
echT PressScience

Doi:10.32604/cmc.2025.059696

ARTICLE

Utilizing Fine-Tuning of Large Language Models for Generating Synthetic
Payloads: Enhancing Web Application Cybersecurity through Innovative
Penetration Testing Techniques

Stefan Ćirković1 , Vladimir Mladenović1 , Siniša Tomić2 , Dalibor Drljača2 and Olga Ristić1,*

1Faculty of Technical Sciences, University of Kragujevac, Čačak, 32000, Serbia
2Faculty of Information Technology, Pan-European University Apeiron, Banja Luka, 78101, Bosnia and Hercegovina
*Corresponding Author: Olga Ristić. Email: olga.ristic@ftn.kg.ac.rs
Received: 15 October 2024; Accepted: 03 January 2025; Published: 06 March 2025

ABSTRACT: With the increasing use of web applications, challenges in the field of cybersecurity are becoming
more complex. This paper explores the application of fine-tuned large language models (LLMs) for the automatic
generation of synthetic attacks, including XSS (Cross-Site Scripting), SQL Injections, and Command Injections. A
web application has been developed that allows penetration testers to quickly generate high-quality payloads without
the need for in-depth knowledge of artificial intelligence. The fine-tuned language model demonstrates the capability
to produce synthetic payloads that closely resemble real-world attacks. This approach not only improves the model’s
precision and dependability but also serves as a practical resource for cybersecurity professionals to enhance the
security of web applications. The methodology and structured implementation underscore the importance and potential
of advanced language models in cybersecurity, illustrating their effectiveness in generating high-quality synthetic
data for penetration testing purposes. The research results demonstrate that this approach enables the identification
of vulnerabilities that traditional methods may not uncover, providing deeper insights into potential threats and
enhancing overall security measures. The performance evaluation of the model indicated satisfactory results, while
further hyperparameter optimization could improve accuracy and generalization capabilities. This research represents
a significant step forward in improving web application security and opens new opportunities for the use of LLMs in
security testing, thereby contributing to the development of more effective cybersecurity strategies.

KEYWORDS: LLM; GPT-2; XSS; SQL injection; command injection; evaluation loss perplexity

1 Introduction
Modern challenges in penetration testing of web applications arise from the limitations and inef-

ficiencies of manually generating attack payloads [1]. While existing research has extensively explored
various techniques for penetration testing, the lack of automation in payload generation and the absence
of leveraging LLMs for this purpose highlight significant gaps in the literature. Current methods require
penetration testers to design payloads manually, which is not only time-consuming but also prone to human
error and limited by the tester’s expertise. These inefficiencies often result in insufficient coverage of potential
vulnerabilities and inconsistencies in test execution.

This research introduces an innovative approach by employing fine-tuned LLMs, specifically the GPT-2
model, to automate the generation of synthetic payloads. This methodology addresses the inefficiencies of
manual payload creation and provides a systematic, repeatable, and scalable solution. By training the GPT-2

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.059696
https://www.techscience.com/doi/10.32604/cmc.2025.059696
mailto:olga.ristic@ftn.kg.ac.rs

4410 Comput Mater Contin. 2025;82(3)

model on a specially tailored dataset, this study demonstrates how LLMs can generate advanced payloads
for critical attack types, including XSS, SQL Injection, and Command Injection, effectively bridging the
gap in current penetration testing practices. The unique contribution of this research lies in showcasing
the potential of LLMs to not only automate but also enhance the precision and coverage of vulnerability
detection, marking a significant advancement in cybersecurity methodologies [2].

1.1 Developed Web Application for Simple Payload Generation
As part of this research, a specialized web application was developed using the Flask framework to

facilitate the automatic generation of synthetic payloads for various attack types, such as XSS, SQL Injection,
and Command Injection. This application integrates a fine-tuned GPT-2 model trained on a dataset tailored
for generating malicious payloads. Through a user-friendly interface, penetration testers and cybersecurity
experts can specify the type of attack and instantly receive corresponding payloads [3]. This approach
drastically streamlines the penetration testing process, reduces the time required for test preparation, and
enhances the accuracy of vulnerability identification.

Unlike traditional tools, this web application leverages advanced language model capabilities, providing
a level of automation and precision that has not been previously explored in penetration testing. It was
designed exclusively for research purposes and is not publicly available, ensuring controlled use. The
methodology section of this paper provides a detailed explanation of the functionality of the application,
including an example of the function used to load the model and generate malicious payloads. The figure in
this manuscript will illustrate the application’s user interface structure, which enables the efficient definition
and generation of payloads.

1.2 Contribution of the Research
This paper significantly contributes to the field of cybersecurity by pioneering the application of

advanced language models in the context of web application penetration testing. It addresses a critical gap
in current methodologies by introducing automation in payload generation, which is traditionally a manual
and error-prone process [4]. The methodology presented here for training and fine-tuning LLMs, along with
the results confirming their ability to generate synthetic payloads that identify and exploit vulnerabilities,
showcases the practical potential of these models to enhance web application security.

Furthermore, this study explores the broader implications of using LLMs for penetration testing,
emphasizing how the developed web application empowers penetration testers to conduct more efficient,
scalable, and accurate assessments. By automating and optimizing payload generation, this approach not
only enhances testing capabilities but also sets the stage for future advancements in cybersecurity tools
and methodologies.
GPT-2

GPT-2, introduced by OpenAI in 2019, represents a significant advancement over previous models like
BERT due to its unique autoregressive transformer architecture based solely on the decoder. This architecture
is specifically designed for tasks such as translation, text generation, and question answering. Unlike BERT,
which uses bidirectional context analysis within a sentence, GPT-2 is a unidirectional model, meaning it
processes text in one direction—from the beginning to the end. During training, GPT-2 masks future tokens
to prevent the model from using context that comes after the current token, ensuring that the prediction
of the next word in a sentence is based solely on the preceding words. The GPT-2 architecture includes
self-attention layers, attention between encoder and decoder (encoder-decoder attention), and feed-forward
layers, enabling the model to efficiently process context and predict the next token in a sequence [5].

Comput Mater Contin. 2025;82(3) 4411

According to [6], GPT-2 excels in generating coherent and relevant textual responses, making it a
significant tool for various applications in NLP.

To clearly illustrate the difference between the BERT and GPT-2 models, Fig. 1 shows a simplified view of
their architectures. Fig. 1 displays BERT’s encoder model with layers that enable bidirectional text processing,
while the GPT-2 model is based solely on a decoder architecture, which processes text unidirectionally. This
figure visually highlights the key differences in how the two models process text and understand context,
thereby further explaining their specific applications in NLP tasks.

Figure 1: Difference between BERT and GPT-2 models [5]

In this research, the GPT-2 model was used instead of BERT due to differences in the architecture and
primary goals of these models. While BERT is optimized for text understanding tasks, such as classification
and entity extraction, its bidirectional architecture is not ideal for generating text sequences, which is crucial
for the needs of this research.

The choice of GPT-2 over newer versions of the GPT model is based on the following reasons:
First, GPT-2 is an openly available model that does not require API access, which allows for complete

control and privacy during use. This aspect is particularly important in research involving the generation of
malicious payloads, where ensuring a high level of security and privacy is essential.

Second, although GPT-2 is not the latest version in the GPT series, its autoregressive decoder architec-
ture allows for the generation of high-quality text sequences. These sequences are sufficiently complex and
variable for identifying vulnerabilities in web applications, making it a suitable and practical choice for the
purposes of this research. Due to these characteristics, GPT-2 was selected as the most appropriate option
for penetration testing of web applications in this study.

4412 Comput Mater Contin. 2025;82(3)

2 Literature Review and Comparison of Related Research
The literature review plays a crucial role in laying the groundwork for any research, especially in the

field of web application security, where the dynamics of threats and protective measures are constantly
evolving. This paper focuses on analyzing security challenges in web applications, with particular emphasis
on penetration testing, the security of LLMs, and the use of specific tools and techniques for preventing
and detecting attacks. The goal is to identify existing methodologies and highlight the innovation of
this approach, which differs from traditional methods of attack detection and classification presented in
these studies.

The study of Happe et al. [7] explores the use of LLMs, such as GPT-3.5, in the context of penetration
testing. The authors analyze how LLMs can be utilized for high-level task planning during security tests and
for detecting lower-level vulnerabilities within a vulnerable virtual machine. Although this paper provides
significant insight into the potential of LLMs, it is limited to applications in planning and detection, without
exploring the possibility of generating new, sophisticated attacks.

On the other hand, authors in [8] examined the differences between automated and manual approaches
to penetration testing, focusing on scenarios where one approach may be more effective than the other. The
authors investigate various types of vulnerabilities, including those on the OWASP Top 10 list, to determine
the advantages and disadvantages of both approaches. This paper offers a substantial analysis but deals
exclusively with the detection of existing threats, whereas this research advances further by exploring the
potential for generating new attacks using LLMs.

Paper [9] focuses on the security challenges associated with fine-tuning LLMs, such as Meta Llama and
GPT-3.5 Turbo. The authors highlight how even minimal fine-tuning can seriously compromise the security
of the model. This paper raises an important question about security during the customization of LLMs,
but, like the previous papers, it addresses detection and protection, whereas this research investigates the
generation of new attack scenarios.

Paper [10] analyzes the OWASP Security Shepherd technology as a tool for developing manual pene-
tration testing, particularly in the context of protection against XSS attacks. While this research is important
for education and prevention of XSS attacks, its focus is exclusively on existing threats, whereas this paper
concentrates on creating new payloads using LLMs for attacking web applications.

Paper [11] provides a comprehensive review of methods for preventing and detecting SQL injection
attacks, with an analysis of techniques such as input validation, parameterized queries, and intrusion
detection systems. This study identifies the most effective combinations of methods for protecting web
applications but, like the previous papers, mainly deals with detection, whereas this paper introduces
innovation in generating attacks.

Paper [12] of OWASP dedicated to Command Injection attacks provides a detailed description of how
attackers can exploit this vulnerability to execute unauthorized commands on a server. The goal is to educate
about attack methods and preventive measures that can help protect web applications from such security
threats. The page covers various attack techniques, examples, and recommended best practices for mitigation.

Penetration testing serves as an essential approach for uncovering vulnerabilities by mimicking real-life
cyberattacks to evaluate the robustness of systems and networks. Although primarily a defensive strategy,
some malicious actors exploit open-source tools to conduct pen tests for harmful purposes. The study of
Lackhov et al. [13] outlines the stages and methodology of penetration testing, offering guidance and a
demonstration of simulated attacks to assist IT administrators and cybersecurity experts in safeguarding
their networks.

Comput Mater Contin. 2025;82(3) 4413

Karlsen et al. [5] investigate the effectiveness of different LLMs (BERT, RoBERTa, DistilRoBERTa, GPT-
2, GPT-Neo) in analyzing log files to improve cybersecurity. The authors show that fine-tuned models,
particularly DistilRoBERTa, achieve exceptional results in log analysis, with an average F1-score of 0.998, and
introduce a new experimental framework, LLM4Sec, for optimizing and evaluating these models.

The subsequent paper from Yao et al. [14] explores the impact of LLMs such as ChatGPT and Bard on
security and privacy. Through a comprehensive literature review, the paper analyzes the positive aspects of
LLMs in the field of security, such as improved vulnerability detection in code and data privacy protection,
but also potential risks and threats, including the use of LLMs for attacks. The authors identify key areas
requiring further research, such as attacks on models and secure instruction tuning, and emphasize the need
for continued study of these issues.

Authors Latif et al. [6] investigate the application of fine-tuned ChatGPT (GPT-3.5) for automatic
grading of student-written responses in the field of science. Although GPT-3.5 has shown exceptional results
in natural language generation, the standard model is not precise enough for grading, as students use specific
language different from the material the model was trained on. This study fine-tuned GPT-3.5 using data
from specific tasks and expert grading. The results show that fine-tuned GPT-3.5 achieves significantly higher
accuracy in automatic grading compared to the BERT model, with an average accuracy increase of 9.1%.
This study confirms the effectiveness of fine-tuned GPT-3.5 in education for automatic grading and provides
public access to fine-tuned models.

Paper [15] explores the use of LLMs in automated penetration testing, demonstrating that LLMs can
efficiently perform specific tasks but struggle with maintaining overall context. It introduces PENTESTGPT,
a framework that uses LLMs to enhance the penetration testing process, and shows that PENTESTGPT sig-
nificantly outperforms previous models with a task success increase of 228.6% and demonstrates effectiveness
in real-world challenges.

In [16], the authors investigate the application of LLMs for code review automation using fine-tuning
and prompt engineering methods. By studying variations of GPT-3.5 and Magicoder, they found that fine-
tuning significantly improves accuracy compared to untrained approaches, while few-shot learning provides
substantial improvements when training data is not available. The conclusion is that fine-tuning provides the
best performance, while few-shot learning can be useful in situations with limited data.

The paper [17] examines the evolution of vulnerabilities in web applications through a detailed
comparative analysis of the OWASP Top 10 lists from 2017 and 2021. It addresses changes in threat
rankings, vulnerability descriptions, and identifies new trends, providing organizations, security experts, and
developers with insights into contemporary challenges and shifts in web application security.

The study [18] explores advancements in artificial intelligence since the introduction of the Turing test in
the 1950s, focusing on the development of language models from statistical to neural models, with particular
emphasis on transformers and large language models like ChatGPT. The paper provides an overview of
technological achievements and the contributions of LLMs in natural language processing, as well as the
transition to large multimodal models that integrate various data types such as text, images, and sound,
demonstrating advanced capabilities in understanding and generating content.

The paper [19] introduces an innovative approach to developing customized chatbots that focuses
on efficiency and functionality. By combining three key technologies: LangChain, RAG, and LLMs, along
with performance-enhancing techniques such as LoRA and QLoRA, the paper enables precise tailoring of
chatbots to specific user needs. This approach improves accuracy, user experience, and access to information,
allowing chatbots to efficiently process queries and provide useful responses.

4414 Comput Mater Contin. 2025;82(3)

In paper [20], authors present that LLMs have demonstrated significant proficiency in software testing.
This paper conducts evaluation of LLMs applied to error tracing, test case generation, and bug localization
across twelve open-source projects. The advantages and limitations, as well as recommendations associated
with utilizing LLMs for these tasks, are delineated. Furthermore, we delve into the phenomenon of hallu-
cination in LLMs, examining its impact on software testing processes and presenting solutions to mitigate
its effects. The findings of this work contribute to a deeper understanding of integrating LLMs into software
testing, providing insights that pave the way for enhanced effectiveness in the field.

Large language models (LLMs) have demonstrated versatility in various fields but require extensive
data and computational resources. Fine-tuning these models, particularly using techniques like LoRA and
its quantized version, QLoRA, enables adaptation to smaller datasets. In the paper [21], authors examine the
repeatability of fine-tuning four LLMs with QLoRA over seven trials under consistent hardware and software
settings, using two public datasets. Results reveal that fine-tuning with QLoRA is not stable, as performance
varies significantly across trials on holdout test sets, even when conducted on a single GPU.

In [22], PT simulates hacker attacks to identify vulnerabilities but often relies heavily on human exper-
tise, leading to high costs. AI-based approaches, such as reinforcement learning (RL) and deep reinforcement
learning (DRL), offer efficient alternatives but face challenges like large action space dimensions affecting
convergence. To address this, authors propose GAIL-PT, which leverages expert knowledge and a GAIL
network to guide RL/DRL policy generation more effectively. GAIL-PT uses expert knowledge bases from
pre-trained models, feeding them into its discriminator to optimize training and improve policy generation
via integrated losses and discounted rewards. Experiments on real and simulated networks show GAIL-PT
outperforms state-of-the-art methods like DeepExploit and Q-learning, proving its effectiveness and general
applicability to RL/DRL-based PT.

Authors in [23] review over 100 Scopus-indexed studies on ChatGPT, launched in November 2022,
which has shown promise across domains like healthcare, education, and creative writing, despite challenges
with biases and trust. They classify ChatGPT research, analyze common approaches, and explore its
applications in areas such as marketing, financial services, and NLP. Key issues, including biases and
trustworthiness, are discussed, along with potential solutions and future research directions. Leveraging
ChatGPT’s capabilities could drive advancements in conversational AI and its societal impact.

In paper [24], authors give reviews over 100 Scopus-indexed publications, identifying common
approaches and proposing a taxonomy of ChatGPT research. Since its launch in November 2022, ChatGPT
has gained widespread attention for achievements like passing exams and writing poetry, despite challenges
like biases and trust issues. Key applications and issues are explored, along with future research directions
and potential solutions. As the first comprehensive review, this work highlights opportunities for advancing
ChatGPT’s capabilities across diverse fields.

The study [16] evaluates LLM-based code review automation using two approaches: fine-tuning with
specific datasets and prompting with explicit instructions. The rapid development of LLMs has sparked
interest in automating code reviews. However, resource-intensive approaches limit accessibility for budget-
constrained organizations. Authors investigate 12 variations of two LLMs (GPT-3.5 and Magicoder) using
fine-tuning and inference techniques (zero-shot, few-shot, and persona learning) and compare them with
Guo et al.’s [25] approach and three existing tools (CodeReviewer, TufanoT5, D-ACT). Fine-tuned GPT-3.5
achieves up to 74.23% higher exact match (EM) than Guo et al., while few-shot learning without fine-
tuning outperforms zero-shot by up to 659.09%. Key recommendations include fine-tuning for optimal
performance and using few-shot learning without a persona for scenarios with limited data. These findings
provide practical guidance for deploying LLMs in code review automation.

Comput Mater Contin. 2025;82(3) 4415

None of the presented studies directly address the generation of new payloads for testing web application
vulnerabilities using LLMs, making this approach innovative and significant for the further development of
methodologies in this field. This research focuses on generating specific attacks using LLMs, representing an
advancement over studies that deal with the detection or classification of existing threats. This innovation
contributes to a better understanding of the potential of LLMs in security research and the enhancement of
web application penetration testing.

3 Theoretical Foundations

3.1 Large Language Model (LLM)
LLMs are advanced neural networks trained using vast datasets. The performance of these models

largely depends on their complexity, which is typically measured by the number of parameters. Modern LLMs
vary in parameter size from several billion, such as LLaMA with 7 billion parameters, to several trillion, such
as Wu Dao or GPT-4. Although larger models can exhibit unpredictable behaviors, there is ongoing debate
about whether further expansion of models is sustainable due to diminishing returns in scaling efficiency [7].

Training an entirely new LLM is often financially prohibitive for most researchers, but existing models
can be fine-tuned or further trained for specific purposes at a more manageable cost. This practice has led to
the concept of “base models” [7].

According to recent research, LLMs have undergone significant evolution compared to earlier language
models. Earlier models were statistical in nature and laid the groundwork for computational linguistics, while
transformers enabled substantial advancements in scalability [14]. Modern LLMs undergo extensive training
on massive datasets to understand and generate text that closely mimics human language. These models,
with hundreds of billions or even trillions of parameters, have made significant strides in NLP and find
applications in various fields, including risk assessment, programming, vulnerability detection, medical text
analysis, and search engine optimization [14].

Using LLMs for generating and optimizing prompts can significantly enhance the efficiency of pene-
tration testing by providing opportunities to develop better questions that penetration testers can ask. These
models represent a powerful tool with vast potential for improving the security of information systems, but
ethical use of LLMs is of fundamental importance [14].

3.1.1 BERT
The BERT model, introduced by Google in 2018, significantly advanced NLP using a bidirectional

transformer architecture. The BERT model processes text in both directions—left to right and right to left—
enabling it to detect and understand contextual relationships from both sides of a word in a sentence [14]. The
model was trained on a large corpus containing over 3.3 billion words, applying techniques such as masked
language modeling and next sentence prediction to further enhance text comprehension. BERT’s architecture
includes 12 layers of transformer encoders, each with 768 hidden states, and utilizes the WordPiece algorithm
for tokenization. This powerful framework allows BERT to be fine-tuned for specific domains, providing
significant embedding representations for various NLP tasks [5].

3.2 Penetration Testing with LLMs: Generating Payloads
Penetration testing, or “pen-testing,” is a critical process in assessing the security of information sys-

tems [8]. In the traditional penetration testing process, security professionals analyze the target system using
automated tools through five key phases: reconnaissance, scanning, vulnerability assessment, exploitation,

4416 Comput Mater Contin. 2025;82(3)

and post-exploitation. These phases allow for a comprehensive understanding of the system, identification
of vulnerabilities, and their exploitation to gain access to the system [15].

Using LLM for this purpose represents an innovative approach that enables the automation and
enhancement of this process. One of the most critical aspects of penetration testing is generating payloads,
i.e., malicious code or data used to exploit vulnerabilities in the target system.

LLM models, such as GPT-2 and BERT, provide the capability to generate sophisticated and customized
payloads through learning from large amounts of data. These models can be fine-tuned for specific domains,
thereby increasing their effectiveness in various security scenarios. This study focuses on testing web
applications, which allows for the use of LLM models to automate payload generation and enhance the
efficiency of penetration testing.

3.3 Tokenization
Tokenization is a crucial step in preparing textual data for working with LLMs. During the tokenization

process, text is broken down into smaller units known as tokens. These tokens can be whole words or parts of
words, depending on the specific architecture of the model. This process allows models to accurately analyze
and interpret textual information, enhancing learning and language generation efficiency. Tokenization thus
plays a key role in enabling models to handle complex linguistic structures and produce relevant results [19].

By correctly applying tokenization, textual data can be transformed into a format that allows LLMs
to learn more efficiently. This process contributes to the development of robust and efficient solutions for
generating advanced synthetic payloads. As researchers in this field, it is essential to continuously evaluate
the effectiveness of these methods and explore innovative approaches to improve data preparation, with the
goal of building advanced systems for application security testing.

3.4 Fine-Tuning
Fine-tuning is a method used to adapt pre-trained LLMs to specific tasks and applications. This

technique involves directly updating the model’s parameters based on smaller datasets, allowing for improved
performance on particular tasks. There are many approaches that focus on optimizing the efficiency of this
process, aiming to achieve a better balance between quality and speed [16]. This process enhances the model’s
ability to understand and execute complex textual instructions, significantly increasing the model’s flexibility
and enabling it to efficiently perform various tasks according to the specific requirements of users [18].
Although methods like context learning and prompt queries do not require parameter changes, fine-tuning
is often still preferred as it reduces additional burdens during the inference process and generally provides
better and more stable results [9].

In this study, fine-tuning was applied to the GPT-2 model due to the specific advantages it offers. Once
the GPT-2 model is pre-trained, it becomes a completely private resource, eliminating the need for API
access. This characteristic makes the GPT-2 model particularly suitable for applications that require greater
privacy and control over data, as it allows operation without relying on external services.

3.5 OWASP
The OWASP is a global non-profit organization focused on improving software application security.

OWASP provides organizations with the resources and tools needed to develop, purchase, and manage
secure software. Through a wide range of free and open resources, OWASP grants access to security
standards, testing and secure coding books, as well as code analysis [17]. The organization offers reports,
video materials, optional security tests, repositories, and support through local chapters around the world.

Comput Mater Contin. 2025;82(3) 4417

OWASP is also known for organizing major international conferences and advancing scientific research
related to cybersecurity. The goal of OWASP is to educate professionals, including developers, designers,
architects, and business leaders, about the risks arising from increasingly common security vulnerabilities in
web applications. It is particularly known for its “Top 10” list, which identifies the most dangerous security
threats in web applications and provides guidelines for mitigating them [10].

3.5.1 XSS
XSS is a well-known attack on web applications that occurs when malicious web code, usually in the

form of a script, is sent and executed through the victim’s browser using their web applications. This attack
allows attackers to filter personal information or steal cookies from users to hijack session identities. XSS
attacks can lead to the theft of confidential data or even take control of other computers. According to data,
XSS accounts for 40% of attack attempts on web applications, making it the most common form of attack in
this field [10].

3.5.2 SQL Injection
SQL injection is a serious security threat in web applications that use databases. This attack allows

attackers to insert malicious SQL code into an application, gaining unauthorized access to confidential data.
SQL injection attacks often occur when applications inadequately validate user inputs, allowing manipulation
of database queries. The most effective defense includes a combination of prevention methods, such as input
validation and parameterized queries, with detection techniques like intrusion detection systems. Despite
advanced protective methods, SQL injections remain one of the most common and dangerous forms of
cyber-attacks on web applications [11].

3.5.3 Command Injection
Command Injection is a type of attack where an attacker exploits a vulnerable web application to execute

arbitrary commands on the operating system. These attacks occur when the application passes unsafe data
provided by users, such as form inputs, cookies, or HTTP headers, to the system shell. The attacker sends
commands that are then executed with the privileges of the vulnerable application. The main cause of these
attacks is the lack of adequate input validation [12].

3.6 Performance Metrics
When fine-tuning a LLM for text generation, such as for creating new payloads for cybersecurity, it’s

important to use appropriate performance metrics to assess the model’s effectiveness. Two key metrics for
evaluating the model in this context are evaluation loss and evaluation perplexity. These metrics help assess
how well the model generates coherent and relevant text. Evaluation loss measures the model’s accuracy in
predicting the correct words, while perplexity provides insight into how “natural” the model is at generating
text, with lower values suggesting a better ability to produce coherent content.

3.6.1 Evaluation Loss
Evaluation loss measures how much the model’s predictions differ from the actual results in the

evaluation dataset. In the context of text generation models, this loss indicates how well the model predicts
the next word in a sequence based on the previous words. Mathematically, evaluation loss is measured using
the cross-entropy loss function, which is defined by the following Eq. (1):

4418 Comput Mater Contin. 2025;82(3)

Loss = − 1
N ∑

N
i=1 log p (yi ∣xi) , (1)

where
N—the number of words in the evaluation dataset.
p (xi ∣yi)—the probability assigned by the model to the correct word yi given input xi .

3.6.2 Evaluation Perplexity
Evaluation perplexity measures how “confused” the model is by the evaluation data; lower perplexity

indicates that the model is better at predicting words. Perplexity is an exponential function of evaluation
loss and provides a better understanding of the quality of the generated text. Mathematically, perplexity is
defined as (2):

Per pl exity = eLoss , (2)

where Loss—evaluation loss from the previous formula.
Perplexity is often used to compare performance between different models and configurations. Lower

perplexity indicates that the model better predicts the next words in a sequence and generally produces more
coherent texts.

4 Methodology
In this research, an LLM was used to generate synthetic payloads for attacks such as XSS, SQL Injection,

and Command Injection.

4.1 Dataset
The dataset used in this research was obtained from Kaggle [26] and contains a total of 199,797 records

in CSV format. This dataset covers three main types of attacks: SQL Injection, XSS, and Command Injection
(see Table 1). Each record includes a unique identifier, the text content of the payload, the type of attack,
and a binary label indicating whether the payload is an attack or normal. This dataset is carefully designed
to enable the analysis and recognition of different attacks, providing support for training machine models
and exploring patterns in payloads. By using this dataset, the research focuses on developing methods for
automatic detection and prevention of vulnerabilities in web applications, thereby enhancing the security
and efficiency of protective systems. In this study, the dataset was used for fine-tuning LLMs with the goal
of generating new payloads to enrich the penetration testing process.

Table 1: The dataset on attack types

Sentence SQL
Injection

XSS Command
Injection

Normal

find trunk -type f -exec curl –user user:pass... 0.0 0.0 1.0 0.0
zˆnˆ$hˆr3]21%g96$bu{)d1{y+o-x9x`()q),9u7v7l~a... 1.0 0.0 0.0 0.0

It is a story as old as man. The jealousy for... 0.0 0.0 0.0 1.0
I’m racking my brain, but I can’t seem to thin... 0.0 0.0 0.0 1.0
MJ7whfind -type f -printf “%s %p\n” ∣ sort -nr... 0.0 0.0 1.0 0.0

(Continued)

Comput Mater Contin. 2025;82(3) 4419

Table 1 (continued)

Sentence SQL
Injection

XSS Command
Injection

Normal

<multicol id=x tabindex=1 onbeforedeactivate=a... 0.0 1.0 0.0 0.0
-2992%’))) or 4493 = utl_inaddr.get_ho... 1.0 0.0 0.0 0.0

4.2 Fine-Tuning Process
Fig. 2 shows the comprehensive workflow for fine-tuning a pre-trained LLM to generate synthetic

payloads that can be used for penetration testing of web applications. The process involves several key stages,
each contributing to the development and implementation of a robust model capable of generating realistic
and effective attack vectors [27].

Figure 2: Workflow for fine-tuning a pre-trained language model

• Data Collection

This initial phase involves gathering relevant datasets containing examples of payloads for web applica-
tions, such as XSS, SQL Injection, and Command Injection. The dataset used in this research is detailed in
the previous section.

• Data Processing

After collection, the raw data is carefully processed to prepare it for model training. This step involves
several key processes: cleaning the data to remove faulty or unnecessary information, tokenizing the text

4420 Comput Mater Contin. 2025;82(3)

to convert it into sequences of tokens, and formatting the data into formats that the model can efficiently
use. Data processing ensures high-quality input, enabling precise model training. All normal payloads were
removed from the dataset as this work focuses on generating attacks rather than detecting them. The data
was split into 80% for training the model and 20% for testing, and placed into two .txt files—one for training
and one for testing. Data formatting includes examples such as: SQLInjection -> ‘ OR ‘1’=‘1’;

• Pre-trained LLM

In this process, a pre-trained language model, such as GPT-2 in this case, is used. This model was initially
trained on a large corpus of general text. This pre-trained model provides a solid foundation with a broad
understanding of linguistic patterns and structures.

• Fine-Tuning

In this critical phase of the research, the pre-trained GPT-2 model was further fine-tuned on a specific
dataset related to web application payloads. This fine-tuning process allows the model to adjust its parameters
to more accurately understand and generate text that mimics the structure and content of the given payload
examples. The training was conducted on a Huawei Atlas 3010 server, utilizing 36 Intel(R) Xeon(R) Gold 6240
CPU cores at 2.60 GHz, with a total of 125.31 GiB of memory. During the training, 15% of the RAM and 50% of
the CPU resources were used. Efficient management of computational resources enabled optimized training
with a batch size of 2 and a total of 1 epoch, ensuring an optimal balance between learning depth and model
generalization. The training lasted 43 h, with logs recorded every 200 steps, while models were saved every
10,000 steps, with a maximum of two models saved to manage storage efficiently. This systematic approach to
fine-tuning allowed the GPT-2 model to generate realistic and precise payloads, leading to improved accuracy
and reliability in penetration testing.

• Model Evaluation

After fine-tuning, the model undergoes evaluation to assess its performance. Metrics such as Evaluation
Loss and Evaluation Perplexity are crucial for assessing the LLM’s effectiveness in generating realistic and
diverse payloads. The evaluation ensures that the model meets the desired standards before implementation.
The obtained evaluation results are presented in the chapter on results and interpretations.

• Model Deployment

The fine-tuned model is implemented on a Raspberry Pi 5 platform, which serves as the server, making
it available for generating synthetic payloads in real time. This phase involves integrating the model into a
web application framework, such as Flask, which enables interaction with the model through a user interface.

• Flask-Based Web Application

The application was developed using the Flask framework, which provides a flexible and simple way to
implement web applications. Flask serves as the backend for integrating with the fine-tuned GPT-2 model,
allowing users to generate synthetic payloads through an intuitive interface. The payload generation function
utilizes the GPT-2 model by first loading the model and the corresponding tokenizer, which converts the
input prompt into a format the model can process. The function then generates multiple text sequences
representing potential payloads, using sampling methods with top-k and top-p parameters to ensure diversity
and coherence in the results. The generated sequences are decoded and returned as a list of possible malicious
texts, enabling users to obtain appropriate payloads in real time.

Comput Mater Contin. 2025;82(3) 4421

Python code
Loading the model and tokenizer
model_path = “./fine_tuned_gpt2”
model = GPT2LMHeadModel.from_pretrained(model_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_path)

Payload generation function
def generate_payload(prompt, model, tokenizer, max_length=60,
num_return_sequences=5):

inputs = tokenizer(prompt, return_tensors=“pt”)
outputs = model.generate(

inputs[“input_ids”],
max_length=max_length,
num_return_sequences=num_return_sequences,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,

)
return [tokenizer.decode(output, skip_special_tokens=True) for

output in outputs]

The frontend shown in Fig. 3 is designed to be user-friendly, making the process of generating malicious
payloads simple and efficient. The user interface is directly connected to the model, allowing users to input
the desired attack type (XSS, SQL Injection, Command Injection) and receive the corresponding payloads in
real time. This functionality enables penetration testers and cybersecurity experts to effectively use the tool
in their work without needing deep technical knowledge about the model or its training.

Figure 3: Display of the malicious payload generation application

• User Access Web Application
End users, including penetration testers and cybersecurity experts, access this web application. Fig. 3

shows a simple and intuitive application that allows the generation of malicious payloads for three specific
types of attacks: XSS, SQL Injection, and Command Injection. The application uses the GPT-2 model, which
has been fine-tuned on a dataset specific to these attacks. This dataset includes various examples of malicious
payloads, enabling the model to create new, potentially dangerous payloads based on user-input parameters.

Following the steps in the methodology shown in Fig. 2, the fine-tuned language model can effectively
generate synthetic payloads that mimic real attacks. This process not only enhances the accuracy and

4422 Comput Mater Contin. 2025;82(3)

reliability of the model but also provides a practical tool for cybersecurity experts to improve web application
security. This methodology and its systematic implementation highlight the significance and potential
of advanced language models in the field of cybersecurity, demonstrating their usefulness in generating
high-quality synthetic data for penetration testing.

5 Results and Interpretation

5.1 Training Results
During the model fine-tuning process, performance was evaluated using two key metrics: Evaluation

Loss and Evaluation Perplexity, calculated based on the mathematical expressions shown in Eqs. (1) and (2).
Evaluation Loss, shown in Fig. 4, is calculated using the formula in Eq. (1), which defines the loss

function as the negative logarithmic probability of the model’s output relative to the actual data. This metric
measures the accuracy of the model’s predictions, with lower values indicating better performance. In this
experiment, Evaluation Loss ranges from 1.42 to 1.58, suggesting that the model achieved a stable and reliable
level of accuracy. The lack of significant variations in loss indicates stable model performance during training,
which is crucial for avoiding overfitting and ensuring good generalization to new data. Although current
results are satisfactory, further hyperparameter optimization could potentially reduce the loss value, thereby
improving the model’s performance.

Figure 4: Evaluation loss

Perplexity, calculated according to Eq. (2), represents the logarithmic measure of the average number
of possible outputs the model considers when generating sequential data. As shown in Fig. 5, Evaluation
Perplexity ranges from 47 to 53, indicating stable performance with room for improvement. Lower perplexity
values, closer to the lower end of this range, suggest that the model has a better ability to predict sequences,
which is crucial for tasks such as language modeling and text generation. The stability of perplexity within
these bounds can be considered acceptable for many applications, but further model optimization could
potentially reduce these values, thereby enhancing the accuracy and reliability of the model’s predictions.

The evaluation results provide a basis for further analysis and optimization to achieve even better model
performance, including considering different training strategies, modifications to the model architecture, or
hyperparameter optimization to achieve significant improvements in Evaluation Loss and Perplexity metrics.

Comput Mater Contin. 2025;82(3) 4423

Figure 5: Perplexity

5.2 Generating Payloads Using the Web Application
In the current iteration of the application shown in Fig. 6, the model generated five XSS payloads. Each

of these payloads contains characteristic XSS elements such as <script>, <svg>, and onload events, which are
known for their ability to trigger the execution of malicious code on the client side (in the web browser).

Figure 6: Generated payloads

Analysis of Generated Payloads

• Payload 1: This payload combines CSS and HTML elements with JavaScript code executed via the
onfocusin event. The onfocusin event is a JavaScript event that triggers when an element, such as a
text input field, receives focus, meaning when a user clicks on it or selects it in some other way. The
payload structure demonstrates how attacks can be sophisticated by using diverse technologies like CSS
to deceive systems. The use of the alert(1) function here is symbolic and used solely for educational and

4424 Comput Mater Contin. 2025;82(3)

ethical purposes. In a real attack scenario, this payload could be expanded to send stolen data, such as
cookies, to a malicious server.

• Payload 2: The payload uses the onload event within an SVG tag to execute JavaScript code. The use of
alert(1) serves as a harmless proof of concept, while a real attack could use this vector to perform much
more harmful actions, such as redirecting user data to a hacker’s server.

• Payload 3: This payload targets document.cookie through a script within the searchString parameter,
demonstrating the potential for cookie theft. However, in this instance, alert(document.cookie) is used
instead of potentially more dangerous code that could send these cookies to a malicious server. This
approach is applied to maintain ethics and safety during testing.

• Payload 4: The payload is minimalist, focusing on the direct execution of a script. The use of the alert
function here is deliberately chosen to avoid causing actual harm, although in an attack scenario, such a
payload could be used for much more destructive actions.

• Payload 5: A simple payload that uses SVG to execute the alert function. This payload demonstrates how
code execution can be achieved with straightforward techniques, while in real conditions, this payload
could be exploited for unethical purposes.

The use of the alert function in the generated payloads is designed to demonstrate the concept of XSS
attacks in an ethical manner, without actually compromising security. In practice, these payloads could
be modified to cause significant harm, such as stealing cookies or redirecting sensitive information to
malicious servers.

5.3 Testing of Payload Vectors on the Vulnerable DVWA Application
DVWA is a web application specifically designed for educational purposes and testing vulnerabilities

in a controlled environment. One of its key advantages is the ability to set different security levels (Low,
Medium, High), allowing users to test various payloads in simulated scenarios that mimic real-world security
challenges [28].

In this study, DVWA was chosen over OWASP Juice Shop as the research platform because it enables
dynamic testing of generic payloads without the limitations imposed by predefined challenges. While
OWASP Juice Shop is an extremely useful educational tool, it relies on specific CTF scenarios, which may
complicate the validation of universal payloads. This tool expects precisely defined payloads, which are
intentionally set in line with particular challenges, whereas DVWA offers flexibility and freedom in testing a
wide range of vulnerabilities, making it ideal for simulating real-world attacks and assessing the effectiveness
of various security mechanisms.

Table 2 presents the payloads that were tested on the DVWA application. Each payload is marked with
the corresponding security levels (Low, Medium, High) and indicators showing whether the payload passes
through the application at each of these levels. This table provides an overview of the effectiveness of various
payloads under simulated conditions of different security configurations.

Comput Mater Contin. 2025;82(3) 4425

Table 2: Results of payload testing on DVWA application

Payload ID Payload Low Medium High Description
XSS 1 <style>:target {color: red;} </style><meta

id=x style=“transition:color 1s”
ontransitionend=alert(1)></meta><x><sub
id=x tabindex=1 onfocusin=alert(1)></sub>

� × × CSS transitions and events like
onfocusin for an XSS attack.

XSS 2 </image> XSS ->
g=“%22%3E%3C/script%3Ealert(‘XSS’)%3C/

script%3E%3C!–&submit=Search XSS –>
<div draggable=true contenteditable>drag

me</div> <dt ondrop=alert(1)>)

� × × XSS using the onload and ondrop events.

XSS 3 page=0&searchString=<script>alert
(document.cookie)</script>

� × × Cookie theft using the document.cookie.

XSS 4 id=“%22%3E%3C/script%3Ealert(‘XSS’)%3C/
script%3E

� � × Encoded XSS payload to bypass basic
security mechanisms.

XSS 5 <svg onload=alert(1)>
</svg>

� � × SVG payload with onload for XSS.

SQL Injection 1 ‘UNION SELECT null,username, password
FROM users –

� � × Authentication bypass and displaying
user data from the database.

SQL Injection 2 ‘ OR ‘1’=‘1 � × × Classic SQL Injection payload for
authentication bypass.

SQL Injection 3 ‘; DROP TABLE users; – � � × SQL injection that attempts to delete the
users table from the database.

SQL Injection 4 ‘ AND (SELECT COUNT(*) FROM
information_schema.tables) > 0 –

� � × Checking the number of tables in the
database using SQL injection.

Command Injection 1 ; ls -la � � × Command injection attempting to
display files in the current directory.

Command Injection 2 ; cat /etc/passwd � � × Attempts to execute a command to
display user data.

Command Injection 3 ; touch /tmp/exploit; chmod 777
/tmp/exploit

� � � Creates a file with all permissions and
allows the attacker to manipulate it.

In this chapter, various payload vectors were tested on the DVWA application to assess their effectiveness
under different security levels (Low, Medium, High). The results showed varying success rates of payloads
across different security levels, further emphasizing the importance of implementing appropriate security
measures to protect against common attacks such as XSS, SQL injections, and Command Injection attacks.

By analyzing the results of the testing within the context of the DVWA application, we gained insights
into the performance and vulnerabilities of the application under simulated conditions. This testing provided
crucial information on how different security settings affect the ability of payloads to bypass the application’s
defenses. The success of several payloads at lower security levels confirms the need for more robust security
measures to ensure adequate protection against the most common and dangerous types of attacks.

5.4 Inference Time and System Resource Usage for Web Application Payload Generation
This section presents the results of measuring the time required to generate synthetic attacks on web

applications using a fine-tuned model on a Raspberry Pi 5 device. Measuring inference time, or the time it
takes for the model to generate a payload, as well as analyzing system resource usage (CPU and RAM), is
crucial for assessing the model’s performance, especially in resource-constrained environments.

Testing was conducted on a Raspberry Pi 5 device, a hardware-constrained platform, to evaluate the
speed of attack generation after completing the fine-tuning process. The total time required to generate a
single synthetic attack was 10.5231 s. These results confirm that the model is optimized for rapid payload
generation, even in environments with modest hardware capacities, making its practical application feasible.

4426 Comput Mater Contin. 2025;82(3)

The Fig. 7 illustrates system usage during the payload generation process. The top chart shows CPU
usage, where all four cores of the Raspberry Pi 5 processor were engaged at different stages of the process. A
significant increase in CPU load is observed, with occasional spikes to nearly maximum capacity, indicating
intensive processing during attack generation.

Figure 7: System resource usage during payload generation on Raspberry Pi 5

The bottom chart in the Fig. 7 displays RAM usage, which remained stable throughout the process,
with an occupancy of 46.4% of the total 8.3 GB capacity. This data indicates that while the model is CPU-
intensive, it does not require a large amount of memory for its operations, further emphasizing its efficiency
in environments with limited available memory.

These results provide valuable insights into how the fine-tuned model performs in real-time on a
resource-limited platform such as the Raspberry Pi 5, further confirming the practicality and efficiency of
this approach in the context of advanced cybersecurity for web applications.

6 Ethical Aspects of Fine-Tuning LLMs
The use of LLMs to automate payload generation in penetration testing offers significant benefits for

advancing cybersecurity but also carries potential ethical risks, particularly the misuse of such technologies
for malicious purposes. To mitigate these risks, this study strictly complies with the General Data Pro-
tection Regulation (GDPR) of the European Union, which mandates data privacy and minimization [29].
Furthermore, the research adheres to the OECD Principles on Artificial Intelligence, emphasizing human
autonomy, transparency, and accountability [30], as well as the IEEE Ethically Aligned Design standard,
which prioritizes human well-being and responsible use of technology [31]. The model was fine-tuned on a
specific dataset with strict limitations on its universal applicability, further reducing the risk of misuse.

Comput Mater Contin. 2025;82(3) 4427

Technical measures include authentication and authorization to restrict access to authorized users,
activity monitoring through logging systems to ensure accountability, and encryption protocols to pro-
tect data during payload generation. Transparency in how payloads are generated is embedded into the
application, enabling better user understanding and fostering trust. All tests were conducted under strictly
controlled laboratory.

In addition to technical safeguards, this study proposes an ethical framework encompassing legal
compliance with global standards such as GDPR and NIST, transparent application of the model for
educational and research purposes, and the development of advanced security protocols for automatic misuse
detection [32]. This approach addresses challenges identified in the literature, such as the risk of security
compromise during model fine-tuning [9], and contributes to the development of practical solutions to
enhance trust in AI technologies [14].

In conclusion, this ethical framework not only addresses potential misuse but also lays the groundwork
for the responsible application of AI technologies in cybersecurity, contributing to global efforts to improve
digital security.

7 Conclusion
This research represents a pioneering effort in the field of cybersecurity, with a specific focus on the

application of LLMs for the automated generation of malicious payloads in penetration testing processes.
The developed methodology and tool enable more efficient and precise detection of vulnerabilities in web
applications, significantly advancing existing industry practices. Using fine-tuning techniques on a specific
dataset, the GPT-2 model was successfully trained to generate advanced payloads for three key types of
attacks: XSS, SQL Injection and Command Injection.

Expanding the dataset to include a broader range of attacks could enhance the practical application
of this approach and allow the model to generate new attack vectors, such as those listed by OWASP.
Through fine-tuning the model on extended datasets, future research could further improve the versatility
and efficiency of this model.

Experimental results confirm that this approach not only reduces the time required for test preparation
but also significantly improves the coverage and accuracy of vulnerability detection compared to traditional
methods. A web application, implemented on the Raspberry Pi platform and integrating this model, provides
penetration testers with a powerful tool for quickly and effectively creating attack scenarios. This tool enables
testers to use a private model without relying on external APIs, which is crucial in terms of data privacy
and security.

Data privacy and security remain key priorities in this research. The use of the GPT-2 model, which
allows local implementation without reliance on external APIs, demonstrates how the study successfully
addresses data protection challenges, contributing to greater reliability and control during payload genera-
tion.

Although more advanced models, such as GPT-3.5 and GPT-4, are available, their exclusive API-based
access and limited privacy did not align with the objectives of this research. Successfully implementing GPT-
2 on Raspberry Pi 5, a computationally constrained platform, is a significant achievement, as running such
a large model with billions of parameters on a small device represents a challenge. The ability to generate
payloads in just a few seconds highlights the model’s potential for real-time applications, while on more
powerful servers, generation could be nearly instantaneous, enabling rapid and efficient security assessments
of web applications.

4428 Comput Mater Contin. 2025;82(3)

The generated payloads were further tested on the DVWA to validate their effectiveness using metrics
such as Evaluation Loss and Perplexity. This testing framework was chosen over OWASP Juice Shop due to
the latter’s design for CTF competitions, where some valid payloads might not execute in that specific context.

While GPT-2 demonstrates excellent results in generating synthetic attacks, relying on a single model
introduces certain limitations, particularly in terms of the diversity and robustness of the generated payloads.
This approach may face challenges in recognizing new and more sophisticated attacks, as it lacks the breadth
of models with varying architectures. Limited diversity in the model could lead to scenarios where the
generated payloads fail to address all types of attacks that may occur in real-world conditions.

Future research should address these limitations by expanding the ensemble with multiple models and
diverse architectures. Including models such as T5 and RoBERTa, as well as generative models with different
techniques, could significantly improve the robustness and precision of the generated attacks and expand the
range of attacks that can be simulated.

This study contributes to the academic community by providing a new methodology that can serve as
a foundation for future research in the fields of cybersecurity and artificial intelligence. Plans for the future
include further improving the model through the application of the latest NLP techniques and expanding
experimental scenarios to various types of applications and systems. Additionally, opportunities to integrate
this approach into existing automated testing tools will be explored, further increasing its practical value and
industrial applications.

Acknowledgement: The authors would like to thank the anonymous reviewers for their helpful comments to improve
the technical quality of the paper.

Funding Statement: This study was supported by the Ministry of Science, Technological Development and Innovation
of the Republic of Serbia, and these results are parts of Grant No. 451-03-66/2024-03/200132 with the University of
Kragujevac–Faculty of Technical Sciences Čačak.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design:
Stefan Ćirković, Vladimir Mladenović, Olga Ristić; methodology: Siniša Tomić, Dalibor Drljača; data collection: Stefan
Ćirković, Siniša Tomić, Dalibor Drljača; analysis and interpretation of results: Stefan Ćirković, Vladimir Mladenović,
Olga Ristić; draft manuscript preparation: Stefan Ćirković, Vladimir Mladenović, Olga Ristić. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The corresponding author can provide data supporting the study’s conclusions
upon an adequate request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Abbreviations
LLM Large Language Model
XSS Cross-Site Scripting
GPT Generative Pre-trained Transformers
NLP Natural Language Processing
OWASP Open Web Application Security Project
BERT Bidirectional Encoder Representations from Transformers
OECD Organization for Economic Co-operation and Development
PT Penetration Testing
GDPR General Data Protection Regulation

Comput Mater Contin. 2025;82(3) 4429

RAG Retrieval Augmented Generation
GAIL-PT Generative Adversarial Imitation Learning-based Penetration Testing
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DVWA Damn Vulnerable Web Application
CTF Capture The Flag

References
1. Hance J, Milbrath J, Ross N, Straub J. Distributed attack deployment capability for modern automated penetration

testing. Computers. 2022;11(3):33. doi:10.3390/computers11030033.
2. Altulaihan EA, Alismail A, Frikha M. A survey on web application penetration testing. Electronics. 2023

Mar;12(5):1229. doi:10.3390/electronics12051229.
3. Kaur G, Bharathiraja N, Singh KD, Veeramanickam MRM, Rodriguez CR, Pradeepa K. Emerging trends in

cybersecurity challenges with reference to pen testing tools in Society 5.0. In: Artificial intelligence and Society
5.0. USA: Chapman and Hall/CRC; 2023 Dec. p. 196–212. doi:10.1201/9781003397052-18.

4. Auricchio N, Cappuccio A, Caturano F, Perrone G, Romano SP. An automated approach to web offensive security.
Comp Comm. 2022 Aug;195(6):248–61. doi:10.1016/j.comcom.2022.08.018.

5. Karlsen E, Luo X, Zincir-Heywood N, Heywood M. Benchmarking large language models for log analysis, security,
and interpretation. J Netw Syst Manag. 2024 Jul;32(3):1–10. doi:10.1007/s10922-024-09831-x.

6. Latif E, Zhai X. Fine-tuning ChatGPT for automatic scoring. Comp Educ: Artif Intell. 2024 Jun;8(2):1–10. doi:10.
1016/j.caeai.2024.100210.

7. Happe A, Cito J. Getting pwn’d by AI: penetration testing with large language models. In: Proceedings of 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE); 2023 Dec 3–9; San Francisco; CA, USA. New York: ACM; 2023. p. 1–10. doi:10.1145/3611643.3613083.

8. Singh N, Meherhomji V, Chandavarkar BR. Automated versus manual approach of web application penetration
testing. In: Proceedings of 2020 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT); Kharagpur, India. New York: IEEE; 2020. p. 1–6. doi:10.1109/icccnt49239.2020.9225385.

9. Qi X, Zeng Y, Xie T, Chen P-Y, Jia R, Mittal P, et al. Fine-tuning aligned language models compromises safety, even
when users do not intend to!. In: Proceedings of International Conference on Learning Representations (ICLR);
2024 May 7–11; Vienna, Austria. doi:10.48550/arXiv.2310.03693.

10. Wibowo RM, Sulaksono A. Web vulnerability through cross site scripting (XSS) detection with OWASP security
shepherd. Indonesian J Inf Syst. 2021 Feb;3(2):1–10. doi:10.24002/ijis.v3i2.4192.

11. Abdullayev V, Chauhan AS. SQL injection attack: quick view. Mesopotamian J Cyb Sec. 2023 Feb;1(1):1–10. doi:10.
58496/mjcs/2023/006.

12. Zhong W. Command injection. OWASP [Online]. [cited 2024 Aug13]. Available from: https://owasp.org/www-
community/attacks/Command_Injection.

13. Lachkov P, Tawalbeh L, Bhatt S. Vulnerability assessment for applications security through penetration simulation
and testing. J Web Eng. 2022 Oct;21(7):2187–208. doi:10.13052/jwe1540-9589.2178.

14. Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y. A survey on large language model (LLM) security and privacy: the
good, the bad, and the ugly. High-Conf Comp. 2024 Jun;12(2):1–10. doi:10.1016/j.hcc.2024.100211.

15. Deng G, Liu Y, Mayoral-Vilches V, Liu P, Li Y, Xu Y, et al. PentestGPT: an LLM-empowered automatic penetration
testing tool. arXiv:2308.06782. 2024 Aug.

16. Pornprasit C, Tantithamthavorn C. Fine-tuning and prompt engineering for large language models-based code
review automation. Infor Softw Tech. 2024 Nov;79(11):1–10. doi:10.1016/j.infsof.2024.107523.

17. Upadhyay D, Ware NR. Evolving trends in web application vulnerabilities: a comparative study of OWASP Top 10
2017 and OWASP Top 10 2021. Int J Eng Tech Manag Sci. 2023 Nov–Dec;7(6):262. doi:10.46647/ijetms.2023.v07i06.
038.

https://doi.org/10.3390/computers11030033
https://doi.org/10.3390/electronics12051229
https://doi.org/10.1201/9781003397052-18
https://doi.org/10.1016/j.comcom.2022.08.018
https://doi.org/10.1007/s10922-024-09831-x
https://doi.org/10.1016/j.caeai.2024.100210
https://doi.org/10.1016/j.caeai.2024.100210
https://doi.org/10.1145/3611643.3613083
https://doi.org/10.1109/icccnt49239.2020.9225385
https://doi.org/10.48550/arXiv.2310.03693
https://doi.org/10.24002/ijis.v3i2.4192
https://doi.org/10.58496/mjcs/2023/006
https://doi.org/10.58496/mjcs/2023/006
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://doi.org/10.13052/jwe1540-9589.2178
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1016/j.infsof.2024.107523
https://doi.org/10.46647/ijetms.2023.v07i06.038
https://doi.org/10.46647/ijetms.2023.v07i06.038

4430 Comput Mater Contin. 2025;82(3)

18. Chen Z, Xu L, Zheng H, Chen L, Tolba A, Zhao L, et al. Evolution and prospects of foundation models: from
large language models to large multimodal models. Comput Mater Contin. 2024;74(1):1–20. doi:10.32604/cmc.
2024.052618.

19. Vidivelli S, Ramachandran M, Dharunbalaji A. Efficiency-driven custom chatbot development: unleashing
langchain, RAG, and performance-optimized LLM fusion. Comput Mater Contin. 2024;74(2):1245–61. doi:10.
32604/cmc.2024.054360.

20. Li Y, Liu P, Wang H, Chu J, Wong EW. Evaluating large language models for software testing. Comp Stand
Interfaces. 2024;2024(2):103942. doi:10.1016/j.csi.2024.103942.

21. Alahmari SS, Hall LO, Mouton PR, Goldgof DB. Repeatability of fine-tuning large language models illustrated
using QLoRA. IEEE Access. 2024;12(140):153221–31. doi:10.1109/ACCESS.2024.3470850.

22. Chen J, Hu S, Zheng H, Xing C, Zhang G. GAIL-PT: an Intelligent penetration testing framework with generative
adversarial imitation learning. Comput Secur. 2023;126(4):103055. doi:10.1016/j.cose.2022.103055.

23. Sohail SS, Farhat F, Himeur Y, Nadeem M, Madsen D, Singh Y, et al. Decoding ChatGPT: a taxonomy of existing
research, current challenges, and possible future directions. J King Saud Univ–Comput Inf Sci. 2023;35(8):101675.
doi:10.1016/j.jksuci.2023.101675.

24. Sohail SS, Farhat F, Himeur Y, Nadeem M, Madsen DØ, Singh Y, et al. The future of GPT: a taxonomy of existing
ChatGPT research, current challenges, and possible future directions. SSRN Electron J. 2023. doi:10.2139/ssrn.
4413921.

25. Guo Q, Cao J, Xie X, Liu S, Li X, Chen B, et al. Exploring the potential of ChatGPT in automated code refinement:
an empirical study. 2023. doi:10.48550/arXiv.2309.08221.

26. Trinity A. Dataset. Kaggle [Online]. [cited 2024 Jul 10]. Available from: https://www.kaggle.com/code/alextrinity/
sqli-xss-detection/.

27. Zada I, Alatawi MN, Saqlain SM, Alshahrani A, Alshamran A, Imran K, et al. Fine-tuning cyber security defenses:
evaluating supervised machine learning classifiers for windows malware detection. Comput Mater Contin. 2024
Aug;80(2):2917–39. doi:10.32604/cmc.2024.052835.

28. Watson D. Damn vulnerable web application (DVWA) [Online]. [cited 2024 Nov 19]. Available from: https://
github.com/digininja/DVWA.

29. Union E. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement of such
data (General Data Protection Regulation). Offic J Euro Union. 2016 May;L119:1–88.

30. Organisation for Economic Co-operation. OECD principles on artificial intelligence; 2019 May [Cited 2025 Jan
02]. Available from: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449.

31. The IEEE Global Initiative on Ethics of Autonomous, Systems I. Ethically aligned design: a vision for prioritizing
human well-being with autonomous and intelligent systems, first edition. IEEE; 2019 [cited 2025 Jan 02]. Available
from: https://standards.ieee.org/industry-connections/ec/autonomous-systems.html.

32. NIST. Framework for improving critical infrastructure cybersecurity, Version 1.1 [Online]. U.S. Department of
Commerce; 2018. [Cited 2025 Jan 02]. Available from: https://www.nist.gov/cyberframework.

https://doi.org/10.32604/cmc.2024.052618
https://doi.org/10.32604/cmc.2024.052618
https://doi.org/10.32604/cmc.2024.054360
https://doi.org/10.32604/cmc.2024.054360
https://doi.org/10.1016/j.csi.2024.103942
https://doi.org/10.1109/ACCESS.2024.3470850
https://doi.org/10.1016/j.cose.2022.103055
https://doi.org/10.1016/j.jksuci.2023.101675
https://doi.org/10.2139/ssrn.4413921
https://doi.org/10.2139/ssrn.4413921
https://doi.org/10.48550/arXiv.2309.08221
https://www.kaggle.com/code/alextrinity/sqli-xss-detection/
https://www.kaggle.com/code/alextrinity/sqli-xss-detection/
https://doi.org/10.32604/cmc.2024.052835
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://standards.ieee.org/industry-connections/ec/autonomous-systems.html
https://www.nist.gov/cyberframework

	Utilizing Fine-Tuning of Large Language Models for Generating Synthetic Payloads: Enhancing Web Application Cybersecurity through Innovative Penetration Testing Techniques
	1 Introduction
	2 Literature Review and Comparison of Related Research
	3 Theoretical Foundations
	4 Methodology
	5 Results and Interpretation
	6 Ethical Aspects of Fine-Tuning LLMs
	7 Conclusion
	References

