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ABSTRACT: Recently, a multitude of techniques that fuse deep learning with Retinex theory have been utilized
in the field of low-light image enhancement, yielding remarkable outcomes. Due to the intricate nature of imaging
scenarios, including fluctuating noise levels and unpredictable environmental elements, these techniques do not fully
resolve these challenges. We introduce an innovative strategy that builds upon Retinex theory and integrates a novel
deep network architecture, merging the Convolutional Block Attention Module (CBAM) with the Transformer. Our
model is capable of detecting more prominent features across both channel and spatial domains. We have conducted
extensive experiments across several datasets, namely LOLv1, LOLv2-real, and LOLv2-sync. The results show that our
approach surpasses other methods when evaluated against critical metrics such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). Moreover, we have visually assessed images enhanced by various techniques
and utilized visual metrics like LPIPS for comparison, and the experimental data clearly demonstrate that our approach
excels visually over other methods as well.
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1 Introduction
Low-light image enhancement involves the technique of boosting the clarity and visual quality of

photographs captured under insufficient lighting conditions. It encompasses various tasks, including noise
reduction, color correction, and detail enhancement. Many algorithms have been proposed in these topics
by researchers.

These methods can be categorized into three types, namely traditional methods, CNN-based methods,
and transformer-based methods, but each type has its drawbacks. Traditional methods like histogram
equalization, gamma correction, contrast stretching, and Contrast Limited Adaptive Histogram Equalization
(CLAHE), aim to adjust in the statistical variables of the image to obtain a more reasonably distributed
picture. However, these methods lack an understanding of the real physical world image generation process,
which significantly limits their effectiveness. The introduction of the Retinex theory has modeled the process
by which real-world observers obtain images well. Therefore, a lot of subsequent research has been proposed
based on this theory, including algorithms such as SSR, MSR. The Retinex theory suggests that an image’s
appearance is shaped by the combination of the light that illuminates the scene and the way objects within
the scene reflect that light. A multitude of methods under this theoretical framework tend to focus on
illumination estimation and filtering transformations. However, the real world often contains various types
of noise and random factors, making the image generation process more complex than the theory assumes
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and limiting the performance of these methods. Besides, these types of methods are often analytical methods
and do not use labeled data like modern machine learning methods.

As deep learning technology has advanced and been applied across numerous domains in recent years,
it has also been harnessed for the purpose of enhancing images captured in low-light conditions. A plethora
of deep learning-based methods have been developed for this specific application. The researchers design
different network structures for these tasks and then learn the corresponding knowledge from labeled data
through offline supervised learning. Then, the well-learned model is used to process new low-quality images.
The typical network structure is Convolutional Neural Networks (CNNs). This method usually uses several
CNNs to learn aspects such as color, denoising, and illumination independently and then joint learning in
sequence to obtain the final model. However, CNN often focuses on the local spatial properties of images
and cannot handle non-local similarities and long-range dependency issues very well.

Therefore, some scholars have now proposed network structures based on transformers to overcome
the issues related to CNNs. The current state-of-the-art (SOTA) method, RetinexFormer, is one of such
approaches. It proposes a one-stage joint training method called ORF (One-stage Retinex-based Framework)
and introduces IGT (Illumination-Guided Transformer) structure to deal with long-range dependencies
and non-local similarities, while also integrating the IGT into the ORF. It shows that this method currently
achieves the best results in several dataset.

However, due to the extremely complex conditions of real-world imaging, coupled with inherent
challenges in the Transformer architecture, such as issues related to positional encoding, we argue that incor-
porating additional attention modules of other dimensions prior to the Transformer processing can enforce
the model focus on important features. Therefore, we propose a method that integrates CBAM with the
Transformer. Prior to Transformer processing, the CBAM applies dual-dimensional attention, subsequently
delivering the refined outputs to the Transformer modules. This enhanced attention mechanism enables the
Transformer to receive more informative inputs, leading to improved performance. Our contributions can
be summarized as follows:

1. We introduce a novel method that integrates CBAM with the Transformer for low-light image enhance-
ment. This approach effectively prioritizes significant features prior to processing by the Transformer,
leading to improved performance.

2. Through extensive experiments on widely used and publicly available benchmark datasets, we have
shown that our method achieves significant improvements over existing methods in key perfor-
mance metrics.

This paper is organized as follows:
The first part is a brief introduction, which provides basic cognition, our motivation, and the highlights

of our work.
The second part discusses related work, including traditional image enhancement methods, CNN-based

image enhancement methods, transformer-based image enhancement methods, and attention mechanism.
The third part mainly describes our approach. We start with an introduction to the background

knowledge, then present our network architecture, and finally provide a detailed explanation of the
CBAM module.

The fourth part focuses on our experimental results. In this part, we introduce our dataset and evaluation
metrics, followed by the details of our experiments, including specific parameter settings. Lastly, we compare
our experimental results with other methods.

The fifth part summarizes the paper.
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2 Related Work
Low-light image enhancement aims to enhance the clarity and visual quality of images captured

in environments with insufficient lighting. Subtasks such as color correction, noise reduction and detail
enhancement have been extensively explored, leading to the development of various algorithms. These
approaches can generally be divided into three main categories, each with inherent limitations.

2.1 Traditional Methods
Traditional methods, such as histogram equalization, gamma correction, contrast stretching, CLAHE,

adjust the statistical variables of the image to obtain a more reasonably distributed picture. Yet, these methods
lack an understanding of the real physical world image generation process, which significantly limits the
effectiveness of these methods.

Retinex theory models the real physical world image generation process and decomposes an image
into two components, the illumination component and the reflectance component. A multitude of methods
under this theoretical framework tend to focus on illumination estimation. For example, Jobson proposed
the MSR and MSRCR algorithms, aiming to improve image enhancement effects, especially in dealing with
illumination changes and color constancy. The MSRCR algorithm further addresses the potential color
distortion issues of the MSR algorithm by incorporating a color restoration factor to regulate the color
equilibrium within the image. However, the real world often contains various types of noise and random
factors, making the image generation process more complex than the theory assumes.

2.2 CNN-Based Methods
As the deep learning revolution led by Hinton, CNN models have been applied to the domain of image

enhancement for low-light conditions.
Chen et al. [1] improved low-light image quality with a fully convolutional network. Lv et al. [2]

introduced MBLLEN for multi-level feature capture. Ignatov et al. [3] used a residual CNN for image
enhancement. Lore et al. [4] designed a deep autoencoder for signal feature extraction. Gharbi et al. [5]
presented a bilateral grid-inspired network. Cai et al. [6] trained a CNN for SICE. Guo et al. [7] created
Zero-DCE, a model for dynamic range adjustment. Moran et al. [8] used deep learning for filter-based
image enhancement. Xu et al. [9] proposed to reinforce image edges through structural modeling using U-
Net, while employing a structure-guided enhancement module to improve the performance. Wu et al. [10]
proposed a novel framework by utilizing semantic information to improve the performance.

CNN models also been applied combines with Reitnex theory. Wei et al. [11] introduced a novel
approach called Retinex-Net, which incorporates Decom-Net and Enhance-Net. Wang et al. [12] introduced
GLADNet for calculating and adjusting global illumination. Zhang et al. [13] developed KinD network for
efficient light adjustments. Wang et al. [14] crafted a neural network to boost the quality of underexposed
images by leveraging intermediate lighting cues.

Some researchers have also proposed many unsupervised learning and semi-supervised methods based
on the structure of CNN. Jiang et al. [15] developed EnlightenGAN, an unsupervised GAN for image
enhancement without the need for paired training data. Yang et al. [16] used a semi-supervised DRBN for
the task, refining representations through adversarial learning with unpaired data. Liu et al. [17] introduced
RUAS, while Wu et al. [18] presented URetinex-Net to deal with this task. Fu et al. [19] created PairLIE,
an unsupervised method for training the model from low-light image pairs. Wang et al. [20] designed a
reversible network for aligning the distribution of exposed images with a Gaussian model. Ye et al. [21]
enhanced low-light images with EMNet, incorporating external memory into their architecture. Fei et al. [22]
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applied the Generative Diffusion method as a computational prior, which improve the performance of
this task.

Some researchers have proposed the fast and robust algorithms for this task. Ma et al. [23] designed
SCI, a framework for quickly brightening low-light images with adaptability and robustness. Zeng et al. [24]
enhanced photos rapidly and reliably using custom 3D LUTs.

However, CNN based methods show the limitations in non-local similarities and long-range depen-
dency.

2.3 Transformer-Based Methods
Transformer is proposed by Ashish et al. to solve machine translation task, and widely be used in various

areas. Some researchers also used this method for low-light image enhancement.
Chen et al. [25] proposed the IPT model, a pre-trained model using multi-head training with contrastive

learning for diverse image processing tasks. Xu et al. [26] presented a method using Signal-to-Noise
Ratio-aware transformers for dynamic pixel enhancement. Cui et al. [27] proposed IAT, a network for
reconstructing RGB images from low-light or extreme exposure conditions. Wang et al. [28] introduced
Uformer for image restoration with a hierarchical structure. Fu et al. [29] created LEGAN, an unsupervised
GAN-based network trained on unpaired images. Zamir et al. [30] enhanced a transformer model with key
design improvements for long-range pixel interaction capture.

Wang et al. [31] introduced LLFormer for low-light image enhancement. Dang et al. [32] presented
the WaveNet, which excels in various parameters and enhances feature representation through a wave-like
feature representation. Wang et al. [33] proposed FourLLIE, a two-stage Fourier-transform-based network
that uses transformer technology. Wang et al. [34] suggested a method that combines the effectiveness
of gamma correction with deep learning networks’ robust modeling capabilities, allowing the gamma
correction factor to be adaptively learned through a progressive perception of illumination deviations. Liu
et al. [35] proposed the brightness-aware attention mechanisms for this task.

Yi et al. [36] proposed physically interpretable generative diffusion model along with a transformer
network architecture. Dang et al. [37] introduced PPformer, which has cross-attention mechanisms in pixel-
wise and patch-wise. Cai et al. [38] proposed an efficient model that estimates illumination to brighten
low-light images, followed by corruption restoration for enhancement.

2.4 Attention Mechanism
The attention mechanism mimics a cognitive process in human visual perception. It allows individuals

to swiftly survey an entire scene to identify areas of interest. Subsequently, these areas are allocated more
cognitive resources to extract details, while irrelevant information is filtered out. Xu et al. [39] proposed and
apply this mechanism in CV areas, and a lot of methods follow this work and get good result in CV tasks.
Vaswani et al. [40] proposed the self-attention in NLP tasks and achieving groundbreaking progress. Zhou
et al. [41] proposed the DIN methods and apply the attention mechanism in Advertising and get significant
revenue improvement for big company. More closely to our work, Woo et al. [42] proposed CBAM, which
uses dual dimensional attention method and gets better result.

3 Method

3.1 Preliminary
Retinex theory is a theory that explains human color constancy and the mechanism for computing light-

ness values from an image. It suggests that the human visual system perceives color relatively independently
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of the illumination conditions. The theory is based on the idea that the color sensation comes from the ratio
of light reflected from different surfaces, rather than the absolute amount of light.

In the context of image processing, we can separate an image into illumination components and
reflectance components based on Retinex theory. The foundational model posits that any specific image is
the result of pixel-wise multiplication between two images, the illumination image (L) and the reflectance
image (R). Once obtaining the illumination image, the reflectance image, which contains the intrinsic details
of the image, can be derived. Retinex algorithms are used in various tasks such as low-light enhancement,
dynamic range compression, and single image dehazing. They have the advantage of being relatively easy
to implement.

However, these methods also have shortcomings, such as color distortion, local halo effects, and loss
of local details. Color distortion refers to the alteration or degradation of the true colors of an image or
visual representation. One of the primary issues with Retinex algorithms is the introduction of color artifacts,
particularly around edges and highlights. This is due to the method’s inability to accurately separate the
reflectance and illumination components of an image, especially when there are rapid changes in color
or brightness.

Local halo effects refer to an artifact that can occur in image processing, particularly in techniques such
as the Retinex algorithm. These effects manifest as unwanted bright or dark rings or fringes that appear
around objects or edges in an image. They are called “halos” because they resemble the halos seen around
bright objects in low-contrast images. The local halo effect typically happens when an image enhancement
algorithm attempts to adjust the brightness or contrast of an image. The algorithm may not accurately
preserve the local contrast around edges, leading to a phenomenon where the edges appear to have a glowing
or halo-like appearance. This is often caused by the blurring or smoothing operation that is applied to the
image during processing, which can bleed lightness or darkness from the edges into the surrounding areas,
creating a halo. For example, when using a Gaussian blur to estimate the image’s illumination component,
the sharp transitions at edges may be smoothed too much, causing the halo effect. This effect can be visually
distracting and is generally considered undesirable because it does not represent the true detail of the
original image.

Another drawback of the Retinex theory is that it can lead to local details loss. There may be several
reasons. The first reason is that the Gaussian filter or other smoothing operations used in Retinex algorithms
to estimate the illumination component can cause over-smoothing, which may result in the blurring of edges
and a loss of fine details. The second reason is that noise is often a problem in low-light images. While
attempting to enhance illumination, Retinex algorithms may inadvertently amplify noise, which can obscure
fine details in the image. The third reason is the theory’s assumptions about the separation of illumination
and reflectance might not hold in all scenarios, particularly in scenes with complex lighting or where the
light sources are not well understood. It may result in suboptimal decomposition, which consequently lead
to a loss of detail.

According to the Retinex theory and corruptions in the real world, we can decompose a low-light image
I into two parts, a reflectance image R and an illumination map L,

I = R ⋅ L, (1)

In which I is a low-light image, assumed to have a height of H and a width of W, with three RGB
channels, thus I is a tensor of size 3*H*W. R is the reflected image, is also a tensor of size 3*H*W. L
is the illumination prior, which is a matrix of size H*W. The multiplication in the formula is element-
wise multiplication.
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However, the real world does experience corruption, which may be due to high ISO and long exposure
settings in dark scenes, or the brightening process that may amplify noise and artifacts. Therefore, we need
to revise this formula. We introduce a perturbation term for both R and L to represent this corruption, as

I = (R + R′) ⋅ (L + L′) = R ⋅ L + R ⋅ L′ + R′ ⋅ (L + L′). (2)

In which R′ is the perturbation of the reflectance image R, and R′ is also a tensor of size 3*H*W. L′ is the
illumination perturbation, which is a matrix of size H*W.

Following the conclusions discussed in [14,43,44], it is assumed that R is a well-exposed image. So, it
can multiply a light-up map L′′ to light up I and which L′′ * L = 1 as

I ⋅ L′′ = R + R ⋅ (L′ ⋅ L′′) + (R′ ⋅ (L + L′)) ⋅ L′′. (3)

In which R ⋅ (L′ ⋅ L′′) can indicates the exposure imbalance and color distortion, (R′ ⋅ (L + L′)) ⋅ L′′
represents the noise. We can simplify it as

Il u = I ⋅ L′′ = R + C , (4)

where C is the overall corruption term, and Il u is a tensor of size 3*H*W which represent the lit-up image.
So, we can formulate the Framework as

(Il u , Fl u , ) = f (I, Lp) Ien = R (Il u , Fl u) , (5)

where Lp is illumination prior matrix of size H*W and can get calculates the mean values along the channel
dimension of the origin image I, as

Lp = meanchanne l(I), (6)

where f represents the function of an illumination estimator which takes I and Lp as inputs. It outputs the
light-up feature Fl u which is a tensor of size 3*H*W and lit-up image Il u . In our work, we will simulate
this function using a simple neural network as Fig. 1. The detailed network design will be introduced in the
next section.

Figure 1: This shows the entire design framework. The entire data pipeline consists of two parts, illumination estimation
and corruption restorer. We represent the latter with a collaborative network formed by convolutional networks, CBAM,
and Illumination-Guided Attention Transformer (IGAT)
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R is a function denotes the corruption restorer and it takes the Fl u and Il u as inputs. It outputs the final
enhanced image Ien . In our work, we will simulate this function using a series of complex network structures
such as CNNs, IGAB, and CBAM. The detailed network design will be introduced in the next section.

L1 loss function is our loss function to guide the learning of the entire model parameters. Assuming I
and I′ are the ground truth image and the predicted image, and Ip and I′p are the pixels of the ground truth
and predicted images, and n is the total number of pixels, respectively, then the L1 loss can be expressed as

L1 = ∑
n
p ∣Ip − I′p ∣. (7)

We employ the traditional backpropagation algorithm to propagate the gradients backward, to update
the corresponding parameters. After several rounds of iteration, we obtain our final model. This is the process
of loss-guided model training.

3.2 Network Architecture
The input of the whole network is original image and illumination prior. Illumination prior refers to

the assumptions or knowledge about the lighting conditions of a scene that can be used to improve the
performance. This can include the understanding that certain areas of an image should be brighter or that the
lighting is coming from a particular direction. By using these priors, algorithms can make educated guesses
about how to adjust the image to compensate for poor lighting conditions and enhance the overall image
quality. In our algorithm, we will use illumination prior as one of the input data sources.

As Fig. 1 shows, the entire neural network can be divided into two sub-parts, illumination estimation
and corruption restorer.

Firstly, we concatenate the image I and illumination prior Lp by channel wise, this operation aims to
enhance the model’s expressive power. Then we incorporate the obtained results into a preceding neural
network. In this network, we use a convolutional neural network with a 1 × 1 kernel to fuse the results for the
first time. Then we use a depth-wise separable conv 5 × 5 to model the interactions of regions with different
lighting conditions and generate the Flu. This operation aims to use the well-exposed regions as semantic
contextual information for the under-exposed regions. The depth-wise separable convolution breaks down
the standard convolution into two simpler operations. The first part is depth-wise convolution. Each input
channel is convolved with a separate kernel, producing outputs for each input channel individually. If the
input has N channels, then N separate filters are applied, one for each input channel. The second part is point-
wise convolution. After the depth-wise step, a 1 × 1 convolution is used to combine the outputs from the
depth-wise step. This step mixes the information from the depth-wise pass to create the final output channels.
The point-wise convolution can significantly reduce the number of parameters because it uses small filters
that slide across the input feature map. Then we use a conv 1 × 1 to aggregate the Flu to produce the light-up
map L. Then we combine the light-up map with origin image by element wise multiplication. This nonlinear
operation primarily serves to partially enhance features. Finally, we get the lit-up image, and the obtained
results are used as inputs for the second part.

For the second part, we employ a deep network with a complex structure to simulate the function R.
The basic units of this network structure are the convolutional layer, CBAM, and IGAB.

The convolutional layer primarily extracts locally similar features. This layer applies a set of learnable
filters to the input data. These filters slide across the input image, computing the dot product between the
image pixels and the filter weights, which results in a new set of features or feature maps. Meanwhile, we also
use different strides in different convolutional layers. Stride refers to the step size the filter (or kernel) takes
as it moves across the input image. The stride determines how the convolution operation progresses and has
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a significant impact on the output dimensions of the feature map. In this work, we often set the stride value
equals 1 or 2.

CBAM focuses on enhancing attention in dual dimensions. CBAM sequentially generates channel
attention map and spatial attention map from the input data of the module. More details will be introduced
in the next part.

IGAB is a transformer-inclusive network structure that deeply processes feature structures. IGAB first
performs layer normalization on the input data I and then puts the output into the IGMSA module. The
IGMSA module refers to Illumination-Guided Multi-head Self-Attention, which adds an illumination guide
item to the original Multi-head Self-Attention to guide the entire process. The obtained results are then
added to the original image. The operation is similar to the mechanism of a Residual Network (ResNet). Skip
connections allow gradients to flow directly through layers, alleviating the vanishing gradient problem. We
do the layer normalization again for the result II. Layer normalization operates by normalizing the inputs
to a layer such that for each input vector, the mean and variance are adjusted to 0 and 1, respectively. This
is done independently for each input vector, making it particularly useful for sequences of varying lengths.
Then we pass the data through a Feed-Forward Network (FFN) layer. Finally, we add the result to II and get
the result. Fig. 2 depicts the entire workflow of IGAB.

Figure 2: The whole process of IGAB

We allow the input features to sequentially pass through these three modules multiple times. First, we
process the data with a convolutional layer which the kernel is 3 × 3 and the stride is 1. After that, we will use
CBAM to process the data. Then we use IGAB dealing with the data. We repeat the process several times.
After the operations as shown in Fig. 1, we obtain the feature map Ire. It is then added to Ilu to get the final
enhanced feature map.

3.3 CBAM
CBAM successively generates a one-dimensional channel attention map followed by a two-dimensional

spatial attention map, both derived from an input feature map. Channel attention module determines which
channels (or feature maps) are more important. It utilizes pooling techniques, including global average
pooling and global max pooling, to generate two separate channel descriptors, which are combined and
passed through a couple of convolutions and a sigmoid layer to produce channel attention maps. After the
channel attention has been applied, the spatial attention module focuses on which spatial locations are more
informative. It uses the input that has already been refined by the channel attention and applies a convolution
to generate spatial attention maps. Figs. 3 and 4 show the whole process of CBAM.

CBAM’s Channel Attention Module starts by collecting spatial details from the input feature map
using average and max pooling. These operations yield two separate spatial context descriptors that are
subsequently refined by a shared network to form a channel attention map. This network is generally made
up of a multi-layer perceptron (MLP) featuring a hidden layer. The MLP outputs for each descriptor are
combined through an element-wise summation to generate the channel attention map. Finally, a sigmoid
function is applied to the channel attention map to scale the values.
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Figure 3: Channel attention

Figure 4: Spatial attention

CBAM’s Spatial Attention Module is designed to concentrate on the critical spatial regions within the
input feature map. The process involves subjecting the input feature map to both global average pooling and
global max pooling, which results in two unique feature maps, with each map highlighting a different aspect
of spatial information. Then these two feature maps are then concatenated to form a single feature map
that combines both the average and max pooled features. The concatenated feature map is passed through a
convolutional layer which helps to refine the spatial attention. The output of the convolutional layer is then
passed through a sigmoid activation function to generate the final spatial attention map. This map highlights
areas of the feature map which are considered important.

4 Experiment

4.1 Datasets and Metrics
Our approach is assessed using datasets from the Low-Light (LOL) benchmark, which consists of two

versions: v1 and v2. Version 2 of LOL is further segmented into synthetic and real parts. The allocation for
training and testing within these datasets is as follows: for LOL-v1, it’s 485 to 15, for the real subset of LOL-v2,
it’s 689 to 100 and for the synthetic subset of LOL-v2, it’s 900 to 100.

We use PSNR and SSIM as the primary evaluation metrics to assess our algorithm. PSNR is a widely
used metric in the field of image and video processing to quantify the quality of a reconstructed image or
video compared to its original version. It measures the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its representation. In simpler terms, PSNR is a
way to numerically express the similarity between the compressed image and the original image. A higher
PSNR value indicates a higher quality image, with less noise and artifacts.

SSIM is a metric used in the field of image processing to measure the quality of an image, particularly
in terms of its structural degradation. It compares the structural information between a reference image
(original) and a distorted image (processed or compressed) to determine the level of similarity. SSIM is
designed to reflect the perceived change in structural information or the loss of correlation between the
structures in the original and the distorted image. It considers three components: luminance, contrast,
and structure. The SSIM index is calculated based on these components and ranges from −1 to 1, where 1
indicates perfect similarity.



5214 Comput Mater Contin. 2025;82(3)

4.2 Implementation Details
The model is trained by the PyTorch framework and use an adaptive momentum estimation (Adam)

optimizer. We train our model for 1.5× 105 iterations. We set the learning rate as 2× 10−4 initially. After several
rounds of training, we reduced the learning rate to 1 × 10−6 using a cosine annealing scheme. We configured
the batch size as 8 and randomly crop the images into patches of size 384 × 384 as training inputs and use
random rotation and flipping for data augmentation. We conduct experiments on one RTX 3090 GPU.

4.3 Comparison with State-of-the-Art Methods
First, we will conduct a quantitative experimental analysis. Since paper provides a detailed comparison

of experimental metrics for dozens of current popular methods, we will excerpt its experimental data and
adopt its conclusion that Retinexformer is the SOTA method across several datasets. Then, we will focus on
comparing the results of Retinexformer with our results. We combined the results from the paper with our
experimental results to obtain Table 1.

Table 1: Comparisons on the LOL dataset excerpt from the Retinexformer Paper

Methods LOL v1 LOL v2-real LOL v2-syn

PSNR SSIM PSNR SSIM PSNR SSIM
3DLUT [24] 14.35 0.445 17.59 0.721 18.04 0.8

DeepUPE [14] 14.38 0.446 13.27 0.452 15.08 0.623
DeepLPF [8] 15.28 0.473 14.1 0.48 16.02 0.587

IPT [25] 16.27 0.504 19.8 0.813 18.3 0.811
UFormer [28] 16.36 0.771 18.82 0.771 19.66 0.871

RetinexNet [11] 16.77 0.56 15.47 0.567 17.13 0.798
Sparse [45] 17.2 0.64 20.06 0.816 22.05 0.905

EnGAN [15] 17.48 0.65 18.23 0.617 16.57 0.734
RUAS [17] 18.23 0.72 18.37 0.723 16.55 0.652
FIDE [46] 18.27 0.665 16.85 0.678 15.2 0.612

DRBN [47] 20.13 0.83 20.29 0.831 23.22 0.927
KinD [13] 20.86 0.79 14.74 0.641 13.29 0.578

Restormer [30] 22.43 0.823 19.94 0.827 21.41 0.83
MIRNet [48] 24.14 0.83 20.02 0.82 21.94 0.876
SNR-Net [26] 24.61 0.842 21.48 0.849 24.14 0.928
Retinexformer 25.16 0.845 22.8 0.84 25.67 0.93
Our method 25.92 0.87 24.34 0.86 27.81 0.96

The results demonstrate that our approach surpasses other techniques within this dataset.
In the second step, we will compare the visual effects of these methods. We processed the images from

the LOL dataset using our algorithm as well as several popular algorithms, obtaining visualization results
for each.

Due to space constraints, we selected the results of four images as representatives for display. We pre-
sented the original images along with the results processed using 3D-LUT, RetFormer, RUAS, Retinexformer,
and our method. The results are shown in Fig. 5. Specifically, the first row contains the original images, the
second row shows the images processed with 3D-LUT, the third row displays the images obtained using
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RetFormer, the fourth row presents the images derived from RUAS, the fifth row illustrates the images
acquired with Retinexformer, and the sixth row features the images resulting from our algorithm, and the
seventh row is the ground truth.

Figure 5: These images are the visualization results obtained by processing the LOL dataset with different algorithms:
The top row presents the original images, the second row shows the data processed using 3D-LUT, the third row shows
the data processed using RetFormer, the fourth row shows the data obtained using RUAS, the fifth row shows the data
obtained using Retinexformer, and the sixth row shows the data obtained using the algorithm proposed in this paper,
and the seventh row is the ground truth
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From the visualization results in Fig. 5, we can see that the original images are low-light images which
lack many details. Previous methods such as 3D-LUT, RetFormer, RUAS, and Retinexformer either have
color distortion issues, noise problems, or are not well-optimized in detail processing. Our method has been
successful in addressing color distortion and is capable of significantly improving the visibility in poorly lit
and low-contrast areas, efficiently eliminating noise without the introduction of speckles and artifacts, and
consistently maintaining color integrity.

To clearly demonstrate the advantage of our method in detail processing, we have locally enlarged the
results of different algorithms processing the same image from the LOL dataset. Fig. 6 shows the visualization
results of 3DLT, Retinexformer, our method, and Ground Truth. Visually, we can see that our results are
closer to the Ground Truth.

Figure 6: This figure presents the outcomes of enlarging the processing of the same image in the LOL dataset using
different algorithms. The first column uses the 3DLT algorithm, the second column uses Retinexformer, the third
column uses our method, and the fourth column is the ground truth

We attribute the superior visual effects of our method to two main reasons. The first part is that it’s easy
to obtain global information through the Transformer due to the Transformer’s self-attention mechanism,
which enables it to capture long-range dependencies within images. The second part is that it achieves a dual
refinement of the input features because of CBAM combination of channel attention and spatial attention.
This design allows the model to simultaneously focus on which channels and spatial locations are significant,
thereby enhancing the model’s representational power and decision-making accuracy. When combined, the
two complement each other, enhancing the overall performance of the model.

To more quantitatively evaluate visual effects, we also test the LPIPS of these images. LPIPS, which stands
for Learned Perceptual Image Patch Similarity, is a method for measuring the similarity between images. It
uses deep learning models to assess the perceptual differences between two images. The core idea of LPIPS is
to employ pre-trained deep networks to extract image features and then calculate the distance between these
features to evaluate the perceptual similarity between images.

In this experiment, we select AlexNet as the pre-trained deep network and use image samples from the
LOL dataset processed by 3D-LUT, RetFormer, RUAS, Retinexformer, and our own algorithm. We calculate
the LPIPS values for these image samples compared to the ground truth images. The experimental results
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are shown in Table 2. From the table, we can see that our method’s LPIPS is significantly lower than that of
other methods, indicating a clear advantage on this metric.

Table 2: LPIPS between images processed by different algorithms and the ground truth image

Methods 3D-LUT RetFormer RUAS Retinexformer Our algorithm
LPIPS 0.1566 0.0171 0.1544 0.0232 0.0096

We conduct a break-down ablation on the LOL dataset to study the effect of each component towards
higher performance, as shown in Table 3. IE is derived by removing CBAM and IGAB. When we respectively
apply CBAM and IGAB, IE achieves improvements significantly. This evidence suggests the effectiveness of
our methods.

Table 3: Ablation studies on LOL v1

IE CBAM IGAB PSNR SSIM
✓ 22.15 0.74
✓ ✓ 24.38 0.82
✓ ✓ ✓ 25.92 0.87

5 Conclusion
In this paper, we introduce an approach that combines the Convolutional Block Attention Module

(CBAM) with the Transformer framework to improve low-light image quality. It is based on Retinex
theory. It consists of illumination estimation and a corruption restorer. The corruption is represented with a
collaborative network formed by convolutional networks, CBAM, and illumination-Guided Attention Block
(IGAB). CBAM only slightly increases the number of parameters, and the entire training process remains
highly efficient. Experimental results demonstrate that this novel method outperforms previous approaches.

Although this algorithm has achieved better performance compared to other existing methods, two
aspects deserve further attention. On one hand, it is designed based on a simple improvement of Retinex
theory, but this improvement is not comprehensive and may limit the capabilities of our algorithm. On the
other hand, it is obtained through supervised learning with limited datasets and advanced algorithms to
produce a usable model, and the amount of training data will limit the final performance of our algorithm.
Therefore, whether there will be more comprehensive principles in the future and whether semi-supervised
methods can be combined for sample expansion to achieve better experimental results are both directions
worth exploring in subsequent research.
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