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ABSTRACT: The analysis of Android malware shows that this threat is constantly increasing and is a real threat
to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the
continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools
are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming
network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which
contains 20,000 instances of network traffic across five distinct malware categories: a. Trojan, b. Adware, c. Ransomware,
d. Spyware, e. Worm. These network traffic features are then converted to image formats for deep learning, which
is applied in a CNN framework, including the VGG16 pre-trained model. In addition, our approach yielded high
performance, yielding an accuracy of 0.92, accuracy of 99.1%, precision of 98.2%, recall of 99.5%, and F1 score of 98.7%.
Subsequent improvements to the classification model through changes within the VGG19 framework improved the
classification rate to 99.25%. Through the results obtained, it is clear that CNNs are a very effective way to classify
Android malware, providing greater accuracy than conventional techniques. The success of this approach also shows
the applicability of deep learning in mobile security along with the direction for the future advancement of the real-
time detection system and other deeper learning techniques to counter the increasing number of threats emerging in
the future.

KEYWORDS: Android malware detection; deep convolutional neural network (DCNN); image processing; CIC-
AndMal2017 dataset; exploratory data analysis; VGG16 model

1 Introduction
Malware poses significant threats to individuals, businesses, and the global economy as technology

evolves rapidly [1,2]. Due to the versatility of new malware, traditional signature-based detection methods are
inadequate. Thus, exploring innovative detection techniques is essential. Deep convolutional neural networks
(CNNs) have shown promise in enhancing malware detection systems through image processing [3].

Malware, defined as malicious software, exploits computer vulnerabilities and can lead to data theft
and process disruptions [4]. With over ten billion attacks annually, improving detection and prevention is
urgent, as evidenced by rising malware incidents from 2022 to 2023 [4,5]. CNNs are commonly used to
analyze visual features of malware [6,7]. Ensemble methods like voting and stacking have proven effective
for detecting Android malware [8,9], achieving up to 90.4% performance scores. Advanced frameworks,
such as “FalDroid,” have reached 94% accuracy in Android malware detection [10]. New tools like Marvin
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utilize machine learning alongside static and dynamic analysis, achieving a high accuracy of 98.24% on large
datasets [11]. Techniques combining ontology and reverse engineering with SPARQL have also demonstrated
effectiveness in early malware identification [12]. The VGG16 model, with its 16 layers, excels in categorizing
Android malware using images, preventing overfitting and enhancing model generalization [13,14].

Fig. 1 illustrates the proposed malware detection architecture, which employs pre-trained DCNN
model, followed by updated VGG16 layers and image fine-tuning techniques for improved performance in
recognizing intricate malware patterns.

Figure 1: A deep convolutional neural network and image processing framework for malware detection

The contributions of the research paper are as follows:

1. Novel Malware Detection Method: Introduces a new approach using image processing, Deep Convo-
lutional Neural Networks (DCNN), and updated VGG16, moving beyond traditional signature-based
and behavior-based methods.

2. Enhanced Classification Accuracy: Demonstrates that using images of malware samples improves
differentiation between malware types.

3. Impact on Cybersecurity: The results strengthen existing anti-malware solutions, improving network
protection against advanced threats.

4. Foundation for Future Research: The study paves the way for further innovation in malware detec-
tion techniques.

The following is a breakdown of this study’s structure: Section 2 will present the literature review,
and Section 3 will describe the datasets. Section 4 will describe the methodologies, also referred to as
the approach. Section 5 will involve the experiment, while Section 6 will analyze the experiment’s results.
Finally, Section 7 will conclude the entire study.
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2 Literature Review
This section examines recent research on the classification of Android malware using deep learning,

analyzing methodologies, datasets, results, and limitations to evaluate whether our proposed method
addresses existing challenges.

Current research in image-based malware classification has focused on using deep learning approaches
to improve accuracy. Duraibi et al. [7] proposed a hybrid approach combining the Snake Optimization
algorithm with a deep CNN for feature extraction via ShuffleNet, achieving an accuracy of 98.42% on the
Malimg dataset. Still, they noted potential issues with model overfitting and dataset sensitivity. Similarly,
Mercaldo et al. [8] explored deep convolutional GANs for distinguishing real from fake malware images,
reporting an F-measure close to 0.8, but identified misclassification of some generated images as a significant
flaw. Liu et al. [9] addressed challenges related to poor algorithm generalization and imbalanced datasets by
employing a CNN architecture alongside data visualization, augmentation, and balanced sampling, achieving
an accuracy of 91.48%. Ashawa et al. [10] extended the Transformer-based CNN approach, achieving 99.62%
accuracy with grayscale malware images, although they acknowledged computational drawbacks in pixel
intensity classification. Kumar et al. [11] utilized an autoencoder with CNNs, attaining 98.50% accuracy,
demonstrating the efficiency of image-based malware detection across various conditions. Djenna et al. [12]
examined malware detection using the CIC-AndMal2017 dataset, achieving 99% accuracy with CNNs, but
their reliance on a single dataset raises concerns about generalization and overfitting. Xie et al. [13] introduced
the GA-StackingMD method, achieving accuracies of 98.66% and 98.43% on two datasets, though their
analysis was based on small datasets, which may introduce bias. Arslan et al. [14] also used the CIC-
AndMal2017 dataset, achieving 90.4% accuracy with ensemble learning techniques, but the limited number
of malicious samples raises questions about real-world applicability. Fan et al. [15] focused on the family
classification of Android malware, achieving a classification rate of approximately 94.2%, but their reliance on
a specific dataset limits generalization. Lashkari et al. [16] proposed a static and dynamic analysis approach
using VirusTotal datasets, achieving accuracy between 93.0% and 95.7% with CNN and LSTM networks. Still,
their dynamic analysis method raises concerns regarding its effectiveness against diverse malware variants.
Tsfaty et al. [17] investigated malicious source code detection using dynamic analysis, achieving 98.24%
accuracy, but noted limitations in identifying complex malware behaviors. Qiang et al. [18] classified malware
based on control flow using deep neural networks, achieving 92% precision and 91.4% F-measure, but their
ontology-based classification may struggle with newer malware variants. Lindorfer et al. [19] achieved 85%
precision and 88% recall using static and dynamic analysis, but feature selection biases limited their findings.
Pavithra et al. [20] conducted a comparative analysis using the Adware-A dataset, finding that Random Forest
outperformed Naive Bayes and SVM with an accuracy of 99.47%. Still, their focus on adware raises questions
about applicability to other malware types. Lastly, Yadav et al. [21] discussed malware incidents in IoT and
Android systems, achieving 99% accuracy using decision trees, KNN, and SVM, but noted that some types
of malicious programs remain underexplored.

The reviewed studies demonstrate significant advancements in deep learning and machine learn-
ing for Android malware classification. However, common limitations include small and non-diverse
datasets, potential overfitting, and selection bias. Many current approaches rely on specific datasets that
do not adequately reflect emerging Android malware, limiting their real-world applicability. Our proposed
method addresses these challenges by utilizing a more extensive and diverse dataset, optimizing deep
convolutional networks for image-based data, and implementing regularization techniques to mitigate
overfitting. This comprehensive approach positions our contribution as a robust and flexible solution to
the evolving challenges of Android malware classification, paving the way for further research in malware
detection technologies.
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Table 1 lists prior papers cited with datasets, methods, limitations, and results. This table serves as a
concise reference for understanding the landscape of Android malware classification studies, highlighting
their contributions and shortcomings.

Table 1: Overview of prior research

Ref. Topic Dataset Methodology Limitations Results
[7] Enhanced image-based

malware classification
using snake optimization

algorithm with CNN

Malimg
malware
dataset

ShuffleNet for
feature

extraction and
Snake

Optimization
for tuning

Sensitivity to dataset
diversity and model

overfitting

98.42%
accuracy

[8] Deep convolutional GANs
in image-based android

malware detection

Real-world
Android
malware

Deep
convolutional

GANs and
supervised

learning

Misclassification of
generated images

F-measure ≈
0.8

[9] Efficient and generalized
image-based CNN

algorithm for multi-class
malware detection

Four
open-source

datasets

CNN with data
visualization,

augmentation,
and balanced

sampling

Generalization issues,
dataset imbalance

Over 90%
accuracy

[10] Enhanced image-based
malware classification

using transformer-based
CNNs

6137 benign
and 9861

malicious files

ResNet-152 and
ViT

architectures
for grayscale

image
classification

Challenges in classifying
pixel intensities

96.62%
accuracy

[11] Image-based malware
detection based on CNN
with autoencoder in IIoT

MalImg dataset Grayscale
images, CNNs,
and a two-level

autoencoder

May require optimization
for diverse IIoT
environments

98.50%
accuracy, 0.006
s response time

[12] AI-based malware
detection, analysis, and

mitigation

CIC-
AndMal2017

Machine
learning, CNN,

DNN, RF,
Decision Trees

Limited to single dataset,
not covering diverse

malware types

99% accuracy

[13] GA-StackingMD: Android
malware detection based

on genetic algorithm
optimized stacking

CIC-
AndMal2017

and
CIC-MalDroid

2020

GA-
StackingMD,
SVM, KNN,

CatBoost, RF,
Decision Tree,

LGBM

Limited datasets may lack
generalizability

98.66%, 98.43%
accuracy

[14] Identify type of android
malware with ensemble

model

CIC-AndMal-
2017

dataset

Ensemble
learning,

random forest,
extra trees,
XGBoost

Small sample size of
malicious apps

90.4% accuracy

[15] Android malware familial
classification via frequent

subgraph analysis

FalDroid
datasets

Feature vector,
frequent
subgraph
analysis

Limited to FalDroid
datasets

Approximately
94.2%

classification

[16] Systematic approach to
generate benchmark

android malware datasets

VirusTotal
datasets

Deep learning,
CNN, LSTM,

Dynamic
analysis

Limited to VirusTotal
datasets, potential

overfitting

Up to 95.7%
accuracy

(Continued)
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Table 1 (continued)

Ref. Topic Dataset Methodology Limitations Results
[17] Malicious source code

detection using
transformer

135,000
Android apps,

15,000 malware
samples

Dynamic
analysis

features, SVM,
Linear

classifiers

May miss sophisticated
malware behaviors

98.24% of
malicious apps

classified

[18] Efficient malware detection
based on control flow

traces

CICMalDroid
2020 (600

APKs)

Malware
classification
using OWL
Ontology

Limited to CICMalDroid
2020, lack of flexibility

Precision: 92%,
F-measure:

91.4%

[19] Marvin: efficient mobile
app classification through

static and dynamic analysis

CICAndMal2017
dataset

Decision trees,
Random forest,

KNN

Limited to single dataset,
feature selection bias

Average
precision: 85%,

recall: 88%
[20] Comparative study on

malware detection using
machine learning

Adware-A
datasets

Machine
learning, Naive

Bayes, SVM,
Random forest

Biased towards adware,
potential feature selection

bias

99.47%
accuracy

[21] Malware analysis in IoT &
android systems with
defensive mechanism

Various Decision trees,
KNN, SVM

Focused on specific
malware, broader attack

types not covered

99% accuracy

3 Data Collection
The data for this study was obtained from the Android Malware Dataset (CIC-AndMal2017) [13,15,16],

maintained by the Canadian Institute for Cybersecurity. Available in APKS, CSVS, and PCAPS formats,
the investigation focused on a CSV dataset containing zip files with various types of malwares, including
adware, ransomware, scareware, and SMS malware. The study processed these files to create a larger dataset
encompassing all classes and their respective sample sizes, ensuring a suitable class distribution.

The CIC-AndMal2017 dataset consists of 20,000 instances of network traffic data derived from various
Android malware types, categorized into five classes: Trojan, Adware, Ransomware, Spyware, and Worm.
Each instance has 84 features, including source and destination IP addresses, ports, protocols, flow duration,
and packet counts. This data was collected through controlled experiments simulating realistic malware
activity, providing a solid foundation for malware detection.

Visualizing the distribution and features of each class is crucial for understanding their impact on the
training and testing processes of machine learning algorithms. Different malware classes exhibit distinct
traffic patterns, influencing detection rates and speeds. We can enhance their models by analyzing these
differences for more effective threat identification and mitigation. Additionally, understanding how class
characteristics affect model performance will aid in developing advanced detection mechanisms, thereby
improving cybersecurity against various malware threats.

Table 2 categorizes the occurrences into five distinct forms of malware attacks. The target variable serves
as the class label for these forms.

• Ransomware_Charger: Malware samples in this category display ransomware behavior, generally
encrypting the victim’s data and demanding a ransom to unlock it.

• Adware_Dowgin: Malware samples in this category are mostly adware, which displays invasive
advertising for the attackers to gain cash.

• Scareware_Androiddefender: Scareware malware fraudulently promises security protection to trick
users into purchasing bogus antivirus software.
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• Smsmalware_Fakeinst: This category of malware focuses on SMS-related attacks. It is frequently cam-
ouflaged as genuine programs while surreptitiously sending unauthorized premium-rate text messages.

• Benign: This class describes harmless network traffic or lawful programs that do not behave maliciously.

Table 2: Features in DataBase

Flow Source Source Destination Destination Protocol Timestamp Flow Class
ID IP Port IP port duration

172.217.0.238/10.42.0.211 10.42.0.211 54819 172.217.0.238 443 6 14/06/2017 194 Ransomware_
443-54819-6 04:22:52 Charger:c

172.217.1.170/10.42.0.211 10.42.0.211 51023 172.217.1.170 443 6 14/06/2017 5 Adware_
443-51023-6 04:22:52 Dowgin:

172.217.2.110/10.42.0.211 10.42.0.211 39805 172.217.2.110 443 6 14/06/2017 199542 Adware_
443-39805-6 04:22:58 Dowgin:

172.217.2.110/10.42.0.211 10.42.0.211 39805 172.217.2.110 443 6 14/06/2017 254 Benign
443-39805-6 04:22:58

172.217.0.238/10.42.0.211- 172.217.0.238 443 10.42.0.211 36040 6 14/06/2017 2164751 Scareware
443-36040-6 04:22:59

The dataset provides a comprehensive representation of Android malware attacks, facilitating the
development and evaluation of robust machine-learning algorithms for accurate categorization and detec-
tion. Understanding its characteristics, feature distributions, and class imbalances is essential for effective
data preparation, feature engineering, and model training. Analyzing and visualizing this information
offers valuable insights into Android malware features, helping to enhance machine-learning solutions
in cybersecurity.

3.1 Exploratory Data Analysis
Exploratory data analysis (EDA) techniques were employed on the Android malware dataset to gain

insights into its intrinsic characteristics [22]. EDA is crucial for identifying patterns, trends, outliers, and
potential issues within a dataset, guiding subsequent data preparation and modeling steps. Key findings from
the EDA include:

• Label Distribution: This section analyses the distribution of labels among Android malware categories,
visualized through a bar plot. This analysis reveals essential insights into the frequency of malware attacks
in the dataset [23]. The x-axis represents distinct malware types, while the y-axis indicates incident
frequency. Fig. 2 illustrates the distribution of different malware categories.

The figure presents the label distribution within the Android malware dataset. Ransomware-charger has
the highest frequency of around 21,000 instances, followed by Adware-downing at 19,000 and Scareware-
android Defender at 17,500. Benign samples account for approximately 10,000 instances, while the remaining
labels have significantly lower frequencies, ranging from 1000 to 5000. This imbalanced distribution is an
essential consideration for data preparation, feature engineering, and model training, potentially requiring
techniques like oversampling, under-sampling, or class weighting to ensure the model learns effectively and
generalizes well across different malware types [24,25].
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Figure 2: Malware class distribution

i. Exploring Relationships among Selected Android Malware Variables
Fig. 3 illustrates the relationships among selected variables in the Android malware dataset, focusing

on total forward packets, total backward packets, forward packet lengths, and malware labels. The heatmap
utilizes a color scale to indicate correlation magnitude and direction, with warmer colors representing
positive correlations and cooler colors indicating negative correlations. By exploring the heatmap, we
can identify key variable dependencies that inform the development of effective malware detection and
classification models. This visualization elucidates how these variables influence malware labels, facilitating
the detection of significant features and underlying correlations within the dataset.

In this analysis, we used a cut-off of 0.31 for feature selection, as previous research data suggested that
coefficients more significant than this are significantly meaningful about the target variable. This value was
set to reduce the model’s noise and accomplish the desired level of learning effectiveness. By extracting
features with meaningful correlation, we intended to bring the dataset closer to being clean, where only
related features are included, which can benefit the model.

However, it would be useful to reveal more detailed information about how this threshold influences
performance measures that were previously discussed, including accuracy, precision, and recall rates.
Knowledge of these dependencies may help explain the link between the chosen characteristics and the
model’s efficiency [26,27]. From the results obtained from our analysis, it is highly likely that when the ideal
set of features is used, better results, as compared to other possible combinations within the online sales
dataset, are achieved. This evidence illustrates why feature selection is a critical consideration in developing
reliable predictive models and proves that the selected correlation threshold in this study results in improved
model performance.

The Correlation Matrix Heatmap in Fig. 3 provides valuable insights into the relationships between the
selected variables in the Android malware dataset. The key insights are:
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1. Total Forward Packets and Total Backward Packets exhibit a strong positive correlation, indicated by
the dark red hue in the corresponding cell of the heatmap. This suggests a close relationship between
the number of packets sent in the forward and backward directions.

2. The total lengths of forward and backward packets also show a positive correlation, though not as strong
as the packet counts. This implies that the packet length characteristics are linked between the forward
and backward traffic.

3. The forward packet length-related variables, such as Total Length of FP, Max Length of FP, and Min
Length of FP, demonstrate high positive correlations among themselves, as indicated by the warm red
colors in the respective cells.

4. The malware label variable shows moderate to strong positive correlations with the packet-related
variables, suggesting that these numerical features may be necessary for distinguishing between different
malware types.

5. The overall color patterns in the heatmap indicate that the selected variables are not entirely independent
and exhibit various degrees of interdependence, which is critical information for feature engineering
and model development.

Figure 3: Correlation Matrix heatmap of selected features

ii. Exploring Numerical Variables in the Android Malware Dataset: Histogram Analysis
Android malware “histogram analysis” shows numerical variable frequency and distribution patterns.

The variables under consideration are the total number of forward and backward packets and their lengths
as well as maximum and minimum lengths. Histograms show the distribution of values within a variable,
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revealing data features like range, skewness, and trends. Bins can be limited to 20 balances to collect
distribution data and prevent excessive binning.

Moreover, Fig. 4 subplots show numerical variable histograms. Variable values are on the x-axis, and
frequency is on the y-axis. Histograms show distribution characteristics like peaks, troughs, and asymmetry.
They also reveal outliers. Histogram analysis helps understand data distribution, which is essential for
feature engineering, outlier detection, and data preparation. Histograms can be examined to improve clas-
sification models by exploring data changes such as logarithmic scaling or normalization. The visualization
helps researchers identify key elements in deep convolutional neural networks and image processing for
malware detection.

Figure 4: Numerical variables distribution of values
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The above three figures show the distribution of feature variables, and we see that values are not
continuous but rather more of a categorical nature as we have many classes in the dataset. It should be like
there would be a range of these variables, each allocated to a particular class, but we see it remains more or
less constant for a specific nature, which is also due to the reason that classes are imbalanced that’s why we
are seeing this type of distribution and cannot label features directly to the class.

iii. Parallel Coordinates Plot of Selected Variables in the Android Malware Dataset
The “Parallel Coordinates Plot” shows Android malware dataset variables’ correlations and trends, as

in Fig. 5. The variables under consideration are the total number of forward and backward packets and their
lengths, as well as maximum and minimum lengths. The picture compares these parameters across malware
classifications. Each line in the graphic represents a dataset sample, while the vertical axes reflect the selected
variables [28,29]. Segments connect the lines, representing sample variable values. Assigning different colors
or tints to each malware version label helps observe variation. The parallel coordinate plot can reveal patterns
or trends in malware label variables. This helps determine each component’s relative importance and impact
in distinguishing malicious software.

Figure 5: Parallel coordinates plot

Additionally, it may help identify virus categorization overlaps or similarities. The graphic helps
researchers understand the associations between factors in the Android malware dataset. Parallel coordinate
plots help identify malware-categorizing feature combinations. The knowledge is helpful in research on deep
convolutional neural networks and image processing for malware detection.

These parallel coordinate plots basically show us how each data point in the features is associated with
the label and other features. We can also see that each feature, for example, the total forward packet, is higher
than the rest of the features, which is an indication of the key strength relationship of this feature with respect
to the label.
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iv. Radar Chart of Mean Values for Selected Variables in the Android Malware Dataset
Fig. 6 is a radar graphic showing the average values of Android malware dataset variables across types of

malware. The graph examines the total forward, backward, total length, maximum length, and lowest length
of forward packets. Further, this chart aims to compare mean variable values across malware types. Each
chart axis depicts the mean value of a variable, with data points linked for each malware category to show
mean value distribution. The radar map shows varying mean values among virus categories, revealing trends
and key variables affecting malware categorization.

Figure 6: Radar chart of mean values for selected variables

This analysis shows how selected characteristics vary across viruses, revealing their properties. It
also assists malware detection studies using deep convolutional neural networks and image processing by
monitoring virus classification factor fluctuations.

It shows how selected features vary with the different classes we have. Suppose one class has more
distribution of a particular feature. In that case, it will have a far-distant line, as we can notice in total forward
packets, and those lines that are not far-distant will have less distribution of that particular feature. This plot
helps us understand how each class is related to the features.

3.2 Data Preparation
The data processing steps for our study on Deep CNNs and Image Processing for Malware Detection

are as follows:

i. Data Loading: We begin by loading the dataset, which includes malware samples and their properties,
from multiple CSV files into a unified data frame using the Pandas library.
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ii. Data Cleaning: Once the dataset is loaded, we clean it to address missing values, outliers, and anomalies,
ensuring data quality and model effectiveness.

iii. Feature Selection: We focus on selecting essential features highlighting malware’s distinctive charac-
teristics. Using correlation analysis and domain knowledge, we identify 64 significant features with a
correlation coefficient of 0.31.

iv. Encoding of the Target Variable: We encode the target variable, which indicates the categories of
malware (benign and four malicious actions), using label encoding. This process transforms categorical
labels into numerical values for model training, representing a binary classification array [0, 1].

v. Splitting the Dataset: We split the dataset into training and testing sets, ensuring a consistent dis-
tribution of samples across malware categories. This approach facilitates malware classification while
acknowledging the complexities of distinguishing between harmful and benign behaviours. The split
Dataset size is as follows:

x_train x_test, y_train, y_test
(67434, 64) (16859, 64) (67434) (16859)

vi. Data Normalisation: We standardize the numerical attributes in the dataset to ensure consistent scaling
and prevent any specific feature from overpowering the learning algorithm. Standardization is the
technique employed in this case.

The diagram presented in Fig. 7 illustrates the sequence of steps involved in data preparation and the
approach employed for categorizing malware.

Figure 7: Data preparation methodology for malware classification

• Image-Like Data Transformation: The 64-dimensional data becomes 32 × 32 × 3 by converting the
data into image-like representations. Image processing reshapes the feature matrix into 2D or 3D arrays.
CNN compatibility is accomplished by turning the dataset into a numpy array and transforming it into
32 × 8 × 8-pixel image-like representations. CNNs may successfully assess spatial relationships in data.
Thus, while the original data samples had a dimension of 64, the modified data now fit the CNN analysis
format (67434, 32, 32, 3) for the training set and (16859, 32, 32, 3) for the testing set.

• Preparation for CNN Model: Preparing the data for the CNN model requires restructuring the features
and labels into the appropriate structure and ensuring that the input shape is suitable for the selected
CNN architecture, typically in 2D or 3D arrays.

• Addressing Class Imbalance: Data balancing approaches are used if the dataset has a class imbalance,
which means that particular malware classes are underrepresented. This could involve oversampling the
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minority class, undersampling the majority class, or generating synthetic data to achieve balance among
the groups and avoid bias in the model.

Further, we employed oversampling techniques to address imbalanced classes to provide more instances
of underrepresented classes to the model. In particular, the SMOTE algorithm was used for oversampling
of the mentioned classes to create synthetic instances within the classes and enhance the variability of
samples and, consequently, the model training. Moreover, we used different types of image augmentation,
like rotation and flipping, to enhance the size of our image’s dataset. These transformations not only helped
increase the volume of training data but also contributed to a better generalization capability of some of the
transformations to variations in the representation of the malware. Thus, our major idea was to enhance the
model’s capabilities to classify various types of malware by creating hallucinated views and orientations of
the images.

Preparing and optimizing the dataset for training a deep CNN with mixed CNN layers for malware
detection involves following specific data processing procedures. These procedures facilitate data cleaning,
feature selection, normalization, and transformation, improving the model’s accuracy and reliability.

3.3 VGG16 CNN Model for Classification of Malware Attacks
The VGG16 model in Fig. 8 shows that CNN architectures are still effective image classifiers. Since

its 2014 introduction for image recognition using the ImageNet dataset, it has expanded to include mal-
ware detection. The 16-layer, mostly convolutional model extracts hierarchical features from input images
sequentially, capturing detailed patterns and features on various scales. The model accumulates higher-level
features through convolutional and pooling layers and then classifies them through fully connected layers.
Dropout regularization is used to reduce overfitting and improve generalization. The model matches the
dimensions of the malware dataset by customizing the input shape and output layer neuron count and
optimizes classification accuracy using modified stochastic gradient descent.

Figure 8: VGG16 base model architecture

The study utilizes the VGG16 model’s robust feature extraction and hierarchical learning to classify
malware threats. Training the model on carefully selected malware datasets is anticipated to yield accurate
predictions, leveraging its exceptional performance in many computer vision tasks. This initiative seeks to
enhance malware detection, promote cybersecurity, and safeguard against emerging threats.

4 Methodology
The subsequent section outlines the approach employed in designing and implementing the VGG16

CNN model for our research on classifying malware attacks.
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4.1 Data Preprocessing
The malware dataset has undergone a rigorous procedure to correct its form and content and prepare

it for analysis. This includes solving missing values, inconsistent values, and data attributes. Predictive
variables are categorized appropriately to enhance their usefulness in developing machine learning algo-
rithms. After this cleaning process, the data set is split into a training set and a test set to validate model
accuracies prominently.

In our particular approach, the malware binaries are transformed into grayscale images, and each binary
file is read in binary. The byte sequences are then converted to pixel intensity, thus making sense of the
malware samples and providing visual representations of them. In some cases, the images may be of different
sizes, and to ensure that the essential characteristic of each sample is maintained, the images are resized to,
for example, 64× 64 or 128× 128. This standardization makes input entry into a VGG16-based CNN possible.

4.2 Feature Extraction
Extracting features in deep CNNs for classifying Android malware based on images includes multiple

essential processes. Initially, the dataset comprising photos of Android malware samples must be gathered
and prepared. This could include adjusting image sizes to a uniform dimension, converting them to grayscale
or RGB format, and standardizing pixel values within a specific range. Subsequently, feature extraction
utilizes a pre-trained CNN model like VGG16.

Our approach is to transform the tabular malware data into convenient image formats for CNNs. This
methodology consists of several key steps:

1. Data Normalization: Let us start by normalizing the fundamental values of the tabular dataset into a
standardized value. It is essential to refrain from having some of the features represented in the image
give out large numbers during the conversion.

2. Feature Mapping: Every example of malware, described by parameters (flow duration, number of
packets, etc.), is located in a fixed-size square grid. In this matrix, rows are referred different attributes,
while the columns are other instances of malware. It is helpful to capture the relations between the
features, and they can be input into CNN to allow CNN to capture instance patterns across.

3. Color Encoding: To increase the data’s readability, we use color mapping to convert numerical values in
the grid into RGB color values. For example, feature values can be on the gradient scale, so CNN uses
color as input.

4. Image Resizing: The generated images are resized to fit the standard input dimensions for VGG16, which
are usually 224 by 224 pixels. This process preserves the aspect ratio so that all dataset images will
be standard.

This methodology takes advantage of the spatial structures present in the tabular forms, which
conventional machine learning may fail to identify. Converting numerical features into images enables CNNs
to utilize their image classification capability, improving the detection and classification of malware.

4.3 Model Architecture
The VGG16 model, with its pre-trained weights from the ImageNet dataset, is a practical choice for

malware classification. In this framework, the model’s layers are primarily frozen. In contrast, the input
layer is adjusted to accommodate the malware dataset volume, and the output layer is fine-tuned to
reflect the number of malware classes. For a four-class classification task, categorical cross-entropy is the
appropriate loss function, with optimizers like Adam or RMSprop utilized alongside a carefully selected
learning rate. During training, it’s crucial to monitor the number of batches and epochs to optimize
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computational resources and ensure convergence of the training set. Model performance is evaluated using
metrics such as loss and accuracy, which provide insights into the model’s understanding of malware attack
structures. In-depth evaluation involves calculating accuracy, precision, recall, and F1 score, complemented
by confusion matrices to visualize performance across different virus classifications. These assessments
highlight the need for adjustments in fine-tuning methods or hyperparameters to enhance model stability
and classification effectiveness.

The study aims to leverage the trained VGG16 model for generating predictions on new, unseen
instances of malware, facilitating deeper analysis of its outputs to improve detection capabilities. Thorough
performance estimation is essential before deploying deep convolutional neural networks (CNNs) for
image-based Android malware classification. Traditional validation techniques, such as cross-validation and
hold-out validation sets, are employed to mitigate overfitting risks. Cross-validation divides the dataset into
multiple subsets, allowing diverse training and validation scenarios, while hold-out validation provides a
final assessment of the model’s generalization ability post-training. By utilizing the VGG16 architecture,
which is well-known for its success in image classification, this study incorporates best practices to enhance
model performance. Techniques such as learning rate schedules are implemented to aid convergence during
training, and early stopping is employed to monitor validation loss and prevent overfitting. Additionally, the
study will explore architectural modifications aimed at improving stability when encountering adversarial
examples and varying representations of malware.

Hyperparameter tuning remains a critical focus, as it helps identify optimal configurations for achieving
the best performance and minimizing loss. The analysis will delve into the model’s behaviors and the
relevance of individual features, including visualizing learned features to understand decision-making
processes, thereby shedding light on specific classification outcomes.

4.4 Model Architecture Design
This study’s CNN design utilizes the VGG16 pre-trained model trained initially on ImageNet. The

VGG16 model is imported with weights initialized using ‘imagenet’ weights. The model is customized for
individual tasks by excluding the fully linked layers using the include_top parameter set to false. The input
shape is specified as (IMG_SIZE, IMG_SIZE, 3), indicating the preferred size of input images and the
quantity of color channels. This setup enables incorporating VGG16’s convolutional layers while tailoring
the model to the specific goals of the study. The work gains advantages by including the basic model VGG16,
which has learned rich feature representations from a broad dataset such as ImageNet. This provides a
solid starting point for additional task-specific layers and potential fine-tuning. Moreover, Fig. 9 shows the
model architecture.

The architecture of the VGG16 model has been extended with extra convolutional layers to deepen the
feature learning process. All these additional layers are Conv2D configurations having predefined parameters
where kernel size is 3× 3, the activation function is ReLU, and padding is set to “same” to maintain the spatial
resolution of the input. To optimize the model, batch normalization layers are added after each Conv2D layer.
Such standardization of activations tends to provide the stabilization and acceleration of the training phase
and, thus, improves the general work of the chosen model.

By adding the supplementary convolutional layers to the VGG16 architecture, it is apparent that the
extraction of features and the accuracies have been greatly improved. Especially the architecture has added
three more Conv2D layers with 64, 128, and 256 filters. Both layers use the filter size of 3 × 3, ReLU activation
function, and ‘same’ padding, which maintains the spatial size of the input feature map. This makes it easier
for the network to detect data details, such as the edges in images in domains like image classification, where
edge details may form the basis for making accurate predictions.
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Figure 9: Proposed model architecture

The first additional layer with 64 filters is the first step of high-level feature extraction since a simple
architecture with deep convolutional layers will be used to represent a pile of features. As the layers advance,
the second layer, with the setting of 128 filters, enhances the possible pattern recognition of the network to
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detect and comprehend deeper structures combined and abstract from the features discerned by the first
layer. However, the final third part, with 256 filters, examines the representation more deeply. It makes the
model dig into the most subtle details to distinguish between classes in sophisticated datasets, which are
typical for malware classification.

In addition, the use of Batch Normalization layers, incorporated after each convolutional layer, signifi-
cantly contributes to stabilizing the training process. This is why the additional layers they introduced offer
operations to normalize the output of each layer, decreasing internal covariate shifts to minimize variance
during training. Besides, this brings about faster convergence and reduces the overfitting testing problem,
which is a huge problem when using deep learning models. Getting trapped in the noise of training data
is often a pitfall of overfitting, and thus, having these normalization layers as part of the model is essential
for generalization.

The proposed model incorporates three additional convolutional layers to enhance the feature extrac-
tion capabilities. The first additional layer is a Conv2D layer with 64 filters of size 3 × 3, using the ReLU
activation function and the same padding. The second additional layer is another Conv2D layer, this time
with 128 filters of size 3 × 3, also utilizing the ReLU activation function and the same padding. Finally, the
third additional layer is a Conv2D layer with 256 filters of size 3 × 3, again employing the ReLU activation
function and the same padding.

The improvements that arise from these additional layers are especially relevant in scenarios that involve
classification if precision is essential. Enhancements of feature extraction add extra capability of parsing
refined distinctions rooted in the provided input, enhancing the predictive reliability of the model. This is
especially useful in niche domains such as malware detection, where the capacity to categorize malicious
and nonmalicious samples correctly has key consequences. On balance, these measures are introduced as
additional layers, and optimizing the division of the VGG16 architecture increases the readiness of the model
for the classification of complex patterns.

4.5 Compilation and Model Summary
Two notable schemas for the model architecture are highlighted. The first leverages pre-trained VGG16

features, supplemented by additional CNN layers to address task-specific features. Batch normalization
layers are included to enhance regularization and training efficiency. As a deterministic binary classification
model, it incorporates dense layers and an output layer for precise predictions. Key parameters are carefully
selected, with a batch size of 32 over 50 epochs, a learning rate 0.001, and the Adam optimizer for accelerated
convergence. Early stopping is employed to prevent overfitting by monitoring validation loss.

To enhance accuracy, k-fold cross-validation will be utilized, allowing for the identification of significant
factors influencing BTC evaluation. This technique divides the data into subsets for robust testing across
various datasets, improving malware detection capabilities. Additionally, model regularization methods will
be explored to enhance generalization alongside data augmentation techniques to address class imbalance.
The experiments are conducted in Google Colab, benefiting from dynamic computational power. Training
the proposed model averages around 0.2 h over 50 iterations, facilitating efficient data flow and computations.
These enhancements aim to contribute to the effective identification and categorization of malware.

4.6 Model Evaluation
To assess our model’s efficacy, we will use several commonly utilized evaluation metrics:

• Accuracy: Accuracy is considered the primary assessment statistic, as it measures the overall correctness
of forecasts.
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• Precision: Precision is a statistical measure quantifying the ratio of correctly predicted positive cases to
the expected number of positive cases.

• Recall (Sensitivity or True Positive Rate): The recall metric quantifies the proportion of correctly
predicted positive events relative to the number of positive instances.

• F1 Score: The F1 score is obtained by calculating the harmonic mean of accuracy and recall. The proposed
method provides a unified metric that effectively balances accuracy and recall. The F1 score is optimal
when seeking a trade-off between precision and recall.

• Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The area under the receiver
operating characteristic curve (AUC-ROC) is a key performance metric for binary classification. It
measures the model’s ability to distinguish between positive and negative instances across various
probability thresholds. AUC-ROC values above 1 indicate better classification performance.

• Confusion Matrix: Using a confusion matrix allows us to evaluate the efficacy of our classification model
by providing a detailed analysis of predicted vs. observed class labels. This analysis includes metrics for
true positives, false positives, and false negatives. The confusion matrix is set up for binary classification
of benign and malicious labels.

The obtained results are shown in the following Table 3:

Table 3: Evaluation metrics of the proposed model

Evaluation metric Performance value
AUC 0.92

Accuracy 0.991
Precision 0.982

Recall 0.995
F1 score 0.987

Our model demonstrates exceptional training performance, achieving an accuracy rate of 99.25%. This
indicates the effective classification of most training events. The high precision reflects the model’s ability to
discern patterns and distinctive features in the training dataset, leading to accurate predictions.

The curve in Fig. 10 shows our model’s training and validation accuracy. After training, we evaluated its
performance on a separate testing dataset, achieving a notable testing accuracy of 98%. This high accuracy
indicates the model’s effectiveness in reliably classifying unseen samples, highlighting its robustness and
ability to generalize from the training data.

Fig. 11 displays the ROC curve, where a value closer to 1 signifies greater accuracy, while values near 0.5
suggest suboptimal performance. Our model achieves a value of 1, indicating exceptional classification per-
formance.

Fig. 12 shows the confusion matrix. Of 11,066 instances, 10,066 were correctly identified as benign, with
only 53 misclassified. For the attack class, 13,525 instances were accurately classified, while just 54 were
incorrectly labeled as benign.

Confusion matrix analysis shows the model’s strong capability to differentiate between malware types
with high accuracy and recall rates. However, it is essential to address potential misclassification cases, as
understanding these weaknesses could enhance the model’s performance for practical applications where
malware threats are constantly evolving. The ROC curve and AUC results support the model’s stability, with
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an AUC of 1 indicating optimal sensitivity and specificity in detection. The training process demonstrates
strong convergence, suggesting effective learning of malware-related patterns without overfitting.

Figure 10: Training and validation accuracy performance

Figure 11: ROC-AUC curve
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Figure 12: Confusion matrix for binary malware classification

5 Comparative Analysis
The rise of malware threats targeting Android platforms has prompted extensive research into effective

identification and classification methods. As illustrated in Table 4, this comparative analysis reviews the
effectiveness of various machine learning and deep learning approaches in enhancing malware detection
rates. Our proposed method, Deep Convolution Neural Networks for Image-based Android Malware
Classification, demonstrates superior performance on the CIC-AndMal2017 dataset. A common strategy
in antivirus detection is convolutional neural networks (CNNs), which have achieved accuracy rates as
high as 99% in detecting malicious patterns in Android applications. This indicates that deep learning
techniques generally outperform traditional methods. For instance, the GA-StackingMD approach, which
uses a stacking ensemble technique, achieved an accuracy of 98.66%. However, this method’s complexity can
hinder performance compared to more straightforward CNN models.

Our model, incorporating VGG19 with additional CNN layers, achieves an impressive accuracy of
99.25%. This improvement reflects enhanced feature extraction capabilities essential for identifying subtle
malware variations. The depth of the VGG19 architecture facilitates superior detection of complex pat-
terns, resulting in greater accuracy and resilience against interference. In comparison, other studies using
ensemble learning techniques have achieved about 90.4% accuracy, while feature vector methods for family
classification reached 94.2%, underscoring the importance of feature selection but falling short of CNN-
based approaches. Innovative Long Short-Term Memory (LSTM) networks have shown promise with 95.7%
accuracy, yet they are less effective than CNNs for image representation tasks. Dynamic analysis methods
have also reached 98.24% accuracy through real-time behavior assessment. Still, our image-based technique
allows for faster evaluations without execution, making it more suitable for large-scale applications. Control
flow analysis using deep neural networks has shown 92% accuracy, while Decision Trees (DT) achieved
88%, limited by their complexity and lack of adaptability. Our approach significantly outperforms previous
studies, including those using sparse binary images for IoT malware detection, and achieves 99.25% accuracy
on the CIC-AndMal2017 dataset, significantly surpassing the earlier 11.1% error rate. Additionally, ResNet
and EfficientNet achieved 86.01% and 96.58% accuracy on different datasets, but our VGG19-based model
demonstrates superior performance in malware classification.
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Table 4: Comparative studies related to work

Ref. Approach Accuracy Dataset
[12] CNN 99% CIC-AndMal2017
[13] GA-StackingMD 98.66% CIC-AndMal2017
[14] Ensemble Learning 90.4% CIC-AndMal2017
[15] Feature Vector 94.2% CIC-AndMal2017
[16] LSTM 95.7% CIC-AndMal2017
[17] Dynamic Analysis Features 98.24% CIC-AndMal2017
[18] Malware Classification 92% CIC-AndMal2017
[19] Decision Tree (DT) 88% CIC-AndMal2017
[21] Decision Tree 99% CIC-AndMal2017
[23] Deep Learning Approach 98.2% CIC-AndMal2017
[28] ResNet Model 86.01 CIC-AndMal2017
[29] EfficientNet 96.58% CICMalDroid2020

Our approach VGG19 with CNN layers 99.25% CIC-AndMal2017

Our Deep Convolution Neural Networks for Image-based Android Malware Classification sets a
new benchmark with an accuracy rate of 99.25% on the CIC-AndMal2017 dataset, marking a significant
advancement in malware detection. We enhance efficacy through practical deep-learning implementation by
combining VGG19 architecture with CNN layers. Our approach addresses common challenges in Android
malware classification and lays a robust foundation for future research and development. Additionally, our
methodology incorporates essential preprocessing steps, such as coordinating the conversion of malware
binaries, to ensure image consistency and customization for the modified VGG16 model. These improve-
ments and preprocessing techniques address class imbalance issues in malware datasets, leading to better
identification outcomes. Our innovative method integrates the extended VGG16 framework with a proposed
preprocessing scheme, representing an optimized solution for effective malware detection.

6 Limitations and Future Directions
The proposed use of deep Convolutional Neural Networks (CNNs) for Android malware detec-

tion through image-based classification marks a significant improvement over traditional signature-based
method. While signature detection effectively identifies known malware, it struggles with new or modified
threats, necessitating frequent updates and consuming considerable resources. In contrast, CNNs enhance
adaptability by learning from new data without complete retraining and can extract features from complex,
unstructured data like malware images, improving detection capabilities. However, CNN-based approaches
face challenges, such as generalization issues seen in models like FalDroid and GA-StackingMD, which
may not perform well across diverse real-world scenarios. Hyperparameter tuning can be time-consuming
and resource-intensive, and model performance may vary in chaotic environments. Although the proposed
VGG16 model with additional CNN layers incorporates features like batch normalization and dropout to
enhance flexibility and stability, it still grapples with balancing efficiency and adaptability across different
datasets, raising concerns about overfitting and the need for extensive, diverse training datasets.

Future research should focus on several areas to improve deep CNNs for Android malware detection.
Implementing new architectures like Vision Transformers (ViTs) or advanced residual networks could
enhance pattern recognition. Ensemble learning techniques like bagging, boosting, or stacking may reduce
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classification errors and increase reliability for challenging malware classes. Exploring adversarial training
can bolster model resilience against attacks, while data augmentation techniques are essential for address-
ing limited training data by generating synthetic variants of known malware images. Real-world field
tests are crucial for validating the practical effectiveness of these advancements, ensuring that theoretical
developments translate into robust, user-centered cybersecurity tools.

7 Conclusion
This study explores the classification of Android malware using deep convolutional neural networks

(CNNs) and image processing techniques, utilizing the CIC-AndMal2017 dataset, achieving impressive accu-
racy rates of 99.25% during training and 98% during testing. Rigorous data processing and exploratory data
analysis were employed, utilizing visualizations like scatter plots and histograms to enhance understanding
of the dataset. The VGG16 CNN architecture was adapted for tabular data, featuring multiple convolutional
layers and fully connected layers, with a softmax activation function for multi-class classification. The model’s
performance was evaluated using precision, recall, and F1 score metrics. Advantages included leveraging
pre-trained VGG16 weights and implementing data augmentation techniques. At the same time, limitations
highlighted the need for larger, more diverse datasets and challenges in adapting the model to new malware
variants. Overall, this study demonstrates the effectiveness of deep learning in Android malware detection
and contributes valuable insights for advancing classification algorithms in cybersecurity.
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