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ABSTRACT: The proliferation of rumors on social media has caused serious harm to society. Although previous
research has attempted to use deep learning methods for rumor detection, they did not simultaneously consider the
two key features of temporal and spatial domains. More importantly, these methods struggle to automatically generate
convincing explanations for the detection results, which is crucial for preventing the further spread of rumors. To
address these limitations, this paper proposes a novel method that integrates both temporal and spatial features while
leveraging Large Language Models (LLMs) to automatically generate explanations for the detection results. Our method
constructs a dynamic graph model to represent the evolving, tree-like propagation structure of rumors across different
time periods. Spatial features are extracted using a Graph Convolutional Network, which captures the interactions and
relationships between entities within the rumor network. Temporal features are extracted using a Recurrent Neural
Network, which accounts for the dynamics of rumor spread over time. To automatically generate explanations, we
utilize Llama-3-8B, a large language model, to provide clear and contextually relevant rationales for the detected rumors.
We evaluate our method on two real-world datasets and demonstrate that it outperforms current state-of-the-art
techniques, achieving superior detection accuracy while also offering the added capability of automatically generating
interpretable and convincing explanations. Our results highlight the effectiveness of combining temporal and spatial
features, along with LLMs, for improving rumor detection and understanding.

KEYWORDS: Rumor detection; graph convolutional neural networks; recurrent neural networks; large language
models

1 Introduction
The development of social media has greatly improved the communication efficiency, but it has also

inadvertently contributed to the rapid spread of rumors and caused serious social impact. During key events
such as the US presidential election [1] and the COVID-19 epidemic [2], rumors flooded social media,
causing social chaos. For example, Islam et al. [2] found that during the COVID-19 pandemic, 82% of the
news information between 31 December 2019, and 05 April 2020, consisted of rumors. These rumors included
false information about government control measures, incorrect treatments, and the origins of the disease,
causing severe negative impacts on both individuals and the government. This highlights the urgent need for
effective strategies to detect rumors and block the spread of rumors through reasonable explanations.

The initial approaches to rumor detection primarily relied on analyzing the text of the rumors. Early
methods evolved from traditional machine learning [3–5] to deep learning [6–9] and achieved some degree
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of success. However, since rumor texts are often brief and can be easily disguised as normal content, detection
methods based solely on text analysis have certain limitations in terms of accuracy.

As a result, more and more methods [10] have started to focus on rumor detection based on propagation
structures, as these are more difficult to falsify. These methods generally fall into two categories when
constructing propagation structure models: temporal-domain-based methods and spatial-domain-based
methods. Temporal-domain-based methods [11–13] build a temporal propagation structure based on the
chronological order of reposts or comments, as shown in Fig. 1b. On the other hand, spatial-domain-based
methods [14–16] construct a tree-like propagation network based on the interaction relationships between
reposts or comments, as shown in Fig. 1c.

Figure 1: Traditional rumor propagation modeling approaches. (a) Hierarchical structure of rumor comments: 1©
represents the original tweet of the event, and the lower-level text is a comment on the upper-level text. For example, 2©
is a comment on 1©, and 5© is a comment on 2©. The “time n” at the end of the text indicates the time when the comment
was posted, with n increasing from smallest to largest to represent the chronological order of comment postings. (b)
Modeling method based on temporal features: The sequence structure is constructed based on the chronological order
of comment postings. (c) Modeling method based on spatial features: A propagation network is constructed based
on the relationships between comments, and rumors are detected by extracting the spatial features of the propagation
network

However, the existing methods have the following main issues: 1) They fail to effectively integrate the
temporal and spatial features of rumor propagation. Some methods merely combine temporal and spatial
features by concatenating them, without capturing the dynamic changes in the propagation structure over
time. 2) They lack reasonable explanations for the detection results. Deep learning methods are notably
deficient in interpretability, yet providing a clear and reasonable explanation for the detection results is
crucial for effectively curbing the spread of rumors.

To address the aforementioned issues, this paper proposes a rumor detection method that integrates
both temporal and spatial features, and provides reasonable explanations for detection results using a
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LLM. For rumor detection, we first construct a dynamic propagation graph model by generating multiple
propagation graphs based on repost and comment relationships at different time points. Then, we employ a
Graph Convolutional Network (GCN) to extract spatial features from the propagation graph at each discrete
time point. Finally, we capture the temporal features of the propagation network by feeding the features from
different time points into a Gated Recurrent Unit (GRU) model. In this process, we are able to effectively
capture the temporal evolution of the rumor spatial propagation network.

We selected LLM as the interpreter, using carefully crafted prompts to input the detection results, rumor
text, and propagation information, thereby generating a reasonable explanation for the detection results.
In this process, we divided the propagation information into a propagation chain, allowing the LLM to
perform step-by-step reasoning in the order of comment timestamps, enabling more effective analysis and
interpretation of the rumor propagation process.

To evaluate the effectiveness of our method, we conducted experiments on the Weibo and PHEME
datasets. Even without applying any data filtering, the experimental results still showed that our method sig-
nificantly outperforms existing approaches. In terms of explaining the detection results, multiple case studies
demonstrated that our method can provide clear and convincing explanations for the detection outcomes.

Our main contributions are as follows:

• We propose a novel rumor detection method that constructs a dynamic propagation graph model and
utilizes GCN and GRU models to extract rumor features, significantly improving detection accuracy.

• We introduce a LLM to provide convincing explanations for the rumor detection results, which is crucial
for effectively curbing the spread of rumors.

• We conducted extensive experiments comparing various state-of-the-art rumor detection methods, and
the results indicate that our method performs better.

2 Related Work

2.1 Temporal-Domain-Based Methods
As social media spreads globally, the challenge of detecting misinformation and rumors has intensified.

Temporal-domain-based methods, particularly those using time series analysis, have gained significant
attention for identifying rumors by analyzing the propagation patterns of information.

For instance, one approach [17] uses Recurrent Neural Networks (RNNs) to capture the erratic, burst-
like patterns typical of rumor spread, contrasting with the steady progression of truthful information. This
innovation lies in applying RNNs to model the specific temporal dynamics of rumor propagation, offering
an adaptive detection mechanism.

Another method [18] combines time series data with user behavior analysis, examining reposting rates
and the speed of information spread. Rumors tend to have faster, more volatile lifespans in early propagation
stages, which serves as a key indicator. The novelty of this approach is integrating both temporal data and
user behavior to improve detection robustness.

Additionally, integrating social network features with time series analysis has proven effective for early-
stage rumor detection [19]. This approach analyzes both temporal behavior and social interactions, offering a
more nuanced understanding of rumor propagation. Its contribution lies in combining these two dimensions
to enhance early detection accuracy.

Furthermore, multi-modal models, such as the Capture, Score, and Integrate (CSI) framework [7],
combine content, social context, and temporal features for comprehensive detection. By incorporating
emotional tone, user behavior, and timing, these models provide more robust mechanisms for rumor
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identification. The novelty here is the multi-dimensional approach, leveraging a wide range of features for
enhanced detection.

Overall, temporal-domain-based methods offer a powerful tool for identifying rumors by analyzing the
dynamic patterns of information propagation within social networks.

2.2 Spatial-Domain-Based Methods
Spatial-domain-based rumor detection methods focus on analyzing the structural features of infor-

mation dissemination networks. These methods use graph theory and network topology to examine the
relationships between nodes (users) and identify potential rumors.

One approach [20] constructs a graph of information propagation and applies graph embedding
techniques to capture the network’s topological features. By analyzing node connectivity and subgraph
structures, this method can distinguish between rumors and truthful information. Research shows that
rumors often form densely connected subgraphs, which are key indicators of misinformation. The novelty
lies in focusing on these subgraphs to track rumor spread.

Another approach [21] uses social network graph models to analyze node interactions, particularly the
role of influential nodes (e.g., opinion leaders) in rumor spread. Studies show that rumors tend to spread
rapidly among these key nodes, with concentrated dissemination paths. The novelty of this method is its
focus on influential node dynamics, which helps predict and control rumor spread more effectively.

Additionally, Graph Convolutional Networks (GCNs) have been used [14] to analyze spatial features of
social networks. GCNs examine the relationships between neighboring nodes to detect rumors by analyzing
information flow and interaction patterns. This method is particularly effective in detecting subtle signals
of rumor spread in complex networks. The novelty of GCNs lies in their ability to handle large, intricate
networks, making them highly effective for real-time rumor detection.

Overall, spatial-domain-based methods use graph theory and network structures to identify rumors
by analyzing how information propagates and how key nodes interact, offering a powerful tool for
detecting misinformation.

2.3 Large Language Models
Large language models (LLMs), such as GPT-3 and its successors, have revolutionized applications in

natural language processing and conversational AI. However, their ability to generate highly realistic, human-
like text poses significant challenges for misinformation detection [22]. As LLMs produce content that closely
mimics human writing, traditional detection methods, which rely on linguistic features like structure and
syntax, often fail to distinguish between machine-generated and human-written misinformation [23,24].

Several studies have explored using LLMs in misinformation detection. Yang et al. [25] utilize GPT-3.5 to
extract entities and build relational graphs, enhancing the identification of false information. While effective,
it still faces challenges in accuracy and scope. Hu et al. [26] highlight a key limitation: fine-tuned, task-specific
models for fake news detection outperform general-purpose LLMs, suggesting that LLMs’ versatility may
hinder their efficiency in detecting misinformation.

The growing sophistication of LLMs has spurred interest in hybrid models that combine their capabili-
ties with specialized detection mechanisms. These models aim to improve detection at scale, but LLMs still
struggle with capturing nuanced context, addressing adversarial manipulation, and adapting to new domains
without fine-tuning. As LLMs continue to evolve, further research is needed to enhance their effectiveness
in misinformation detection.
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In conclusion, while LLMs offer advances in natural language generation, their use in misinformation
detection remains complex. Current efforts leverage LLMs alongside other models, but overcoming their
limitations will require further innovation.

3 Problem Definition
Let C = {c1 , c2, . . . , cm} be the rumor detection dataset, where ci is the i-th event and m is the

number of events. A event is defined as ci = {ri
0, ri

1 , . . . , ri
ni

, yi}, where ni + 1 represents the total number
of microblogs involved in event ci , ri

0 is the source microblog, ri
j represents the jth responsive microblog in

event ci , such as comments and reposts. each forwarded or commented post ri
j contains three dimensions

of information, which are the text content wi
j , the posting time t i

j , and the parent node pi
j. Here, yi ∈ Y ,

Y = {R, N} represents the ground-truth of event ci , where R represents rumor and N represents normal
event. Given the above dataset, our goal is to model the propagation process and extract the propagation
features of events and learn a classifier:

f ∶ ci → yi (1)

For a clearer expression, we will omit the event number i in the subsequent formula description.

4 Methodology

4.1 Model Overview
The overall structure of the method in this paper is shown in Fig. 2. The proposed rumor detection

model consists of five main components, dynamic graph construction, encoding text contents, spatial feature
extraction, temporal feature extraction and classification with MLP.

Figure 2: The framework of our approach
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First, we construct a dynamic propagation structure graph of events, and then use graph convolutional
neural networks to extract spatial features of propagation structure. Then we use the spatial domain features
as input and use the recurrent neural network to extract the temporal domain features. At this time, we get
a representation of the fusion of spatial domain and temporal domain features. Then, we integrate the text
features of the source microblog to enhance the final feature representation. Finally, MLP is used to classify
microblog events.

4.2 Dynamic Graph Construction
In this subsection, we construct a dynamic propagation structure graph of events. Unlike ordinary

propagation structure graph models, which only build a single complete propagation structure graph, we
construct multiple propagation graphs based on time series.

The choice of dynamic graph construction is motivated by the need to capture the evolving nature
of rumor propagation over time. Rumors spread through social networks are not static; they evolve as
new comments, reposts, and interactions occur. By modeling this progression dynamically, we can better
understand how rumors unfold in real-time, allowing us to capture more nuanced patterns of rumor spread.

As shown in Fig. 3, the nodes represent the source microblog and its comments in the event, and the
edges between the nodes represent their comment relationships. For example, r1 commented on r0 at time
t2, so there is a directed edge between them. As time progresses, the propagation structure graph evolves
dynamically, with the network’s structural features becoming increasingly rich. For instance, at time t0, the
propagation graph contains only the source tweet as a single node, whereas by time tn , the graph incorporates
the complete set of propagation structure features.

Figure 3: Schematic diagram of dynamic graph construction

In this view, we model each event as a set of directed graphs G = {G0, G1 , . . . , Gn}, where n represents
the total number of time periods. Each graph Gi = (Vi , Ei , Ai), where Vi = {r0, r1 , . . . , rm} is the node set
with r0 as the root node. Each node represents a microblog in the process of the event propagation, and m
is the total number of microblogs involved at time ti . Ei = {est ∣s, t = 0, . . . , m} is the edge set. If there is
a forwarding or commenting relationship between the two microblogs rs and rt , there is an edge est . For
example, if r2 is the reposted microblog of r1, there is a directed edge, r1 → r2, i.e., e12. The adjacency matrix
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of Gi can be defined as follows:

Ai =

⎛
⎜⎜⎜⎜
⎝

0 ai(1, 2) ⋅ ⋅ ⋅ ai(1, m)
ai(2, 1) 0 ⋅ ⋅ ⋅ ai(2, m)
⋮ ⋮ ⋱ ⋮
ai(m, 1) ai(m, 2) ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟
⎠

(2)

The element ai(s, t) of the s-th row and t-th column in Ai is defined as follows:

ai (s, t) = {1, est∈Ei
0, e l se (3)

That is, when est ∈ Ei , the corresponding element value of the s-th row and t-th column of the adjacency
matrix Ai is 1, otherwise it is 0.

4.3 Encoding Text Contents
We use text content features as initialization features of nodes in G, so in this section we will describe

the method of text content encoding. We adopt Sentence-BERT (SBERT) [27] to encode the text content
feature. SBERT is a pre-trained model for encoding text content features. This method is fine-tuned on
Bidirectional Encoder Representations from Transformers (BERT) using Siamese and three-level network
structure, which improves the traditional sentence embedding method and achieves very good results in
multiple application scenarios.

SBERT adds a pooling operation to the output of BERT to derive a fixed sized sentence embedding. The
pooling strategy in this paper is MEAN pooling.

The propagation structure graph at time ti is Gi , the node set is Vi = {r0, r1 , . . . , rm}, each node r j is a
microblog, and the corresponding text content is w j, the feature p j ∈ R1∗d of each node is extracted by the
SBERT model:

p j = SBERT(w j) (4)

d is the dimension of the initialization feature vector, and all the node features in the set Vi are combined
to obtain the initialization feature matrix Ti of the propagation structure graph Gi :

Ti =

⎛
⎜⎜⎜⎜⎜⎜
⎝

p0
p1
⋮
pm−1
pm

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5)

4.4 Spatial Feature Extraction
We employ a two-layer graph convolutional network to extract spatial feature from the dynamic graphs.

Graph Convolutional Network (GCN) is an extension of CNN on graph data, which can effectively capture
graph features by aggregating the neighborhood information of nodes in the graph.

For each graph in different time period ti , we use two-layer graph convolutional networks to extract the
spatial features. The calculation formula is as follows:

Hi
1 = σ(Âi Ti W i

0) (6)
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Hi
2 = σ(Âi Hi

1 W i
1 ) (7)

where Âi = Ai + I, I is the identity matrix, Hi
1 ∈ Rm∗v0 , Hi

2 ∈ Rm∗v1 represent the outputs of the first and
second graph convolutional layers (GCL), namely the hidden state. m is the total number of nodes at time ti ,
v0 is the output vector dimension of the first layer, and v1 is the output vector dimension of the second layer.
W i

0 ∈ Rd∗v0 and W i
1 ∈ Rv1∗v1 are parameter matrices GCL. σ(⋅) is the activation function, we use the ReLU

function here.
Finally, through average pooling, as shown in Eq. (13), we get the final spatial features.

Si = meanpool ing(Hi
2) (8)

4.5 Temporal Feature Extraction
In this part, we use a recurrent neural network to extract the temporal features of rumor propagation.

We take the spatial features {S0, S1 , . . . , Sn} as input and pass the spatial feature representation St to an
RNN unit.

This article compares three different RNN units: basic RNN, LSTM, and GRU through experiments,
and finally finds that GRU has the best effect. Its calculation formula is as follows:

rt = σ(Wir St + bir +Whr h(t−1) + bhr) (9)
zt = σ(Wiz St + biz +Whz h(t−1) + bhz) (10)
nt = tanh(Win St + bin + rt ⊙ (Whn h(t−1) + bhn)) (11)
ht = (1 − zt) ⊙ nt + zt ⊙ h(t−1) (12)

where ht is the hidden state at time t, h(t−1) is the hidden state at time t − 1. rt , zt , nt are the reset, update,
and new gates, respectively. σ is the sigmoid function, and ⊙ is the Hadamard product.

The output hn of the last unit is the result of fusing spatial and temporal features. Finally, we concatenate
the source Weibo text feature representation with hn to enhance the feature representation of rumors:

D = concat(SBERT(w0), hn) (13)

4.6 Classification and Training
The predicted label ŷ of the event is calculated by multiple fully connected layers and a so f tmax layer:

ŷ = so f tmax(FC(D)) (14)

where ŷ ∈ R(1∗K) is a probability vector, K is the number of classes, and the value ŷi of each element of ŷ
represents the probability that the event belongs to the corresponding class.

We train all parameters in the model by minimizing the cross-entropy between the predicted result
and the ground truth Y of all events, and add the L2 regular term during the training process to avoid the
overfitting problem. The loss function L is defined as:

L = ∑∣C∣∑i∈{0,1} −yi log ŷi + βL2 (15)

where β is the coefficient of the regular term and ∣C∣ is the total number of events.



Comput Mater Contin. 2025;82(3) 4749

4.7 Explanation

Although our rumor detection module can accurately identify rumors, effective curbing of their spread
is difficult without providing reasonable explanations. To address this, we utilize a LLM to offer coherent
explanations for the rumors. However, in real social scenarios, the number of comments can be quite large,
while LLMs have limitations on input length. Furthermore, LLMs often struggle to handle excessively long
or redundant information [28,29].

In recent research on LLMs [30–32], complex tasks are typically decomposed into a series of simpler
tasks, which significantly enhances the ability of LLMs to handle complexity. Accordingly, we delineate
the prompts into a Chain-of-Propagation (CoP), facilitating easier reasoning for the LLMs. Given that
comments within a certain timeframe often share similar sentiments, we construct the CoP based on the
chronological order of comment timestamps, as illustrated in Fig. 4.

Figure 4: Schematic diagram of CoP

We divide all the comments r1 , r2, . . . , rn in a given event ci into m groups, each containing k comments.
In the inference prompt for the LLMs, we select only one group at a time as the input (as shown by the green
text in the prompt of Fig. 4). After m rounds of inference, we obtain the final result. The inference steps
within the CoP operate in the same session of the LLM, allowing subsequent steps to reference the results
of prior steps. We utilize the output from the final reasoning step as the conclusive result, as it aggregates
information from all preceding steps. In each round of the inference prompt, the source tweet r0 of the event
is also included (as shown by the blue text in the prompt of Fig. 4), along with the rumor detection result (as
shown by the red text in the prompt of Fig. 4).
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5 Experiment

5.1 Datasets
We benchmark our proposed method against state-of-the-art baselines using two public datasets:

WEIBO [33] and PHEME [34]. The WEIBO dataset, compiled from Xinhua News Agency and Weibo,
comprises a rich collection of data. Similarly, the PHEME dataset is an aggregation of content centered
around five distinct breaking news stories, with each story featuring a collection of associated posts. Adhering
to the methodology outlined in [35], both the WEIBO and PHEME datasets are segmented into training and
testing subsets with an 8:2 ratio. Table 1 shows the statistics of the datasets.

Table 1: Statistics of datasets

Statistic Weibo PHEME
# of events 4657 5748
# of rumors 2345 2094

# of non-rumors 2312 3654
Avg. # of posts/event 804 16
Max # of posts/event 59,318 346
Min # of posts/event 10 1

5.2 Experiment Setup
Our hardware environment is configured with a Hygon C86 3285 8-core processor, 128 GB of memory,

and an NVIDIA RTX A6000 graphics card. We implemented our rumor detection method using the PyTorch
framework, with parameter optimization using the Adam algorithm. In our model, we utilized the pre-
trained SBERT: all-MiniLM-L6-v2 and selected the Llama-3-8B [36] large language model as the rumor
result interpreter.

In terms of model parameter settings, the output feature dimension of SBERT is 512. The GCL layer
uses two layers of GCN, with the first layer having an input feature dimension of 512 and an output feature
dimension of 256, while the second layer has an output feature dimension of 50. In the RNN layer, we select
a single GRU layer as the temporal feature extraction model, with a hidden layer feature dimension of 100.
The classifier has an input feature dimension of 100 and an output dimension corresponding to the number
of classes, which is 2.

We frequently employ Accuracy as the primary evaluation metric for binary classification tasks,
including the detection of fake news. Nonetheless, the reliability of Accuracy is significantly undermined
when dealing with datasets that exhibit class imbalance. To address this limitation, our experimental
framework incorporates a suite of complementary metrics alongside Accuracy. Specifically, we introduce
Precision, Recall, and the F1 score to provide a more nuanced and comprehensive assessment of our model’s
performance in the context of rumor detection.

5.3 Baselines
We compare the following baseline models with our model:

• SVM-TS [37]: SVM-TS detects fake news using heuristic rules and a linear SVM classifier.
• CNN [9]: This CNN-based method learns feature representations for early misinformation detection by

analyzing posts in fixed-length sequences.
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• GRU [12]: The GRU model, an RNN variant, excels at capturing contextual information from related
posts over time.

• TextGCN [38]: TextGCN uses graph convolutional networks to improve word and document embed-
ding, viewing the corpus as a heterogeneous graph.

• EANN [39]: EANN, a GAN-based model, extracts event-invariant features for new event detection.
• RumorGAN [11]: RumorGAN generates conflicting or uncertain signals to strengthen the discriminator

(GRU), enabling it to learn more robust representations of rumors.
• GACL [16]: A GNN-based model using adversarial and contrastive learning to encode global propaga-

tion, resist noise and adversarial samples, and capture event-invariant features.
• BiGCN [14]: BiGCN is a model based on GCN, which can embed propagation structure and diffusion

structure at the same time.

5.4 Comparative Experimental Results and Analysis

Table 2 presents the experimental outcomes for our approach and the baseline methods. Key observa-
tions include:

Table 2: The performance results of the comparison methods on Weibo and PHEME

Method Weibo PHEME

Class Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

SVM-TS R 0.64 0.741 0.573 0.646 0.639 0.546 0.576 0.560
N 0.651 0.798 0.711 0.729 0.705 0.717

CNN R 0.74 0.736 0.756 0.744 0.779 0.732 0.606 0.663
N 0.747 0.723 0.735 0.799 0.875 0.835

GRU R 0.702 0.671 0.794 0.727 0.832 0.782 0.712 0.745
N 0.747 0.609 0.671 0.855 0.896 0.865

TextGCN R 0.787 0.925 0.573 0.727 0.828 0.775 0.735 0.737
N 0.712 0.985 0.827 0.827 0.828 0.828

EANN R 0.782 0.827 0.697 0.756 0.681 0.685 0.664 0.694
N 0.752 0.863 0.804 0.701 0.750 0.747

RumorGAN R 0.867 0.906 0.815 0.858 0.783 0.725 0.772 0.748
N 0.826 0.917 0.869 0.845 0.794 0.818

GACL R 0.915 0.928 0.947 0.937 0.850 0.801 0.750 0.774
N 0.872 0.912 0.892 0.871 0.901 0.885

BiGCN R 0.919 0.936 0.952 0.944 0.847 0.820 0.787 0.803
N 0.901 0.894 0.897 0.862 0.883 0.872

Ours R 0.941 0.937 0.957 0.947 0.868 0.832 0.769 0.799
N 0.946 0.922 0.931 0.884 0.919 0.901

(1) Across all datasets, SVM-TS underperforms, suggesting that manually engineered features may be
inadequate for fake news detection.
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(2) Deep learning models (CNN, GRU, RumorGAN, GACL) surpass SVM-TS, highlighting their
advantages over conventional techniques.

(3) Our method is superior to other methods in both data sets, which proves the effectiveness of feature
fusion in temporal domain and spatial domain.

5.5 Ablation Study
We did an ablation study to see whether each module contributes to the model and which modules

contribute more. Our model’s main components include SBERT, GCN, and GRU. Based on the complete
model, we systematically remove the module and compare their changes in accuracy, precision, recall, F1
value. Fig. 5 shows the experiment results.

Figure 5: Ablation study results

The ablation study reveals that the performance of the model is significantly reduced when any of the
components (SBERT, GCN, or GRU) are removed. This confirms that each module makes a meaningful
contribution to the model’s overall ability to detect rumors accurately.

• Full Model. The complete model, which integrates SBERT, GCN, and GRU, achieved the highest
performance across all metrics. This demonstrates that combining textual, spatial, and temporal features
results in a robust and accurate rumor detection system.

• Without SBERT. Removing the SBERT module resulted in the greatest performance drop, underscoring
the importance of textual information in detecting rumors. Without SBERT, the model struggled to
differentiate between rumor and non-rumor text effectively.

• Without GRU. When the GRU module, responsible for extracting temporal features, was removed,
the model’s ability to capture the dynamic evolution of rumors over time was significantly hindered.
This resulted in reduced recall and F1 scores, demonstrating that the temporal dimension is crucial for
effective rumor detection, especially in understanding how rumors evolve over time.

• Without GCN. The removal of the GCN module also led to a noticeable decline in performance,
particularly in accuracy and recall. This suggests that the GCN’s ability to capture spatial features in the
propagation structure of rumors is essential for improving the model’s ability to identify and track the
spread of rumors in the network.

5.6 Impact of Parameters
Next, we evaluated the impact of several key parameters in our method, with validation results shown

in Fig. 6. We selected three parameters for validation: RNN type, learning rate, and number of iterations.
The choice of these hyperparameters was guided by several considerations. First, the RNN type (such

as LSTM, GRU, or Simple-RNN) was chosen based on its ability to capture the temporal dynamics of
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rumor propagation, with LSTM and GRU generally offering better performance in handling long-term
dependencies in time series data. Second, the learning rate was selected as a crucial factor influencing the
convergence speed and stability of the model. Lastly, the number of iterations was determined by balancing
model training time and accuracy. Too few iterations may result in underfitting, while too many could lead
to overfitting or unnecessary computational overhead.

For these three parameters, we used cross-validation to assess performance on the Weibo dataset,
which served as a case study in our experiments. To ensure the robustness of the results, we kept the other
parameters fixed at their optimal values while adjusting one parameter at a time. This allowed us to isolate
the effects of each parameter and find the best configuration for the task at hand. The final hyperparameter
values were selected based on the validation performance, ensuring the model achieved the best possible
balance between accuracy and computational efficiency.

Figure 6: Impact of RNN types, learning rate and epoch

In Fig. 6, the x-axis represents different types of RNNs, learning rates, and iteration epochs, while the
y-axis displays the values of accuracy, precision, recall, and F1 score. The curves in different colors represent
the variation trends of different evaluation metrics.

5.7 Case Study of Explanation
After obtaining the model’s classification results, we used a LLM to explain these results, particularly

for events classified as rumors by the model. We chose Llama-3-8B as the interpreter and selected a real
tweet from the Weibo dataset as an example. The tweet’s main content discussed China’s supposed plan to
implement a “polyandry” system. Table 3 shows the prompts and the outputs.

Table 3: The performance results of the comparison methods on PHEME

Prompt of Step 1 There was a Weibo post: “#Polyandry# was jointly decided by the Ministry of
Human Resources, the Standing Committee, and representatives of the
Political Consultative Conference. According to the Constitution and

Marriage Law of China, starting from August 26, 2013, polyandry can be
practiced, and corresponding subsidies can be obtained from government

departments.”
There are some comments on the Weibo post: “Can someone tell me if this is

true or not???? “, ” Polyandry... but I only want the right person. “, ” Whoa!
[Shocked][Shocked] “, ” Is this a joke [Scared] “......

This Weibo post is a rumor. Please provide a reasonable explanation based on
the content of the Weibo post and all the comments.

(Continued)
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Table 3 (continued)
Output of Step 1 Dear netizens, the information you’ve seen regarding “polyandry” is

unverified and should be regarded as an online rumor. Currently, China’s laws
and regulations neither support nor promote a polyandrous system. We

recommend that everyone remain rational when encountering such messages
and avoid believing unverified statements. In the internet age, it’s especially

important to discern truth from falsehood to avoid being misled. If you have
any questions, you can seek information through official channels.

Prompt of Step 2 There was a Weibo post: “#Polyandry# was jointly decided by the Ministry of
Human Resources, the Standing Committee, and representatives of the
Political Consultative Conference. According to the Constitution and

Marriage Law of China, starting from August 26, 2013, polyandry can be
practiced, and corresponding subsidies can be obtained from government

departments. “
There are some comments on the Weibo post: “ [failure]? ? ? ? Am I blind or
blind?”, “So awesome, haha! Long live women!”, “This is fake ==The original

article is from 2011... old news, fake news ==“......
This Weibo post is a rumor. Please provide a reasonable explanation based on

the content of the Weibo post and all the comments.
Output of Step 2 The content of this Weibo post lacks factual basis and contains multiple

logical and chronological inconsistencies. Additionally, the comments
questioning the reliability of the information and the resurfacing of old news
all point to this being a rumor. We should approach such information with

caution and rely on trustworthy news sources to obtain accurate facts.
Final output This Weibo post is a rumor for the following reasons:

The policy change described in the post is significant, yet its announcement is
informal and does not follow the proper procedures for introducing policies.
There is a lack of official or legal evidence to support the claim, and there are

no relevant provisions in the Constitution or Marriage Law.
The reactions from commenters are limited, showing only surprise and

occasional approval, without providing enough information to determine if
they truly understand or agree with the policy.

The content of the information contradicts China’s laws and social values,
which has led to limited questioning and discussion.

We employed CoP method, where multiple steps of prompts were used to obtain the final output. The
selected example contained 143 reposts or comments, with 113 remaining after removing empty entries. We
set the number of comments included in each reasoning step to K = 5, resulting in a total of 23 reasoning
steps. Table 3 includes the first two reasoning steps’ prompts and outputs, as well as the final model output.

In Table 3, the sentences highlighted in blue represent the tweet, the green sentences represent com-
ments, and the red sentences provide evidence that the event is a rumor. From the red text, we can observe
that as the reasoning steps progressed, the amount of evidence in the output increased, while irrelevant
sentences decreased.
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In the first reasoning step, only one sentence was able to explain why the tweet was a rumor, and it
didn’t consider the comment information. However, in the second reasoning step, there were two sentences
serving as evidence for the tweet being a rumor, and the model began to take comments into account, using
them to explain why the tweet was classified as a rumor. After 23 reasoning steps, the final output provided a
comprehensive explanation of the rumor, covering four key points: 1) It did not follow proper policy-making
procedures; 2) It lacked legal basis; 3) There was limited reaction in the comments; 4) It contradicted China’s
social values.

The advantage of this method lies in its ability to automatically generate highly persuasive explanatory
text for rumors, without requiring manual refinement of language. Additionally, it is simple to use, requiring
only carefully designed prompts. However, its limitation is that it cannot reveal the internal mechanisms of
the model’s prediction algorithm.

6 Conclusions
This paper proposes a novel rumor detection method that integrates temporal and spatial features, and

builds upon this by introducing Llama-3-8B to explain the detection results. Different from the existing
methods, our method can detect rumors more accurately and automatically generate text to explain the
detection results. Through experiments on the Weibo and PHEME datasets, we demonstrate that this
method outperforms existing models. Ablation studies confirm the importance of each model component,
particularly the SBERT module, highlighting the critical role of textual information in rumor detection. Case
studies show that our approach effectively explains the detection results. Although our model performs well,
we recognize the importance of continuous improvement to address the issue of social media rumors. Future
research will focus on expanding the model’s adaptability and exploring its application across various data
sources and emerging platforms. Our work represents a significant step forward in the fight against online
rumors, laying a solid foundation for the development of more complex detection systems.
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