 1], y̌2) ⊕ Dec([ž 1], ŷ2) and b0 = Dec([ž 1], y̌2), the Dec is εSIFE .Dec
of η = 1 or εMIFE .Dec of∑ ηi = 1 and n = 1.

5396 Comput Mater Contin. 2025;82(3)

Proof. According to algorithms of Sections 3.1 and 3.2, it is clear that b2 = ⟨ẑ1 ⋅ ẑ2⟩, b1 = ⟨ẑ1 ⋅ ž2⟩ +
⟨ž1 ⋅ ẑ2⟩ and b0 = ⟨ž1 ⋅ ž2⟩. Then, we have

RCB3
pdiv
(b2, b1 , b0) = p2

div ⋅ b2 ⊕ p1
div ⋅ b1 ⊕ p0

div ⋅ b0

= p2
div ⋅ ⟨ẑ1 , ẑ2⟩ ⊕ p0

div ⋅ ⟨ž1 , ž2⟩

⊕ p1
div ⋅ (⟨ẑ1 , ž2⟩ ⊕ ⟨ž1 , ẑ2⟩). (10)

For (2), we can get RCBpdiv(b2, b1 , b0) = ⟨z1 , z2⟩, the proof is complete. ◻

4.3 FE with Multi-Precision
We define the operations corresponding to Double Ciphertext Euclidean Division for t-tuple represen-

tations of ciphertexts.

Definition 3 (T-tuple Ciphertext Euclidean Division). Let ct = (ĉ t t−1 , ⋅ ⋅ ⋅ , ĉ t0) ∈ Zt×n
q be a t-tuple cipher-

text. The remainder of z by base is defined as:

ĉ t j ← [ẑ i , j], j ∈ {0, ⋅ ⋅ ⋅ , t − 1}, (11)

where z i = pt−1
d iv ẑ i ,t−1 ⊕ ⋅ ⋅ ⋅ ⊕ p0

d iv ẑ i ,0.

Lemma 2 (Multi-precision inner product function). Let ct = ([ẑ1,t−1], ⋅ ⋅ ⋅ , [ẑ1,0]) ∈ Zt×η
q be a ciphertext. Let

dk = (ŷ2,t−1 , ⋅ ⋅ ⋅ , ŷ2,0) = (⟨ẑ2,t−1 , s⟩, ⋅ ⋅ ⋅ , ⟨ẑ2,0 , s⟩) ∈ Zt
q be a functional derived key. Then:

RCB2t−1
pdiv
(b2t−2, ⋅ ⋅ ⋅ , b0) = ⟨z1 , z2⟩, (12)

where bi = ∑
k+l=i

Dec([ẑ 1,k], ŷ2, l) and the Dec is εSIFE .Dec or εMIFE .Dec.

Proof. According to algorithms of Sections 3.1 and 3.2, it is clear that bi = ∑
k+l=i
⟨ẑ1,k , ẑ2, l ⟩. Then, we have

RCB2t−1
pdiv
(b2t−2, ⋅ ⋅ ⋅ , b0) = ∑

0≤i<2t−1
pi

div ⋅ bi

= ∑
0≤i<2t−1

pi
div ∑

k+l=i
⟨ẑ1,k , ẑ2, l ⟩.

(13)

According to Eq. (2), it can be deduced by analogy that RCBpdiv(b2t−2, ⋅ ⋅ ⋅ , b1 , b0) = ⟨z1 , z2⟩, the proof
is complete. ◻

4.4 Joint Computational Methods with Multi-Precision
To be able to train normal PPML in complex scenarios, we construct computational methods to cope

with two kinds of complex scenarios based on FE with multi-precision. Two privacy-preserving compu-
tational methods are proposed for horizontal and longitudinal data from multiple sources. We propose
a Privacy Multi-Precision Horizontal Cooperative Computing Protocol (PMHC2, as described in Fig. 2)
for horizontal data and a Privacy Multi-Precision Longitudinal Cooperative Computing Protocol (PMLC2,
as described in Fig. 3) for longitudinal data. The communication of both protocols is non-interactive and
both require only one-way communication from the client to the server. Both protocols privacy-preserving
computing protocols use Functional encryption methods with multi-precision to ensure the underlying
security of the data. The key difference is that in PMHC2, each client provides the server with the full dataset
for model construction. In contrast, in PMLC2, each client only provides a subset of the full dataset for
model building.

Comput Mater Contin. 2025;82(3) 5397

PMHC2: The specific implementation of PMHC2 is depicted in Fig. 2. This protocol is based on SIFE
with multi-precision. For PMHC2, the training dataset is composed of multiple clients, each of which will
provide all of its local data (data containing all features). This is common in real-world scenarios. PMHC2 is
different from the traditional methods, such as the traditional method in literature [7], which only analyzes
the possibility of multi-client scenarios, and [8] is just normal inner product functional encryption. Our
protocols are based on multi-precision with better performance and provide higher computational depth.

PMLC2: Fig. 3 depicts the execution of the PMLC2 protocol. This protocol is built on top of MIFE
with multi-precision. It is worth noting that the multiple clients in this paper must ensure that some of the
features of the input data are of the same length and do not include overlapping parts between the features.
The server will go through the training dataset generated by the combination of clients to complete the
model construction.

4.5 MMH-FE Framework
In this paper, we propose an MMH-FE framework. The framework consists of a client, server, and KGA

to ensure that data privacy and security are guaranteed when data processing and computation are performed
with multiple parties involved.

As described in Algorithm 1. First, initialize the model parameters θ. These parameters are obtained
by random initialization. Next, initialize the PMHC2 and PMLC2 protocols. These two protocols handle
equally distributed and differently distributed data sources, respectively, ensuring privacy protection of data
during transmission and computation.

The client dataset Dd is iterated over to obtain each data source dk . Assuming that dk contains the
dataset {Xi , Yi}, it is then determined whether the data type is horizontally distributed (as described in line
5 of Algorithm 1). If the data distribution is consistent, the PMHC2 protocol is applied to the input data to
obtain the first layer of the neural network results in plaintext. Normal forward propagation is performed for
the obtained results. For backward propagation, since all layers except the first layer of the neural network
propagate information in plaintext, so special treatment of the first layer is sufficient. For the first layer, we
use SIFE to get the first layer back propagation results to update the gradient. For longitudinal data, we
perform a similar operation. The difference is that the underlying longitudinal data uses MIFE instead of
SIFE. In this paper, we do not expand on the specifics of the prediction phase of the MMH-FE model because
the prediction process only involves forward propagation based on the trained model and does not contain
additional complex operations. Nevertheless, the model can effectively guarantee data privacy during the
prediction phase without exposing sensitive information. This feature ensures that, in practice, the data is
protected during the prediction process with the same level of security as in the training phase.

Algorithm 1: The MMH-FE framework

Input: Data sources Dd = {dk}, each data source dk has dataset Xdk and Y dk , the data distribution Type,
the secure parameter λ, η, n

Output: the trained parameters θ∗

1 Function MMH − FE(Xdk , Y dk , Type , λ, η, n):
2 initialize parameters θ;
3 initialize parameters PMHC2 and PMLC2 protocol;
4 while dk ∈ Dd do
5 if Type == Horizontal distribution then
6 while Xdk

batch ∈ Xdk do
(Continued)

5398 Comput Mater Contin. 2025;82(3)

Algorithm 1 (continued)

7 FX ← PMHC2(Xdk
batch , θ);

8 A← Normal − Forward(FX , θ);
9 end
10 end
11 if Type == Longitudinal distribution then
12 while Xdk

batch ∈ Xdk do
13 FX ← PMLC2(Xdk

batch , θ);
14 A← Normal − Forward(FX , θ);
15 end
16 end
17 cost L← evaluation using Y dk

batch , A;
18 BX ← PMHC2([Xdk

batch]
⊺

, Y dk
batch , A, θ);

19 grads G ← Normal − Back(Y dk
batch , BX , θ);

20 θ∗ ← update parameters using G;
21 end
22 return θ∗;
23 end

5 Experimental Results

5.1 Setup
To comprehensively evaluate the performance of the MMH-FE framework. We select three publicly

available datasets for our experiments. The details of these datasets are described below:

• MNIST: The MNIST dataset [35] is a standard benchmark dataset widely used for image classification
tasks, mainly for handwritten digit recognition. The dataset contains 10 categories (digits 0 to 9) with
a total of 70,000 grey-scale images of dimension 28 × 28 pixels, including 60,000 training images and
10,000 test images.

• Fashion-MNIST: The Fashion-MNIST dataset [36] is a clothing image dataset provided by Zalando for
more challenging image classification tasks. The dataset contains 10 categories of fashion merchandise
images, such as t-shirts, skirts, shoes, bags, etc., each of which is a grey-scale image of dimension 28 ×
28 pixels. The dataset contains 60,000 training images and 10,000 test images.

• CIFAR-10: The CIFAR-10 dataset [37] is a standard dataset for image classification of natural scenes,
containing 60,000 color images(RGB) of dimension 32 × 32 pixels in 10 categories covering a wide range
of objects such as cars, planes, cats, dogs, birds, etc. The dataset is divided into 50,000 training images
and 10,000 test images.

We implement our proposed MMH-FE based on the object-oriented high-level programming language
Python and the numpy, gmpy2 library. We use standardization and normalization to pre-process the
datasets Mnist, Fashion-Mnist, and CiFar10. Functional encryption requires solving the difficult problem
of computing discrete logarithms during decryption. This step is crucial to the overall execution of the
encryption process. To speed up the computation, we use a bounded lookup table approach. Specifically,
we design a data representation for x as (S, Δ, t). This means −S/2 ≤ Δ ⋅ x < S/2. The variable t represents
the number of tuples, as defined in Definition 3. In the discrete logarithm h = g f , we compute the discrete
log f by setting up a hash table H. The hash table stores the pair (h, f), where −S/2 ≤ f ≤ S/2. To the best
of our knowledge, the size of the hash table to solve functional encryption of discrete log problems relies

Comput Mater Contin. 2025;82(3) 5399

on the precision of the preserved decimal places in encoding for floating-point numbers, since our method
underlies the use of the FE with multi-precision. The resource space consumed for discrete logarithm table
storage will be greatly reduced. The complexity consumed by our discrete log table lookup operation is O(1),
which is better than the traditional time complexity of O(n 1

2) big-step small-step algorithm.
The security parameters are set to 256 bits, and the running time of the program relies on Python’s

built-in time package for measurement. Increasing the security will correspondingly increase the size of the
ciphertext, requiring an increase in the size of the lookup table, resulting in an increase in the space cost of
the framework. Larger security parameters lead to an increased computational burden during encryption
and decryption, which in turn affects the model training time and memory consumption. 256-bit security
parameters are currently a popular choice, and in this paper, we use 256-bit for the related performance
analysis. All experiments are conducted on a 3.8 GHz 8-Core AMD Ryzen 7 platform with 32 GB of RAM.
Throughout the process, the model training relies only on the CPU.

5.2 Evaluation of Ciphertext Computational Efficiency
Since the MMH-FE proposed in this paper supports multi-precision inner-product functional encryp-

tion, we first explore the advantages and disadvantages of the multi-precision inner-product functional
ciphertext computation scheme compared to other schemes. Table 2 explores the comparison between our
FE with multi-precision and the existing conventional methods under different computational precision
Δ (Note that our FE with multi-precision method in this paper uses balanced decomposition for both
ciphertext decomposition and combination). From the data, it can be seen that for the traditional method, the
consumption of computational space increases significantly after the increase of the computational precision
Δ. In our method, the computational space is still kept in a relatively small range after the precision Δ is
increased. For the case that the Δ = 218 and t = 3, it shows that the computational space consumes only
696 KB, which is about 1.0 × 224 times better than that of the traditional method.

Table 2: Comparison of computation costs with the same computation precision

Δ t = 1 (NN_EMD) t = 2 (Our) t = 3 (Our)
26 696 KB 10.9 KB (1.99 × 25) 2.7 KB (1.0 × 28)
210 174 MB 174 KB (1.0 × 210) 43.5 KB (1.0 × 212)
214 43.5 G 2.72 MB (0.999 × 214) 174 KB (1.0 × 218)
218 10.88 T 43.52 MB (1.0 × 218) 696 KB (1.0 × 224)

Based on Table 2, we further analyze the computational precision that can be calculated under different
space costs. As shown in Table 3, traditional methods often have limited precision in smaller computational
spaces. They cannot meet the demands of realistic scenarios. To address this, more computational space is
often required. Our method can achieve high computational precision even when the computational space
is limited. For example, in the case of 1 MB computing space, the traditional method can only reach Δ =
26, while our method can reach Δ = 219, which is more than 213 times higher. For the case of higher t, the
calculation precision will continue to improve. This greatly solves the problem of not being able to train a
good neural network due to the lack of computational precision when training neural networks in ciphertext.

We set the Δ from 23 to 210 and test the time consumed for encryption and decryption as shown
in Table 4. In both CryptoNN and NN-EMD methods, the encryption time is stabilized at 40 μs compared
to our method, which is 4 to 6 times faster. For decryption, the NN-EMD and our methods do not change
much with increasing precision, but the CryptoNN decryption time increases significantly with increasing
precision. This is caused by the use of the BSGS method on each discrete logarithmic computation, and the

5400 Comput Mater Contin. 2025;82(3)

time required will increase significantly as the precision of the computation increases. In general, to train a
better model, the precision must be kept high. Therefore, we can conclude that our proposed method has
significant advantages and is more suitable for PPML.

Table 3: Comparison of achievable computational precision at different computational costs

Mem t = 1 (NN_EMD) t = 2 (Our) t = 3 (Our)
100 KB 1.5 × 24 1.18 × 211 1.85 × 217

300 KB 1.28 × 25 1.01 × 212 1.58 × 218

500 KB 1.68 × 25 1.33 × 212 1.04 × 219

800 KB 1.06 × 26 1.67 × 212 1.29 × 219

1 MB 1.2 × 26 1.9 × 212 1.48 × 219

Table 4: Comparison of encryption and decryption times for different methods

Δ CryptoNN NN-EMD Our

Enc Dec Enc Dec Enc Dec
23 37 μs 0.003 s 37 μs 0.0001 s 170 μs 0.0003 s
27 40 μs 0.009 s 41 μs 0.0001 s 193 μs 0.0004 s
210 40 μs 1.1361 s 40 μs 0.0002 s 237 μs 0.0007 s

The space cost of the scheme varies under different precision decomposition parameters. Assuming that
the data precision is S, the CryptoNN [7] directly stores a lookup table of length 2S to satisfy the lookup
demand during the decryption process. In contrast, a lookup table of length 2S/t is all that is required when
the data is precision decomposed using the method of this paper, which significantly reduces the size of the
lookup table needed for each decryption, and thus reduces the cost of the space drop. The same principle is
used in Table 4, where we fix the space to analyze the limiting data precision achievable by the scheme.

5.3 Model Training Performance Evaluation
5.3.1 Baseline Model

In this experiment, we use two separate base models for in-depth analyses of different experimental
objectives. For the temporal performance exploration, we use the same multilayer perceptron as the NN-
EMD model on the handwriting dataset mnist. This model has a simpler structure consisting of multiple
layers of fully connected neurons with low computational complexity and is therefore well suited for
evaluating the time overhead required for the model to be trained. The choice of the MLP model can help
us to better understand the performance of the time efficiency in different experimental setups, especially
in large-scale data processing tasks. For accuracy exploration, based on the complexity of the dataset, we
chose to build a custom neural network model identical to the ResNet18 framework. This network framework
incorporates a residual module to better capture features in complex data, thus ensuring high accuracy
performance in classification tasks.

Comput Mater Contin. 2025;82(3) 5401

5.3.2 Computational Time Efficiency Evaluation
As shown in Fig. 5, we perform time performance tests for different frameworks. The results show that

the training time increases linearly as the epoch grows. CryptoNN takes the most time to train 30 epochs, for
our PMH approach takes 5.1 times longer than NN-EMD (HPT) in 1 thread, and our PML approach takes
4.7 times longer than NN-EMD (VPT) in 1 thread. But both of the methods can be about 20% faster than
NN-EMD in 6 threads.

Figure 5: Training time of different schemes as epoch increases

We analyze the reason for this result, which is mainly because our method is probing the result of
time consumption on the client side t = 2 and the server side t = 3. Since the time overhead is mainly
spent on the decryption operation, our method will get 6 combinations based on Definition 3 for the final
decryption result. As a result, we conduct 6-threaded experiments, where each thread computes one of each
combination, and our multi-threaded approach takes relatively minimal time in solving discrete logarithms,
as the discrete logarithm table queried by our method has a very small time consumption. The final training
consumes less time than NN-EMD as we expected.

5.3.3 Model Accuracy Evaluation
As shown in Fig. 6, we conduct experimental analyses of accuracy for three different datasets on 1 MB

discrete logarithmic storage space, and the training process was carried out for a total of 50 epochs. From the
experimental results, the traditional way in the accuracy method can only reach the level of Δ = 26. In our
proposed MMH-FE method, however, the accuracy is significantly improved to Δ = 212 when the parameter t
= 2, and the accuracy is further improved to Δ = 219 when t = 3. Note that our MMH-FE is a cryptosystem that
computes based on integers rather than floating-point numbers, and thus as expected, both of our methods
obtain high accuracy concerning conventional methods. It can be observed from Fig. 6a that on the simple
MNIST dataset, the accuracy increases from 97.03% to 98.04%, a rise of about 1% when Δ increases from 26

to 219. In Fig. 6b, for the relatively complex Fashion-MNIST dataset, the accuracy increases from 84.85% to
89.75%, a rise of about 6% when Δ increases from 26 to 219. However, in Fig. 6c, when the model is trained on

5402 Comput Mater Contin. 2025;82(3)

the more complex CIFAR-10 dataset, the accuracy improves from 55.57% to 75.81%, an increase of about 30%
when Δ increases from 26 to 219. As the value of Δ increases, the amount of retained raw information also
increases. For simple datasets, less information is sufficient to capture the relationships between the data, so
a smaller value can still yield a relatively complete model. However, for complex datasets, retaining more raw
information helps to capture the finer details and complex relationships between the data, thereby improving
the performance of the trained model. Therefore, when dealing with complex datasets, Δ larger value of a
helps to enhance the model’s learning capability and generalization ability. Therefore, it can be concluded
that our method demonstrates significant effectiveness when applied to handling complex datasets.

Figure 6: Comparison of model accuracy with the base species model on three datasets. (a) MNIST. (b) FASHION-
MNIST. (c) CIRFAR-10

6 Conclusion
With the development of cloud computing and machine learning, users can upload data to the cloud for

training machine learning models. However, untrustworthy clouds may leak or speculate user data, leading
to user privacy leakage. In this paper, we propose an MMH-FE framework with functional encryption as the
underlying security algorithm for supporting neural network training using encrypted data. Experiments
show that MMH-FE can indeed ensure the accuracy of the model while guaranteeing privacy. However, when
dealing with more complex network architectures, such as Long Short-Term Memory (LSTM) networks
and Generative Adversarial Networks (GAN), the performance of the framework remains to be verified.
These models typically have higher computational complexity and data processing demands, which could
lead to performance bottlenecks due to the encryption computation. As the model becomes more complex,
challenges related to real-time training and computational efficiency arise. To optimize model performance,
improvements can be made to the encryption algorithms, hardware acceleration can be adopted, and
optimizations can be applied to reduce the number of encryption operations. Additionally, we plan to
combine differential privacy with homomorphic encryption and other privacy protection techniques to
enhance the model’s privacy protection capabilities and adaptability, better addressing the diverse application
scenarios and more complex network architectures.

Acknowledgment: We express our gratitude to the members of our research group, i.e., the Intelligent System Security
Lab (ISSLab) of Guizhou University, for their invaluable support and assistance in this investigation. We also extend
our thanks to our university for providing essential facilities and environment.

Funding Statement: This work was supported by Natural Science Foundation of China (Nos. 62303126, 62362008,
author Z. Z, https://www.nsfc.gov.cn/, accessed on 20 December 2024), Major Scientific and Technological

https://www.nsfc.gov.cn/

Comput Mater Contin. 2025;82(3) 5403

Special Project of Guizhou Province ([2024]014), Guizhou Provincial Science and Technology Projects (No.
ZK[2022]General149), author Z. Z, https://kjt.guizhou.gov.cn/, accessed on 20 December 2024), The Open Project
of the Key Laboratory of Computing Power Network and Information Security, Ministry of Education under Grant
2023ZD037, author Z. Z, https://www.gzu.edu.cn/, accessed on 20 December 2024), Open Research Project of the State
Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT2024B25), author Z. Z, https://
www.gzu.edu.cn/, accessed on 20 December 2024).

Author Contributions: The authors confirm contribution to the paper as follows: research conception and design:
Hao Li; Data collection: Zhenyong Zhang, Xin Wang, Mufeng Wang; Analysis and interpretation of results: Hao Li,
Kuan Shao; draft manuscript preparation: Hao Li, Kuan Shao, Zhenyong Zhang; Funding support: Zhenyong Zhang.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Due to the nature of this research, participants of this study did not agree for their
data to be shared publicly, so supporting data is not available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Liu M, Teng F, Zhang Z, Ge P, Sun M, Deng R, et al. Enhancing cyber-resiliency of DER-based smart grid: a survey.

IEEE Trans Smart Grid. 2024 Sep;15(5):4998–5030. doi:10.1109/TSG.2024.3373008.
2. Xiao T, Zhang Z, Shao K, Li H. SeP2CNN: a simple and efficient privacy-preserving CNN for AIoT applications.

In: 2024 International Conference on Artificial Intelligence of Things and Systems (AIoTSys); 2024; Hangzhou,
China. p. 1–7. doi:10.1109/AIoTSys63104.2024.10780672.

3. Xu R, Baracaldo N, Zhou Y, Anwar A, Joshi J, Ludwig H. FedV: privacy-preserving federated learning over vertically
partitioned data. In: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security; 2021; New
York, USA. p. 181–92. doi:10.1145/3474369.3486872.

4. Mohassel P, Zhang Y. SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE
Symposium on Security and Privacy; 2017; San Jose, CA, USA. p. 19–38. doi:10.1109/SP.2017.12.

5. Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J. Cryptonets: applying neural networks to
encrypted data with high throughput and accuracy. In: Proceedings of the International Conference on Machine
Learning; 2016; New York, USA. p. 201–10.

6. Hesamifard E, Takabi H, Ghasemi M. CryptoDL: deep neural networks over encrypted data. 2017. doi:10.48550/
arXiv.1711.05189.

7. Xu R, Joshi JBD, Li C. CryptoNN: training neural networks over encrypted data. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS); 2019; Dallas, TX, USA. p. 1199–209. doi:10.1109/ICDCS.
2019.00121.

8. Xu R, Joshi J, Li C. NN-EMD: efficiently training neural networks using encrypted multi-sourced datasets. IEEE
Trans Dependable Secure Comput. 2022 Jul–Aug 1;19(4):2807–20. doi:10.1109/TDSC.2021.3074439.

9. Phan TC, Tran HC. Consideration of data security and privacy using machine learning techniques. Int J Data
Inform Intell Comput. 2023;2(4):20–32. doi:10.59461/ijdiic.v2i4.90.

10. Sahai A, Waters B. Fuzzy identity-based encryption. In: Proceedings of the 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques; 2005; Aarhus, Denmark. p. 457–73. doi:10.1007/
11426639_27.

11. Boneh D, Sahai A, Waters B. Functional encryption: definitions and challenges. In: Proceedings of the 8th Theory
of Cryptography Conference; 2011; Providence, RI, USA. p. 253–73. doi:10.1007/978-3-642-19571-6_16.

12. Francati D, Friolo D, Maitra M, Malavolta G, Rahimi A, Venturi D. Registered (inner-product) functional
encryption. In: Proceedings of the International Conference on the Theory and Application of Cryptology and
Information Security; 2023; Guangzhou, China. p. 98–133. doi:10.1007/978-981-99-8733-7_4.

https://kjt.guizhou.gov.cn/
https://www.gzu.edu.cn/
https://www.gzu.edu.cn/
https://doi.org/10.1109/TSG.2024.3373008
https://doi.org/10.1109/AIoTSys63104.2024.10780672
https://doi.org/10.1145/3474369.3486872
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.48550/arXiv.1711.05189
https://doi.org/10.48550/arXiv.1711.05189
https://doi.org/10.1109/ICDCS.2019.00121
https://doi.org/10.1109/ICDCS.2019.00121
https://doi.org/10.1109/TDSC.2021.3074439
https://doi.org/10.59461/ijdiic.v2i4.90
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-981-99-8733-7_4

5404 Comput Mater Contin. 2025;82(3)

13. Chang Y, Zhang K, Gong J, Qian H. Privacy-preserving federated learning via functional encryption, revisited.
IEEE Trans Inf Forensics Secur. 2023;18:1855–69. doi:10.1109/TIFS.2023.3255171.

14. Agrawal S, Goyal R, Tomida J. Multi-input quadratic functional encryption from pairings. In: Proceedings of the
41st Annual International Cryptology Conference; 2021; Springer. p. 208–38. doi:10.1007/978-3-030-84259-8_8.

15. Abdalla M, Catalano D, Gay R, Ursu B. Inner-product functional encryption with fine-grained access control.
In: Proceedings of the International Conference on the Theory and Application of Cryptology and Information
Security; 2020; Daejeon, Republic of Korea: Springer. p. 467–97. doi:10.1007/978-3-030-64840-4_16.

16. Chotard J, Dufour-Sans E, Gay R, Phan DH, Pointcheval D. Dynamic decentralized functional encryption. In:
Proceedings of the Annual International Cryptology Conference; 2020; Santa Barbara, CA, USA: Springer. p.
747–75. doi:10.1007/978-3-030-56784-2_25.

17. Gay R. A new paradigm for public-key functional encryption for degree-2 polynomials. In: Proceedings of the
IACR International Conference on Public-Key Cryptography; 2020; Edinburgh, UK: Springer. p. 95–120. doi:10.
1007/978-3-030-45374-9_4.

18. Kim S, Lewi K, Mandal A, Montgomery H, Roy A, Wu DJ. Function-hiding inner product encryption is practical.
In: Proceedings of the International Conference on Security and Cryptography for Networks; 2018; Amalfi, Italy:
Springer. p. 544–62. doi:10.1007/978-3-319-98113-0_29.

19. Lewko A, Okamoto T, Sahai A, Takashima K, Waters B. Fully secure functional encryption: attribute-based encryp-
tion and (hierarchical) inner product encryption. In: Proceedingsof the 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques; 2010; Berlin, Heidelberg: Springer. p. 62–91. doi:10.
1007/978-3-642-13190-5_4.

20. Gorbunov S, Vaikuntanathan V, Wee H. Functional encryption with bounded collusions via multi-party compu-
tation. In: Proceedings of the 32nd Annual Cryptology Conference; 2012; Santa Barbara, CA, USA: Springer. p.
162–79. doi:10.1007/978-3-642-32009-5_11.

21. Carmer B, Malozemoff AJ, Raykova M. 5Gen-C: multi-input functional encryption and program obfuscation for
arithmetic circuits. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security; 2017; Dallas, TX, USA: ACM. p. 747–64. doi:10.1145/3133956.3133983.

22. Lewi K, Malozemoff AJ, Apon D, Carmer B, Foltzer A, Wagner D, et al. 5Gen: a framework for prototyping
applications using multilinear maps and matrix branching programs. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security; 2016; Vienna, Austria: ACM. p. 981–92. doi:10.1145/
2976749.2978314.

23. Abdalla M, Bourse F, Caro ADe, Pointcheval D. Simple functional encryption schemes for inner products. In:
Proceedings of the IACR International Workshop on Public Key Cryptography; 2015; Gaithersburg, MD, USA:
Springer. p. 733–51. doi:10.1007/978-3-662-46447-2_33.

24. Abdalla M, Catalano D, Fiore D, Gay R, Ursu B. Multi-input functional encryption for inner products: function-
hiding realizations and constructions without pairings. In: Proceedings in Cryptology-CRYPTO 2018: 38th Annual
International Cryptology Conference; 2018; Santa Barbara, CA, USA: Springer. p. 597–627. doi:10.1007/978-3-319-
96884-1_20

25. Zhang Z, Liu M, Sun M, Deng R, Cheng P, Niyato D, et al. Vulnerability of machine learning approaches applied in
IoT-based smart grid: a review. IEEE Internet Things J. 2024 Jun 1;11(11):18951–75. doi:10.1109/JIOT.2024.3349381.

26. Bourse F, Minelli M, Minihold M, Paillier P. Fast homomorphic evaluation of deep discretized neural networks.
In: Proceedings in Cryptology-CRYPTO 2018: 38th Annual International Cryptology Conference; 2018; Santa
Barbara, CA, USA: Springer. p. 483–512. doi:10.1007/978-3-319-96878-0_17.

27. Chillotti I, Gama N, Georgieva M, Izabachene M. Faster fully homomorphic encryption: bootstrapping in less than
0.1 seconds. In: Proceedings in Cryptology-ASIACRYPT 2016: 22nd International Conference on the Theory and
Application of Cryptology and Information Security; 2016; Hanoi, Vietnam: Springer. p. 3–33. doi:10.1007/978-3-
662-53887-6_1.

28. Zhang Z, Cheng P, Wu J, Chen J. Secure state estimation using hybrid homomorphic encryption scheme. IEEE
Trans Control Syst Technol. 2021 Jul;29(4):1704–20. doi:10.1109/TCST.2020.3019501.

https://doi.org/10.1109/TIFS.2023.3255171
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-56784-2_25
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1145/3133956.3133983
https://doi.org/10.1145/2976749.2978314
https://doi.org/10.1145/2976749.2978314
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1109/JIOT.2024.3349381
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1109/TCST.2020.3019501

Comput Mater Contin. 2025;82(3) 5405

29. Graepel T, Lauter K, Naehrig M. ML confidential: machine learning on encrypted data. In: Proceedings of the
International Conference on Information Security and Cryptology; 2012; Seoul, Republic of Korea: Springer. p.
1–21. doi:10.1007/978-3-642-37682-5_1.

30. Chou E, Beal J, Levy D, Yeung S, Haque A, Fei-Fei L. Faster cryptonets: leveraging sparsity for real-world encrypted
inference. 2018. doi:10.48550/arXiv.1811.09953.

31. Ligier D, Carpov S, Fontaine C, Sirdey R. Privacy preserving data classification using inner-product functional
encryption. In: Proceedings of the International Conference on Information Systems Security and Privacy; 2017.
p. 423–30. doi:10.5220/0006206704230430.

32. Dufour-Sans E, Gay R, Pointcheval D. Reading in the dark: classifying encrypted digits with functional encryption.
Cryptology EPrint Archive. 2018 [cited 10 December 2024]. Available from: https://eprint.iacr.org/2018/206.

33. Ryffel T, Dufour-Sans E, Gay R, Bach F, Pointcheval D. Partially encrypted machine learning using functional
encryption. 2019. doi:10.48550/arXiv.1905.10214.

34. Nguyen T, Karunanayake N, Wang S, Seneviratne S, Hu P. Privacy-preserving spam filtering using homomorphic
and functional encryption. Comput Commun. 2023;197:230–41. doi:10.1016/j.comcom.2022.11.002.

35. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE.
1998;86(11):2278–324. doi:10.1109/5.726791.

36. Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.
2017. doi:10.48550/arXiv.1708.07747.

37. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images [Ph.D. dissertation]. Canada:
University of Toronto; 2009.

https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.48550/arXiv.1811.09953
https://doi.org/10.5220/0006206704230430
https://eprint.iacr.org/2018/206
https://doi.org/10.48550/arXiv.1905.10214
https://doi.org/10.1016/j.comcom.2022.11.002
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1708.07747

	MMH-FE: A Multi-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Proposed MMH-FE Framework
	5 Experimental Results
	6 Conclusion
	References

