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ABSTRACT: The key to the success of few-shot semantic segmentation (FSS) depends on the efficient use of limited
annotated support set to accurately segment novel classes in the query set. Due to the few samples in the support set,
FSS faces challenges such as intra-class differences, background (BG) mismatches between query and support sets, and
ambiguous segmentation between the foreground (FG) and BG in the query set. To address these issues, The paper
propose a multi-module network called CAMSNet, which includes four modules: the General Information Module
(GIM), the Class Activation Map Aggregation (CAMA) module, the Self-Cross Attention (SCA) Block, and the Feature
Fusion Module (FFM). In CAMSNet, The GIM employs an improved triplet loss, which concatenates word embedding
vectors and support prototypes as anchors, and uses local support features of FG and BG as positive and negative
samples to help solve the problem of intra-class differences. Then for the first time, the Class Activation Map (CAM)
from the Weakly Supervised Semantic Segmentation (WSSS) is applied to FSS within the CAMA module. This method
replaces the traditional use of cosine similarity to locate query information. Subsequently, the SCA Block processes
the support and query features aggregated by the CAMA module, significantly enhancing the understanding of input
information, leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG
segmentation. Finally, The FFM combines general class information with the enhanced query information to achieve
accurate segmentation of the query image. Extensive Experiments on PASCAL − 5i and COCO − 20i demonstrate that
the CAMSNet yields superior performance and set a state-of-the-art.
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1 Introduction
Deep learning has rapidly advanced [1], resulting in significant improvements in semantic segmentation

techniques [2]. However, accurate segmentation heavily relies on annotated data, necessitating extensive
pixel-level labeling to achieve generalization. To mitigate this data dependency, semi-supervised and WSSS
methods have been proposed. Despite their benefits, these methods struggle to generalize to novel class.
Addressing the challenge of predicting numerous novel classes using limited base general class information
has become a critical issue in the field of deep learning. Since Sanban et al. introduced the task of FSS,
it has quickly become a prominent research area [3]. Currently, metric-based meta-learning strategies are
the dominant approaches in this field [4]. These methods generally consist of two stages: meta-training,
where feature representations of known classes are learned, and meta-testing, which enables fast inference
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and segmentation of unseen classes. However, these approaches still encounter substantial challenges,
particularly in handling intra-class differences and BG mismatch.

Intra-class differences refer to instances within the same category that are difficult for the model to
distinguish due to variations in appearance or form. For example, as shown in Fig. 1, both the oriole and white
dove are “birds,” or the cow and cat, viewed from different perspectives, exhibit significant visual differences
despite belonging to the same category. The existing methods have made improvements by adopting various
strategies to address this issue. Reference [5] used an L2L similarity metric to measure the similarity between
aligned local features in the embedding space. By learning a distinct metric for each category [6], the model
can more effectively differentiate between samples within the same class. By minimizing cross-entropy loss
and maximizing mutual information [7], the model can better handle query set uncertainty, reducing intra-
class differences. However, these methods still face some challenges, especially when dealing with targets
that exhibit significant intra-class differences, where their effectiveness is limited. This paper proposes the
GIM that concatenates embedding vectors of dataset category words with support prototypes as anchor. It
introduces the Local Feature Generator (LFG) to sample local support features as positive and negative pairs,
calculating triplet loss to minimize the distance between positive samples and maximize the distance between
negative ones. The General Information Genertor (GIG) produces embedding vectors for category words,
aiding in the extraction of general feature information and addressing the challenge of intra-class differences
in FSS.

Figure 1: Intra-class differences. (a) The object has the same semantic label but belongs to different categories. (b) The
same object appearing differently from various perspectives is referred to as perspective distortion

BG mismatch occurs when the similarity between the BG in the query image and the FG features
in the support set is excessively high, causing the query BG to incorrectly match the support FG, which
ultimately affects the model’s segmentation accuracy. As shown in Fig. 2, the excessive similarity between the
query BG (e.g., grassland) and the supported FG leads to an incorrect match. To alleviate this issue, existing
studies have proposed various strategies. By fine-tuning the parameters in the Prototype Adaptive Module
(PAM) module [8], the basic segmentation model can quickly adapt to new categories, thereby mitigating
the impact of BG mismatch. Reference [9] proposed a novel NTRENet to effectively mine and eliminate BG
and distracting object (DO) regions from the query images. Reference [10] introduced the FS-PCS, which
calibrates the correlation of BG classes through the Basic Prototype Calibration (BPC) module. However,
these methods still face certain limitations, especially in complex BG or when there is a high similarity
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between the FG and BG, which significantly constrains the performance of existing FSS methods. To address
these challenges, the paper proposes an enhanced SCA Block, which enables the model to better distinguish
between FG and BG features. This module helps the model to more effectively process input information,
improve prediction accuracy, and resolve issues related to BG mismatch and unclear segmentation between
FG and BG.

Figure 2: BG mismatch and ambiguous segmentation of BG and FG. The query FG matches correctly with the support
FG, but the query BG incorrectly matches with the support FG

This paper proposes CAMSNet for accurate few-shot semantic segmentation. The model consists of the
GIM, the CAMA module, the SCA Block, and the FFM. This method demonstrated superior performance
on the PASCAL − 5i [3] and COCO − 20i [11] datasets. The main contributions are summarized as follows:

• The paper proposes four modules, GIM, CAMA, SCA, and FFM, to achieve more accurate FSS, with a
performance improvement of 1.9% compared to state-of-the-art models.

• The paper propose a GIM that incorporates word embedding vectors and triplet loss to better extract
general class information and address intra-class differences.

• For the first time, the CAM from the WSSS domain has been applied to FSS. This enhances the model’s
ability to locate query set images and improves overall performance.

• The introduction of an improved SCA Block effectively learns support and query features, models global
image information, and captures long-distance dependencies between different regions. This approach
addresses the issues of BG mismatch and ambiguous FG and BG segmentation.

Through these methods, the CAMSNet model excels in FSS tasks by effectively addressing challenges
such as intra-class differences, BG mismatch, and ambiguous FG and BG segmentation. This contribution
not only resolves current issues in FSS but also introduces innovative ideas and methodologies for future
research in this field.

The structure of this paper is as follows: Section 2 reviews the key technologies and develop-
ments in semantic segmentation, FSS, category activation maps, cross-attention mechanisms and feature
fusion. Section 3 provides an overview of the paper’s overall framework, highlighting the key modules and
technologies. Section 4 presents a detailed analysis of the experimental setup and results. Finally, Section 5
summarizes the proposed methods, discusses potential future developments, and identifies areas for further
improvement in the model.
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2 Related Work
Semantic Segmentation. Semantic segmentation [12] is a fundamental computer vision task that

aims to assign a specific category to each pixel in an image. Since the proposal of FCN [13], semantic
segmentation has made significant progress and is widely used in fields such as medical image recog-
nition, autonomous driving, and geological exploration [14]. AMF-SparseInst [15] is a real-time instance
segmentation model that effectively emphasizes key features of small objects within complex backgrounds.
It captures multi-scale contextual information and enhances the effectiveness of semantic fusion features
using a pyramid pooling module (SimAM-ASPP) combined with depthwise separable convolution and
a 3D attention mechanism (SimAM). The model also incorporates a Lite-BiFPN module and a feature
enhancement module for further refinement. Mobile-Deep [16] built upon the DeepLabv3+ framework,
utilizes MobileNetv2 to reduce parameters. It addresses sample imbalance by combining Focal Loss and Dice
Loss, introduces the Efficient Atrous Spatial Pyramid Pooling (E-ASPP) module and Roberts operator to
enhance accuracy, and leverages multi-scale feature fusion to improve model performance, thereby achieving
rapid and accurate segmentation of Printed Circuit Boards (PCB) images. However, traditional semantic
segmentation networks are incapable of handling novel categories. During training, pixel-level annotation of
large-scale data is required, resulting in high labor costs and computational expenses, which hinder practical
applications. Table 1 summarizes the advantages and disadvantages of each algorithm.

Few-Shot Semantic Segmentation. The key to FSS is to use limited labeled samples of known categories
to segment images of unseen categories. Categorized by the availability of supervisory information, it falls
into unsupervised (no additional info) and supervised learning (with additional info). CWT [17] addresses
the distribution mismatch problem of pre-trained models through a two-stage training method. RePRI [18]
improves supervision by applying an enhanced cross-entropy loss on top of traditional semantic segmen-
tation training. BAM [19] combines a base learner and a meta-learner to separately handle segmentation
tasks for base classes and novel categories. MIANet [20] improves model performance by interactively
integrating information from different scales, utilizing multi-level contextual information. PI-CLIP [21]
leverages CLIP to introduce textual information, enhancing the model’s generalization ability in the case of
unseen categories and limited labeled samples. LLaFS [22] applies large language models to FSS, imporving
the model’s performance in segmenting unseen categories and complex scenes. However, most of these
methods focus on improvements in model architecture and training strategies, with relatively less attention
given to the application of attention mechanisms in FSS. In this paper, we propose an effective SCA Block
to address key issues in FSS. By introducing the self-cross attention mechanism, SCA Block can more
effectively capture contextual information in the image, thereby improving the model’s generalization ability
and segmentation accuracy.

Class Activation Map. Reference [23] introduced a gradient-independent class activation mapping
method called Score-CAM.This method calculates linear weights by using the model’s global confidence
score for the feature map. In [24], an integrated system is proposed, consisting of two modules: classification
and segmentation. Multiple network architectures are independently trained to handle various anomalies,
and their components are then combined. The final structure includes two branches: one for anomaly
classification and the other for anomaly segmentation. To prevent information loss during deep Convolu-
tional Neural Network (CNN) training on high-resolution images, guided GradCAM (GCAM) adjustment
patch neural networks are employed for anomaly localization. The Layer-wise Relevance Propagation
(LRP) mechanism provides a deeper explanation for class activation maps [25], further enhancing the
understanding of the model’s internal reasoning process. However, these methods still suffer from inaccurate
localization. The paper propose the CAMA module, which convolves high-level feature maps with the
weights of the classification layer to calculate the activation map for each category. This is the first time
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that CAM, used in weakly supervised semantic segmentation, is applied to FSS to help precisely locate
information in the query set.

Table 1: Comparison of algorithms

Algorithm name Year Advantages Disadvantages
AMF-

SparseInst [15]
2024 Multi-scale feature fusion improves

segmentation accuracy
Implementation complexity may be

high
Mobile-

Deep [16]
2023 By integrating a lightweight model

with efficient modules, it achieves
rapid and accurate segmentation of

PCB images

The segmentation effect may need
further improvement in specific

complex scenarios or extreme cases

CWT [17] 2021 Learns to adapt classifier weights for
better generalization

May still face challenges when novel
categories are highly dissimilar to

training classes
BAM [19] 2022 Addresses FSS from a new

perspective
Specific implementation and

performance need further
exploration

EGGCAM [24] 2024 Improves the accuracy of anomaly
detection

Primarily targeted at anomaly
detection, not semantic

segmentation
WSSS-

Transformer [25]
2022 Achieves end-to-end

weakly-supervised semantic
segmentation

Weakly-supervised learning may
have lower performance compared

to fully-supervised learning
Swin

Trans-
former [26]

2021 Improves performance on vision
tasks with a hierarchical structure

May have higher model complexity
compared to other methods

PCNN-
AGA [27]

2023 Combines pulse coupled neural
network and adaptive glowworm

algorithm

Specific implementation and
performance in segmentation tasks

need further verification
Paper [28] 2021 Adaptability to Few-Shot Scenarios

and Attention to Semantic
Consistency

Limited Exploration of Dataset
Diversity and Potential Overfitting

in Few-Shot Learning
CA-

FSS [29]
2022 Introduces cross-attention

mechanism, improving few-shot
segmentation results

Specific implementation and
performance may vary across

different datasets
HFF [30] 2023 Hierarchical feature fusion improves

the accuracy of semantic
segmentation

Implementation complexity may be
high, requiring more computational

resources
MIANet [20] 2023 Effectively integrates multi-scale

contextual information
May require more computational

resources due to multi-scale
integration

PI-
CLIP [21]

2024 Leverages CLIP to incorporate
textual information for better

generalization

Relies on large pre-trained models
(CLIP), which may be

resource-intensive

(Continued)
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Table 1 (continued)

Algorithm name Year Advantages Disadvantages
LLaFS [22] 2024 Applies large language models to

improve segmentation in unseen
categories

Large language models can be
computationally expensive

Cross-Attention Mechanism. CNN excel at capturing local features in images due to their local
convolution operations but struggle to effectively model global information and long-range dependencies
between different regions. This is a significant drawback in FSS tasks. Recent works [26,31,32] have shown that
Transformer [33] architectures can achieve outstanding results in computer vision tasks. Specifically, Swin
Transformer (ST) [26] can compute efficient self-attention within small windows to reduce computational
burden and achieve good segmentation results. In [27], an image segmentation algorithm is proposed that
combines Pulse Coupled Neural Network (PCNN) and the adaptive firefly algorithm. This approach retains
the advantages of the glowworm algorithm while introducing adaptive movement step size and overall
optimal value as adjustment factors, enhancing the ability to find the global optimal solution. However,
the aforementioned methods face challenges with invalid and misaligned patches. Based on this, the paper
proposes an improved SCA mechanism for FSS tasks, which better captures the overall semantic information
of images and helps understand the global context, demonstrating superior performance.

Feature Fusion. Feature fusion has become a key technique for improving the performance of FSS
models, aiming to effectively combine features from different layers or sources to enhance the model’s
representational power. Reference [28] proposed a method that fuses multi-level features from the net-
work to integrate global context and local details, helping the model capture finer-grained information.
Reference [29] implemented feature fusion between the support and query sets using a cross-attention
module, enabling the model to dynamically adapt to different target instances, which effectively improved
segmentation accuracy in few-shot learning scenarios. Reference [30] introduced a hierarchical feature
fusion method that combines features from different layers to preserve both global and local information,
thereby enhancing feature representation capability. In this paper, we adopt the FFM structure as the feature
fusion module, which combines general class information and query features through layer-wise convolution
operations and skip connections, resulting in more accurate feature fusion. This design helps the model better
capture key features in few-shot segmentation tasks and effectively improves segmentation accuracy.

3 Methodology

3.1 Problem Definition
The objective of FSS is to leverage k-shot annotated support setS to predict the segmentation of novel

classes in the query setQ. The training set Dtrain and test set Dtest are completely separate, with Dtest
containing novel classes. Thus, the classes in the training samples Ctrain and those in the test samples Ctest
satisfy the following formula:

Ctrain ∩ Ctest = ∅ (1)

The training set Dtrain and testing set Dtest are divided into support set S and query set Q, as shown in
the following formula:

Dtrain = {(Strain
i , Qtrain

i )}Ntrain

i=1 , Dtest = {(Stest
i , Qtest

i )}
Ntest

i=1 (2)
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where Ntrain and Ntest represent the number of episodes in the training set S and the test set Q.
For support set S is defined as S = {xs

i , ms
i}

k
i=1, where k represents the number of support images in

an episode, typically 1 or 5. xs
i ∈ R3×H×W denotes the RGB format support images, where H ×W represent

the image dimensions. ms
i ∈ (0, 1)H×W is the binary segmentation mask corresponding to the support

images. For query set Q is defined as Q = {xq , mq}, which represents the information of one query image.
xq ∈ R3×H×W denotes the RGB format query image, and mq ∈ (0, 1)H×W is the binary segmentation mask
corresponding to the query image. Typically, the support images and the query images belong to the
same category.

The main process of FSS network involves feeding the support-query image pairs xs and xq into the
encoder to extract support features fs and query features fq . The support features fs are then combined
with their corresponding binary segmentation masks ms to guide the upsampling of the query features fq ,
resulting in the predicted segmentation mask m̂q for the query image. This predicted mask m̂q is compared
with the ground truth segmentation mask mq of the query image to evaluate the prediction results. After
multiple rounds of training on the training set Dtrain , the network’s weights are fixed, and the performance
is assessed on test set Dtest to evaluate the network’s effectiveness.

3.2 Method Overview
The CAMSNet network consists of four modules: the General Information Module (GIM), the Class

Activation Map Aggregation (CAMA) module, the Self-Cross Attention Block (SCA Block), and the Feature
Fusion Module (FFM). The network architecture is shown in Fig. 3.

Figure 3: Overall architecture of (a) CAMSNet and (b) detailed of each module. The CAMSNet network consists of
four modules: the General Information Module (GIM), the Class Activation Map Aggregation (CAMA) module, the
Self-Cross Attention Block (SCA Block), and the Feature Fusion Module (FFM)
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First, the task is to use a pre-trained backbone network, ResNet50, to extract support features fs and
query features fq from the given support set S and query set Q, respectively. Support masks ms are used to
obtain the support prototype ps through average mask pooling. The support features fs , support prototype
ps , and corresponding semantic labels are input into the GIM. The support features fs are processed by the
LFG to obtain local support features. By using the binary masks of the support set, FG and BG are separated,
and the class words of the dataset are converted into word embedding vectors using the Word2Vec model,
ultimately generating general class information. To further address the class-internal differences of the FG
in both the support and query sets and to precisely locate the target, the CAMA module is proposed. In
this module, the support features fs , support prototype ps , and support mask ms are first aggregated to
obtain the fused support features FS . Then, CAM is used to obtain the pseudo-mask mc of the query features
fq . The pseudo-mask mc , query features fq , and support prototype ps are aggregated to obtain the fused
query features FQ . To alleviate the issues of ineffective support patches and unaligned patches, the SCA Block
aligns the outputs FQ and FS from the CAMA module. The aligned support patches and query patches are
then processed using self-cross attention mechanisms to enhance the mutual interaction between features.
Specifically, the query patch is used as Q, and the aligned support patches and query patches are split into K
and V. Self-attention scores are calculated using self-attention, and cross-attention scores are computed using
cosine similarity. Finally, the FFM fuses the general feature information and enhanced query information to
obtain the final prediction result.

3.3 General Information Module
In the field of FSS, a key challenge is the inherent category differences within target objects. Exist-

ing methods [34] typically rely on aligning the query image with support samples by matching local
image features. While these methods are effective in some cases, they often perform poorly when there
are significant visual differences between the query and support images, as shown in Fig. 1. To address
these limitations, the GIM is proposed. The goal of GIM is to generate a more powerful, category-based
representation by integrating local region features with global semantic information, thereby improving
segmentation performance. This method includes LFG and GIG, which are designed to comprehensively
capture fine-grained spatial features and high-level semantic context. The specific algorithm flow is shown
in Algorithm 1.

Algorithm 1: GIM for Few-shot semantic segmentation
1: Input: Support Features f s, Support Prototype Ps, Semantic Labels
2: Output: Compute Triplet Loss Ltriplet
3: Initialize Local Feature Generator (LFG) with f s
4: for each Convolution Block i ∈ {1, 2, 3} in LFG do
5: f (i)

local ← Convi( fs)
6: Downsample f (i)

local to 1
4 of original size

7: end for
8: Generate Local Features flocal ← LFG( fs)
9: Initialize General Information Generator (GIG) with ps and w
10: for each Semantic Label c ∈ C do
11: wc ←Word2Vec(c)
12: end for
13: Generate General Class Information pclass ← GIG(Psupport , wc)

(Continued)
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Algorithm 1 (continued)
14: Compute Triplet Loss:
15: for each Anchor Feature ∈ Flocal do
16: Sample Positive Fpositive and Negative Fnegative Pairs
17: Compute Triplet Loss Ltriplet using:

Ltriplet ←max(0, d(pcl ass , Fpositive) − d(pcl ass , Fnegative) +T )
18: end for
19: Update General Class Information Pclass using Triplet Loss
20: Output: Compute Triplet Loss Ltriplet

The LFG focuses on capturing features from specific regions in the support image. The support features
fs are passed through a set of convolutional layers, which include three convolution blocks, gradually
downsampling the feature maps. The goal is to extract the most relevant local regions from the support image
while eliminating less important background details.

fini t =Fconv(Fdow nsam pl e( fs)) (3)

where Fconv denotes the convolution operation applied to the support features fs , and Fdow nsam pl e denotes
the downsampling operation, which reduces the spatial dimensions and aggregates relevant features. The
resulting fini t focuses on the most important regions, making it easier to distinguish the target in the query
image. The next step is then performed:

fl ocal =FLFG( fini t) (4)

where FLFG(⋅) represents the processing of the obtained fini t through the LFG, resulting in the extracted
local features fl ocal .

The goal of GIG is to capture the overall semantic information of the target category. By utilizing
semantic embeddings associated with category labels, it achieves a semantic representation of the category.
The semantic label embedding is generated using a pre-trained word embedding model, converting the
category label into a high-dimensional vector representation w. This semantic vector w is then fused with
the support prototype, ultimately forming a unified category prototype pcl ass .

pcl ass =FGIG (w ⊕ ps) (5)

where w represents the word embedding vector of the category label, ps is the support prototype, and
⊕ describes the process of concatenating the two to form a unified vector, which is then input into
GIG for processing to obtain the category prototype pcl ass , which contains both visual features and
semantic information.

To ensure that the features generated by LFG and GIG remain semantically consistent, a triplet loss
is introduced to compare the generated category prototype pcl ass with the local features from the support
image. The goal of the triplet loss is to pull the anchor (category prototype pcl ass) closer to the FG features
(positive sample) while pushing it away from the BG features(negative sample). The selection of positive and
negative samples can be seen as the FG-BG segmentation process.

To extract FG features, the features in the FG region where the mask is 1 are considered as f f g , while the
features in the BG region where the mask is 0 are considered as fb g .

f f g =Fse l ec t(ms = 1, fl ocal), fb g =Fse l ec t(ms = 0, fl ocal) (6)
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where ms is the mask of the support set, and f f g and fb g represent the FG and BG feature sets, respectively.
The BG samples fb g are averaged to obtain the negative sample. The FG sample f f g that is the farthest

from the anchor is selected as the positive sample. In the end, the triplet loss encourages the model to pull
the FG features closer to the anchor (category prototype pcl ass) while pushing the BG features farther away,
thereby improving the model’s ability to accurately segment the target category. The formula for the triplet
loss is as follows:

Ltr i pl e t = max(d(pcl ass , positivate) − d(pcl ass , negativate) +T , 0) (7)

where d(⋅) represents the Euclidean distance, and T is a hyperparameter set to 0.5, used to ensure sufficient
distance between positive and negative samples, thereby helping the model effectively distinguish between
FG and BG.

The GIM integrates local feature extraction with global semantic context information. By using the LFG
and the GIG modules, region-specific and category-level features are generated and aligned through triplet
loss. This approach demonstrates stronger robustness when handling intra-class variations, significantly
improving segmentation accuracy even with a limited number of labeled support images.

3.4 Class Activation Map Aggregation
The CAMA module can further address the intra-class differences of FG in the support set and query

set, and accurately locate the targets. This module introduces the CAM from WSSS into few-shot semantic
segmentation task for the first time. By using CAM to aggregate query information, it achieves accurate
localization of query information, compensating for the inability of few-shot data to cover all semantic
concepts and helping to address intra-class differences. The algorithm implementation process is shown in
Algorithm 2.

Algorithm 2: CAMA for Few-shot semantic segmentation
1: Input: Query Features f q, Support Features f s, Support Prototype ps, Support Mask ms, Category c
2: Output: Aggregated Query Features FQ, Aggregated Support Features FS
3: Step 1: Flatten and linearly project f q into Token representation
4: f tokens

q ← Flatten( fq)
5: f tokens

q ← LinearProjection( f tokens
q )

6: Step 2: Apply Multi-Head Self-Attention in each Transformer block to capture global dependencies
7: for each Transformer Block i ∈ {1, 2, ..., N} do
8: Q , K , V ←MLP( f tokens

q )
9: f block

q ← SelfAttention(Q , K , V)
10: f block

q ← Concat( f block
q )

11: f block
q ← LayerNorm(MLP( f block

q ))
12: end for
13: Step 3: Generate Class Activation Map (CAM)
14: W ← Classification Layer Weights
15: mc ← ReLU(W ⋅ f block

q )
16: mc ← Normalize(mc)
17: Step 4: Aggregate Support Features using mc

18: FS ← Aggregation( fs , ps , ms)
(Continued)
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Algorithm 2 (continued)
19: Step 5: Aggregate Query Features with Support Prototype
20: FQ ← Aggregation(mc , fs , ps)
21: Output: FQ , FS

CNN are good at extracting local low-level features but fail to capture more global and semantic features.
In contrast, Vision Transformer (ViT) can effectively model long-range dependencies between different
regions, thus obtaining richer and more discriminative feature representations. In few-shot learning, where
sample data is scarce, introducing ViT based on the self-attention mechanism to extract query features can
capture the correlations between samples, thereby better generalizing to new categories.

CAMA first flattens the query features fq and linearly projects them into tokens. In each Transformer
block, it uses multi-head self-attention to capture global feature dependencies. Specifically, for the i-th head,
the patch token is projected through a Multi-Layer Perceptron (MLP) to obtain the query Qi ∈ Rh×w×dk , key
Ki ∈ Rh×w×dk , and value Vi ∈ Rh×w×dk . Based on Qi , Ki , and Vi , the output Xi is computed. Through this self-
attention mechanism, ViT can effectively capture the global dependencies between image patches, extracting
more discriminative feature representations.

Si =
Qi(Ki)T
√

dk
, Xi = so f tmax(Si)Vi , i ∈ 1, 2, 3, ..., n (8)

The output X of ViT block is obtained by concatenating the outputs of each attention head Xi and then
processing the concatenated result through normalization and MLP layers. By stacking multiple such blocks,
a feature map F ∈ Rh×w×d for subsequent modules is generated.

For the extracted feature map F ∈ Rh×w×d and the class c, a class activation map mc is generated
by weighting the contribution of features in F to the class. The weight matrix m comes from the weight
parameters of the classification layer, as shown in Fig. 4.

mc = Relu (
i=1
∑

d
mi ,c F i) (9)

Figure 4: Calculation process of class activation maps. Each class contributes its required attention parts

During the generation of the class activation map mc , the ReLu function is used to remove negative
activations, ensuring that mc contains only non-negative values. Then, mc is normalized to scale it to the
range [0, 1]. This simple and efficient CAM technique can highlight the most discriminative regions for class
c in the image, helping to improve the performance of FSS tasks. Class activation map enable the model to
better perceive and distinguish fine-grained semantic information in images, aiding in learning more general
semantic features and enhancing generalization to new samples.
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CAMA aggregates support features fs , support prototype ps , and support masks ms to obtain the fused
support features FS . Then, using CAM, it obtains a pseudo-mask mc for the query features fq . The pseudo-
mask mc , query features fq , and support prototype ps are aggregated to obtain the fused query features FQ .
The main purpose of including support prototype ps here is to narrow the gap between support features fs
and query features fq .

3.5 Self-Cross Attention Block
The SCA Block combines the strengths of Self-Attention and Cross-Attention, specifically tailored

to tackle the challenges posed by BG mismatch and ambiguous FG-BG. This module comprises two
essential components: Patch Alignment (PA) and Self-Cross Attention (SCA), both aimed at reinforcing the
relationship between query and support features in the context of BG discrepancies and FG-BG ambiguities.
The algorithm implementation process is shown in Algorithm 3.

Algorithm 3: SCA Block for few-shot semantic segmentation
1: Input: Query Features FQ, Support Features FS
2: Output: Enhanced Query Features Fenhanced

Q
3: Step 1: Patch Alignment (PA) for Query and Support Features
4: Tq ← PAP(FQ)
5: Ts ← PAP(FS)
6: Sim← CosineSimilarity(Tq , Ts)
7: Indices ← argmax(Sim)
8: Step 2: Self-Attention and Cross-Attention for Query-Feature Enhancement
9: Self-Attention:
10: AQ Q ← ScaledDotProductAttention(Tq , Tq)
11: Cross-Attention:
12: AQ S ← CosineSimilarity(Tq , Ts)
13: Step 3: Attention Score Calculation
14: A← softmax(AQ Q + AQ S)
15: Step 4: Feature Aggregation
16: Fenhanced

Q ← FFN(FQ)
17: Step 5: Iterative Processing
18: for each i ∈ {1, 2, ..., N} do
19: Fenhanced

Q ← SCA Block(Fenhanced
Q , Fsupport)

20: end for
21: Output: Enhanced Query Features Fenhanced

Q

The PA aims to mitigate the issues of ineffective support patches and misaligned support patches by
aligning each query patch with the support patches. The specific process is as follows: Firstly, the prototype
representations of the query patches and support patches are calculated through Patch Average Pooling
(PAP). The prototype of each patch only contains foreground information, ensuring that the focus is on the
foreground part while ignoring the background. Then, the cosine similarity is used to compute the similarity
between the query patch prototypes and support patch prototypes. This similarity measure quantifies the
degree of matching between the FG features.

T p
i = PAP(Ti), S p

i = PAP(Si), i ∈ 1, 2, 3, ..., n (10)
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where S p
i ∈ RN2×C×1×1 and T p

i ∈ RN2×C×K×K are the support and query patch prototypes, and PAP stands for
patch average pooling. Based on the cosine similarity, the argmax operation is utilized to select the most
similar support patch for alignment with each query patch, ensuring that each query patch is matched with
a support patch containing foreground pixels. Through these steps, the PA module successfully aligns each
query patch with its most relevant support patch, thereby addressing the issues of ineffective support patches
and misaligned support patches. SCA further enhances the relationship between query patches and aligned
support patches. The specific details are illustrated in Fig. 5. It combines self-attention and cross-attention to
improve the quality of feature fusion, ensuring that query FG and BG are effectively distinguished.

Figure 5: Details of self-cross attention (SCA). Query patch calculates self and cross attention scores with itself and the
aligned support patch

The query patches are fused through self-attention and cross-attention. The query patches serve as Q,
interacting with the K & V of the support patches to compute attention scores. Self-Attention calculates the
relationship between the query patches Q and the query patches K & V using Scaled Dot Product. Cross-
Attention computes the relationship between the query patches Q and the aligned support patches K & V
using cosine similarity.

To prevent self-attention from overly focusing on the query foreground and ignoring support features, a
Scaled Cosine (SC) mechanism is designed. By using Scaled Dot Product to calculate the attention within the
query patches themselves and cosine similarity to compute the attention between query patches and aligned
support patches, the model is encouraged to better integrate information from the support FG.

AQ Q =
Ti ⋅ Ti√

dk
, AQ S =

Ti ⋅ SA
i

∥Ti∥ ∥SA
i ∥

(11)

The scores are represented as AQ Q ∈ RN2×K2×K2
and AQ S ∈ RN2×K2×K2

, where N2 and K2 denote the
number of patches and pixels, respectively.

The attention scores are normalized through a softmax operation, resulting in weighted fused features
between the query patches and the support patches.

A = So f tmax(Concat(AQ Q , AQ S)) (12)
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where A ∈ RN2×K2×K2
represent the attention scores A.

A aggregates the query patches Qi, the aligned patches Pi and fuses them with the query patches to
enhance the query features.

Q̂i = FFN(A ⋅ Concat(Qi , S p
i ) + Qi) (13)

where FFN stands for Feed-Forward Network. The enhanced query patches are fed into the next SCA Block.
Through eight iterative layers of SCA Blocks, the SCA module continuously enhances the similarity and
difference between query and support features, thereby improving the feature representation capability in
few-shot segmentation tasks. The output of the last SCA Block is then fed into the Feature Fusion Module
(FFM) for segmentation.

As shown in the Fig. 6, the SCA module effectively addresses the issues of BG mismatch and ambiguou
FG-BG segmentation in FSS by combining PA and SCA. By precisely aligning the query patches with the
support patches and enhancing the information interaction between features using self-attention and cross-
attention mechanisms, the SCA module significantly boosts the performance of few-shot segmentation tasks.
Especially when dealing with complex scenes, it can better capture the similarities and differences between
support and query features.

Figure 6: Our proposed self-cross attention. The BG of the query and support sets correctly matches, and the
segmentation of the FG and BG in the query set is effective

3.6 Feature Fusion Module
To aggregate general class information pcl ass and query features processed FQ through the self-cross

attention mechanism, the paper adopts the FFM. The algorithm implementation process is shown in
Algorithm 4. The specific algorithm implementation process is illustrated in the figure. To further enhance
the fusion effect of features at different scales, the FEM structure is selected as the feature fusion module.
In the specific implementation, the FFM combines general class information and query features through
layer-by-layer convolution operations and skip connections. The ReLU activation function is used after each
convolution operation to introduce nonlinear properties. During feature fusion, Batch Normalization is
applied to accelerate convergence and improve model stability. In the FEM structure, to achieve efficient
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fusion of features at different scales, multi-scale convolution and pooling operations are employed. Specifi-
cally, 1 × 1, 3 × 3 and 5 × 5 convolution kernels are used to capture local features of different sizes, and a max
pooling layer is utilized to extract contextual information at different scales.

Algorithm 4: FFM for few-shot semantic segmentation
1: Input: Query Features Fenhanced

Q , General Class Information Pclass
2: Output: Final Fused Features Ffinal
3: Step 1: Initial Feature Aggregation
4: Finit ← Fenhanced

Q ⊕ Pcl ass
5: Step 2: Multi-Scale Convolution and Pooling
6: For each scale i ∈ {1, 3, 5}
7: F i

conv ← Conv2D(Finit , kernel size = i , channels = C)
8: F i

pool ←MaxPooling(F i
conv, kernel size = 2)

9: Step 3: Skip Connections and Aggregation
10: Fskip ← Concat(F 1

conv, F3
conv, F5

conv, F 1
pool , F3

pool , F5
pool)

11: Step 4: Batch Normalization and Non-Linearity
12: Fnorm ← BatchNorm(Fskip)
13: Fnonlinear ← ReLU(Fnorm)
14: Step 5: Final Fusion
15: Ffused ← Conv2D(Fnonlinear , kernel size = 3, channels = C)
16: Output: Ffused

3.7 Prediction and Training Loss
The loss during the training process consists of segmentation loss and triplet loss. The segmentation loss

includes intermediate prediction loss Lse g1 and final prediction loss Lse g2. The intermediate prediction loss
Lse g1 is calculated by segmenting the features extracted by ViT and comparing them with the ground truth
mask of the query set. The final prediction loss Lse g2 is derived by comparing the predicted mask m̂q of the
query set with the ground truth mask mq .

The core idea of the triplet loss is to learn an embedding space by comparing triplets (anchor, positive,
negative) such that similar samples are closer together and dissimilar samples are further apart. The general
class information pcl ass is used as the anchor, and positive and negative pairs are extracted from local features
in the support set. The final loss L function is:

L =Lse g1 +Lse g2 +Ltr i pl e t (14)

4 Experiments

4.1 Setup
Datasets. Experiments are conducted on two commonly used few-shot segmentation datasets,

PASCAL − 5i and COCO − 20i. In the experiments on FSS, the commonly used dataset PASCAL − 5i is
created from the additional annotations of PASCAL VOC2012 and SBD. The 20 classes in the dataset
are evenly divided into 4 splits, with each split containing 5 classes. COCO − 20i created by MSCOCO,
80 categories are divided into 4 equal parts, each containing 20 categories. Specify specific training and
validation categories based on the different split settings.
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Data Preprocessing and Splitting. The images are uniformly resized to 473 × 473 to meet the input
requirements of the model. The image pixel values are normalized to map them into the range [0, 1]. Based
on the predefined split, the dataset is divided into training, validation, and test sets. Each subset contains a
fixed proportion of samples, with the training set accounting for 70%, the validation set for 15%, and the test
set for 15%. In each experiment, the class distribution within the training, validation, and test sets is ensured
to be consistent to avoid the impact of class imbalance on the experimental results.

Data Augmentation. During the training process, data augmentation strategies such as random
cropping and random rotation are employed. Random cropping involves randomly selecting a 473 × 473 pixel
region from the original image for cropping. Random cropping can simulate variations in object scale and
position, enhancing the model’s adaptability to object detection and segmentation, especially in small-sample
scenarios, where it mitigates overfitting by increasing the diversity of training samples. Random rotation
involves rotating the image within a range of −30 to 30, enabling the model to learn spatial relationships and
features of the image at different angles.

Evaluation. The current few-shot segmentation algorithms are mostly evaluated using Foreground-
Background Intersection over Union (FB-IoU) and mean Intersection over Union (mIoU). The mIoU is
calculated by computing the IoU for each class and then averaging over the total number of classes. The
formula for Intersection over Union is as follows:

IoU = TP
TP + FN + FP

(15)

where TP, FP and FN represent true positives, false positives, and false negatives, respectively. Assuming
there are classes, the calculation formulas for FB-IoU and mIoU are:

mIoU = 1
n∑

n
i=1 IoUi (16)

When calculating FB-IoU, only FG and BG classes are considered, so n is 2. When calculating mIoU,
BG classes are not considered. For the experimental dataset, n is 5. Since the number of images per class in
the validation test is inconsistent, mIoU considers the multiple class situations, providing a more accurate
performance evaluation of the model.

Implementation Details. The PolyWarmupAdamW optimizer is used to optimize the model separately,
with an initial learning rate set to 6e-5. During training, the batch size is fixed at 4 to ensure a consistent
number of samples processed in each training iteration. In terms of training epochs, the model is trained for
200 epochs on the PASCAL-5i dataset and 50 epochs on the COCO-20i dataset to fully train and test the
model’s performance on different datasets. To optimize the model’s segmentation performance, the Dice loss
is used as the loss function. Eight SCCA modules are designed, with each module’s window size set to 8 (as
specified in the ablation experiments). For category embeddings, the Word2Vec model trained on Google
News data is used, and the generated 300-dimensional word vectors are employed to represent categories. In
the K-shot learning setting, when k > 1, the features of multiple support images are averaged to enhance the
model’s ability to recognize minority classes.

The hyperparameter settings in Table 2 were optimized using a variety of strategies. First, the optimizer
incorporates a combination of polynomial learning rate decay and the Warmup strategy to ensure stability
during the early stages of training. The momentum and batch size settings were based on references [29]
and [35], to meet the task requirements and hardware limitations. The number of training epochs was
determined by the size and complexity of the datasets. For the smaller PASCAL-5i dataset, more epochs
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were required to fully optimize model performance. In contrast, for the larger and more complex COCO-
20i dataset, fewer epochs were sufficient to achieve satisfactory results. The number and window size of
SCCA modules were determined through extensive experimentation, achieving a practical trade-off between
computational cost and performance. For category embeddings, 300-dimensional word vectors generated by
Word2Vec were adopted as the default setting, providing a good balance between semantic representation
capability and computational efficiency.

Table 2: Experimental parameter table

Parameter name Value
Optimizer PolyWarmupAdamW

Momentum 9 × 10−1

Weight decay 1 × 10−4

Learning rate 1 × 10−6

Batch size 4
Epoch (PASCAL − 5i) 150
Epoch (COCO − 20i) 50

Dimensional word vector 300
Number of SCA Blocks 8

4.2 Comparision with State-of-the-Arts
PASCAL − 5i: The results shown in Table 3 significantly surpass the state-of-the-art under the 1-shot

and 5-shot settings on PASCAL − 5i. Using ResNet50 as the backbone network, it can be seen that in
the 5-shot setting, the model’s stable and efficient performance with more support samples. The model
achieves mIoU improvements of 0.9% in the Fold-3 settings, surpassing the previous advanced semantic
segmentation model.

Table 3: Performance comparison on PASCAL − 5i in terms of mIoU. The best and second best results are highlighted
with bold and underline

Backbone Methods 1-shot 5-shot

50 51 52 53 Mean 50 51 52 53 Mean
PGNet [36] 56.0 66.9 50.6 50.4 50.6 57.7 68.7 52.9 54.6 58.5
CANet [37] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
PANet [38] 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3
PPNet [39] 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0

RPMM [40] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
ASGNet [41] 58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9

ResNet50 RePRI [18] 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6
MLC [42] 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1
SSP [35] 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3

QSCMNet [43] 62.9 69.8 56.7 55.6 61.3 65.3 70.8 57.6 56.5 62.6
SRPNet [44] 62.8 69.3 55.8 58.1 61.5 64.3 70.3 55.1 60.5 62.6

PFENet+QSR [45] 63.1 69.9 58.7 58.9 62.7 68.3 71.7 63.1 63.6 66.7

(Continued)
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Table 3 (continued)

Backbone Methods 1-shot 5-shot

50 51 52 53 Mean 50 51 52 53 Mean
CaSLNet [46] 62.0 69.7 57.6 57.3 61.6 63.8 70.3 57.8 59.3 62.8
DFBNet [47] 63.0 69.1 59.5 54.9 61.6 70.2 74.6 66.0 62.2 69.3

CAMSNet 61.9 71.3 63.2 55.7 63.0 68.9 72.9 74.0 63.0 69.7

COCO − 20i: Table 4 shows the mIoU performance comparison on COCO − 20i between our method
and several models. It has a wide variety of data types and a huge quantity, making it difficult to segment.
Using ResNet50 as the backbone network, it can be seen that (1) Under the 1-shot setting and Fold-0 and
Fold-1 settings, the model outperforms previous advanced methods with outstanding performance. MIoU
achieved improvements of 1.9% and 1.0%, respectively. (2) Under the 5-shot setting, the model achieved 0.9%
and 0.9% improvement in mIoU under the Fold-1 and Fold-2 settings, respectively, surpassing the previous
advanced semantic segmentation model QSCMNet.

Table 4: Performance comparison on COCO − 20i in terms of mIoU. The best and second best results are highlighted
with bold and underline

Backbone Methods 1-shot 5-shot

50 51 52 53 Mean 50 51 52 53 Mean
PPNet [39] 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5

RPMM [40] 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5
ASGNet [41] – – – – 34.6 – – – – 42.5
ReRPI [18] 31.2 38.1 33.3 33.0 34.0 38.5 46.2 40.0 43.6 42.1

ResNet50 MMNet [48] 34.9 41.0 37.2 37.0 37.5 37.0 40.3 39.3 36.0 38.2
SSP [35] 35.5 39.6 37.9 36.7 37.4 40.6 47.0 45.1 43.9 44.1

QSCMNet [43] 35.1 37.0 37.7 35.6 36.4 41.8 42.7 42.6 43.9 42.8
PFENet+QSR [45] – – – – 36.9 – – – – 41.2

MANet [49] 33.9 40.6 35.7 35.2 36.4 41.9 49.1 43.2 42.7 44.2
CAMSNet 37.0 42.0 38.2 36.9 38.4 42.0 47.9 46.0 41.6 44.3

4.3 Experimental Analysis
An extensive ablation study was conducted on the dataset in the 1-shot setting to verify the effectiveness

of the proposed key modules. The experiments in this section were performed on the dataset using ResNet50
as the backbone network.

Table 5 illustrates the impact of each component on the model. The three proposed components
resulted in an mIoU of 62.5%. Using only the GIM, the mIoU reached 54.7%. With only the CAMA
module, the mIoU improved by 3.8% over the former. Using both the GIM and SCA modules resulted in
a 6.1% improvement in mIoU compared to using only the GIM. This is because the GIM generates general
information, while the SCA module better separates the FG and BG. When all three modules were used
together, the mIoU increased by 1.7% compared to using only the GIM and SCA modules. This is because
the CAMA module can precisely locate the target, thereby improving accurate segmentation.
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Table 5: Ablation studies of main model components. GIM: General Information Module; CAM: Class Activation
Map; SCA: Self-Cross Attention

GIM CAM SCA mIoU
– – – 54.7
– ✓ – 58.5
✓ – ✓ 60.8
✓ ✓ ✓ 62.5

Table 6 shows the impact of different scale CAMs and ViT on the model. Using a single scale CAM
resulted in an mIoU of 58.4%. When using multiple scales, the mIoU reached 58.6%. With the addition
of ViT and using multiple scales CAM, the mIoU increased to 60.9%. When ViT was added with a single
scale CAM, the mIoU reached 62.5%. This is because ViT can capture global features, providing the network
with strong global modeling capabilities. However, combining ViT with multiple scale CAMs can lead to
overfitting, so using a single scale CAM improved the model’s segmentation ability.

Table 6: Ablation studies of generating CAM. ViT: Vision Transformer; CAM: Class Activation Map; CAMS: Different
scale CAM

ViT CAM CAMS mIoU
– ✓ – 58.4
– – ✓ 58.6
✓ – ✓ 60.9
✓ ✓ – 62.5

Table 7 demonstrates the impact of the number of SCA Blocks on model performance. When using
fewer blocks, the model struggles to capture sufficiently complex features, resulting in lower accuracy and
IoU values. As the number of blocks increases, the model’s performance improves, but it still does not
reach the optimal level. Eight SCA Blocks represent the optimal configuration, balancing feature extraction
and computational efficiency for the best performance. While increasing the number of blocks may further
enhance the model’s complexity, setting it to 16 blocks may lead to excessive computational burden and
performance degradation, potentially causing overfitting.

Table 7: Ablation studies of SCA block number.block_4: use 4 SCA block.block_6: use 6 SCA block.block_8: use 8 SCA
block.block_16: use 16 SCA block

Block_4 Block_6 Block_8 Block_16 mIoU
✓ – – – 56.2
– – – ✓ 57.4
– – ✓ – 60.6
– ✓ – – 58.7

To verify the efficiency of ViT in generating CAMs, we conducted a t-test to compare CAMs generated
by CNN and ViT. Fig. 7 displays the changes in mIoU. CNNs exhibit a slower initial improvement rate
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and subsequently plateau, whereas ViTs demonstrate faster growth and surpass CNNs in performance. This
result confirms significant differences in mIoU between the two, favoring ViT’s overall superior performance.
Therefore, ViT is more suitable for CAM generation due to its faster training speed and higher accuracy.

Figure 7: Comparison of the MIoU curves between the models generating CAMs via CNN and ViT

4.4 Qualitative Comparsion
Fig. 8 presents the visualization results of the proposed CAMSNet in the 1-shot setting. The figure

demonstrates accurate segmentation for various categories, including sheep, airplane, bird, cat, and bicycle. It
shows that even with significant intra-class differences between query samples and the support set (columns
3 and 4), CAMSNet can successfully segment the target objects, highlighting its effectiveness. Additionally,
CAMSNet effectively mitigates issues of BG mismatch and ambiguous separation between FG and BG
(column 1).

Figure 8: Qualitative results of CAMSNet and baseline on PASCAL − 5i and COCO − 20i



Comput Mater Contin. 2025;82(3) 5383

Fig. 9 illustrates the segmentation effects of different modules. It shows the incremental improvements
to the network made by the GIM, CAMA, and SCA Blocks. Specifically, GIM enhances the ability to handle
intra-class variance, the addition of CAMA helps in locating the query target, and SCA addresses BG
mismatch and ambiguous separation between FG and BG. These results clearly demonstrate the crucial role
each component plays in improving overall segmentation performance.

Figure 9: Segmentation effects of different modules

5 Conclusion
The paper propose a network called CAMSNet, which is composed of four main components: GIM,

CAMA, SCA Block, and FFM, designed for FSS. The GIM generates general class information, helping to
address intra-class differences. The CAMA utilizes CAM to create pseudo-masks for precise localization,
deviating from the traditional use of cosine similarity for pseudo-mask generation. The SCA employs an
improved self-cross attention to resolve issues of BG mismatch and ambiguous FG-BG segmentation. The
FFM aggregates the general class information from the GIM and the enhanced query information from the
SCA to facilitate precise segmentation. Extensive experiments on the dataset PASCAL − 5i and COCO − 20i

demonstrate significant advancements in the field of FSS, effectively integrating word embeddings, class
activation maps, and cross-attention mechanisms to provide an innovative solution to overcome existing
limitations. A well-trained network will focus more on the key features of the training categories, which can
lead to a decrease in the model’s generalization ability. How to reduce the bias of the model on novel classes
in new tasks is a problem that needs to be further studied and explored in the future.
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