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ABSTRACT: Image classification is crucial for various applications, including digital construction, smart manu-
facturing, and medical imaging. Focusing on the inadequate model generalization and data privacy concerns in
few-shot image classification, in this paper, we propose a federated learning approach that incorporates privacy-
preserving techniques. First, we utilize contrastive learning to train on local few-shot image data and apply various
data augmentation methods to expand the sample size, thereby enhancing the model’s generalization capabilities
in few-shot contexts. Second, we introduce local differential privacy techniques and weight pruning methods to
safeguard model parameters, perturbing the transmitted parameters to ensure user data privacy. Finally, numerical
simulations are conducted to demonstrate the effectiveness of our proposed method. The results indicate that our
approach significantly enhances model generalization and test accuracy compared to several popular federated learning
algorithms while maintaining data privacy, highlighting its effectiveness and practicality in addressing the challenges
of model generalization and data privacy in few-shot image scenarios.

KEYWORDS: Federated learning; contrastive learning; few-shot; differential privacy; data augmentation

1 Introduction
With the increasing of the number of categories covered by image classification systems, the cost

of annotating large datasets rises sharply, especially for rare categories [1]. To train high-performance
classification models, a significant quantity of labeled data is needed [2]. However, in many practical
applications, obtaining such data is not only difficult but also expensive [3]. This is particularly true in
scenarios involving sensitive data, such as medical images [4], financial data, or personal health records,
where traditional centralized learning methods cannot meet privacy protection requirements. Because of
this, few-shot learning is particularly important for image classification problems, where it is difficult to train
a model with high generalization skills using a limited number of labeled samples [5]. The few-shot image
classification problem has substantial practical significance in the context of federated learning [6]. To solve
this problem, federated learning (FL) is essential [7]. Federated learning efficiently preserves data privacy and
removes the need to upload sensitive data to a central server by allowing local model training on individual
clients and aggregating model parameters on a central server [8]. However, the application of federated
learning in few-shot image classification presents a prominent challenge: as each client has only a limited
number of samples, the resulting model is prone to overfitting [9], leading to inadequate generalization
capabilities. To address this issue, data augmentation becomes an important technique. By expanding the
limited training data, data augmentation improves the model’s adaptability to unknown data [10], thereby
mitigating overfitting. However, within the federated learning framework, despite ensuring data privacy, the
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model training process may still involve the transmission of gradients or model parameters, which introduces
potential privacy leakage risks [11]. Even if the raw data is not directly shared, gradients or model parameters
may still contain sufficient sensitive information, leading to the leakage of individual data points. To further
enhance privacy protection, differential privacy techniques are introduced. By adding noise to the weights
during model training, differential privacy ensures that model updates do not reveal any detailed information
about individual data points, thereby maximizing data privacy protection.

In this paper, we address the requirement on both model generalization and data privacy and propose
one differential federated few-shot contrastive learning (DFFCL) method. The main contributions include
the following three aspects:

(1) To address the limited sample size and weak feature learning capabilities of models in few-shot
datasets, we incorporate the few-shot contrastive learning into the federated learning framework. The
resilience and generalization of the global model during aggregation are enhanced by using local devices
to carry out the few-shot contrastive learning, which allows each device to efficiently update its model
depending on its unique data properties.

(2) We employ the PatchMix augmentation techniques for few-shot image datasets to enhance the
training set and boost model generalization. Moreover, methods like rotation, flipping, Gaussian noise, and
color transformation, including PatchMix data augmentation, are utilized to improve the model capacity
for extensibility.

(3) We combine the local differential privacy and model pruning techniques in the federated learning
framework; in this way, we resolve the issue of traditional differential privacy techniques requiring a trusted
central party to manage data and enforce privacy protections. By pruning local model weights and adding
Laplacian noise, the model’s adaptability to the data is limited, ensuring privacy protection while maintaining
predictive capabilities, thus making federated learning more secure and reliable in few-shot scenarios for
protecting client privacy.

2 Related Works

2.1 Federated Few-Shot Contrastive Learning
Federated learning has recently gained popularity as a decentralized method for improving privacy

protection [12]. It protects privacy by allowing the aggregation of locally updated models from client devices
to produce a shared model while guaranteeing that only local clients can access the original data [13].
Researchers have been concentrating on employing Few-Shot Learning (FSL) in federated learning contexts
to address the problem of inadequate labeled training data on participating clients in federated learning.
In [14], Li et al. proposed a differential private technique to safeguard parameter transmission between
devices or learning stages, which is one study that links few-shot learning with federated learning. However,
federated learning and few-shot learning are treated as two independent applications, and the goal of [14] is
to protect data privacy during model sharing rather than to execute few-shot learning on federated devices.
Fan et al. in [15] were the first to introduce Federated Few-Shot Learning (FedFSL), where they proposed
adversarial learning techniques and refined client models to create a more distinct feature space, better
suited for representing unseen data samples. Building on this, Wang et al. in [16] introduced a federated few-
shot learning architecture, employing two independently trained models and a tailored training strategy to
address the challenges of global data variability and local data insufficiency. Yao et al. in [17] addressed data
heterogeneity with graph-aided federated learning and a few-shot node inhibition mechanism, optimizing
client relationships. In contrast, combining contrastive learning and data augmentation enhances feature
learning and model generalization in few-shot tasks. Hoang et al. [18] explored federated few-shot learning
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for cough classification on edge devices, focusing on effective classification with limited samples while
protecting data privacy and reducing computational load. The personalized federated few-shot learning
method proposed by Zhao et al. [19] can effectively improve model performance in decentralized data
environments, but it has limitations in enhancing model generalization.

Compared to traditional federated few-shot learning methods, contrastive learning-based approaches
can better leverage the limited training data, achieving better performance in more complex visual tasks. It is
becoming more and more clear that the contrastive learning based federated few-shot learning approach is
preferable in terms of innovation. The model can better capture generalizable feature representations through
contrastive learning by leveraging similarities and differences between different clients.

2.2 Data Augmentation
Since well-designed methods can greatly enhance the performance of models, data augmentation is

essential to deep learning [20]. Common data augmentation methods include Cutout [21], CutMix [22],
AugMix [20], and so on. Cutout, introduced in [21], involves removing portions of the input image during
training, while CutMix, presented in [22], enhances model performance by blending patches of varying sizes
and applying similar labels. AugMix, described in [20], combines multiple augmented input images with
randomly selected weights. Additionally, MaskMix employs a multi-path weighted fusion strategy to further
improve the quality of the transformed image pairs [23].

It is important to mention that PatchMix, as proposed in [24], tailors image frames for enhancement,
effectively reducing inductive bias and enhancing federated few-shot learning. Therefore, this paper incorpo-
rates PatchMix, applying a randomly selected scale for each patch generation, which significantly increases
data diversity and better facilitates the model ability to learn comprehensive, holistic features by exposing it
to variations in patch size.

2.3 Differential Privacy
Differential privacy (DP) has emerged as the benchmark for publishing and analyzing sensitive data,

attracting widespread attention [25]. But most differential privacy studies focus on centralized settings [26].
The application of local differential privacy (LDP) [27] has become increasingly widespread to eliminate the
dependency on trusted central parties in differential privacy techniques. In LDP, each participant locally
protects data privacy, thus safeguarding user privacy. Pittaluga et al. in [28] proposed a new image feature
privatization method, which relies on local differential privacy with strong privacy guarantees. However,
in federated learning, data still needs to be shared among different participants, which may lead to some
privacy leakage. Ni et al. in [29] adopted a dual randomization data perturbation technique, allowing users
to perturb their private values locally. However, this approach requires additional communication overhead
to ensure data privacy. Sun proposed an adaptive weight clipping method in [30], applying varying degrees
of noise perturbation to different layers’ weights rather than the weights themselves. However, it should be
noted that the method in [30] relies on specific network structures or tasks.

In this paper, we apply weight pruning on local clients and introduce local differential privacy noise
prior to transmitting the pruned weights to the server for aggregation. This approach mitigates the risk of
overfitting and enhances the model’s generalization performance.
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3 Theoretical Foundation

3.1 Contrastive Learning
Contrastive learning is an approach that directly learns the similarity and dissimilarity between different

samples and applies this to downstream tasks. In contrast to supervised learning, where samples are directly
labeled, contrastive learning is commonly used in scenarios where labeled data is scarce [31]. The principle of
contrastive learning is to emphasize the relative distance between samples in the feature space, which enables
better discrimination between different samples. By using a contrastive loss, the model is optimized to make
the learned feature space reflect the inherent relationships between samples. Contrastive learning excels
in limited-sample training because it learns richer feature representations by comparing pairs of samples.
By maximizing similarity between similar samples and minimizing distance between dissimilar ones, this
approach helps the model deeply understand the data. With limited data, contrastive learning effectively
captures intrinsic data structure, reduces overfitting, and improves generalization to new samples, boosting
classification accuracy [10].

In a few-shot learning setup, a limited set of labeled samples, called support samples, is used to guide
model training, whereas the remaining samples serve as query samples. This setup divides the few-shot
problem into two types: “shot,” which refers to the number of samples per class, and “way,” which refers to
the number of classes. The main aim of contrastive learning is to make the distance between support samples
and query samples in the feature space as optimized as possible. The typical contrastive loss can be expressed
as:

Li j = − log
exp(sim(xi , x j)/τ)

∑2N
k=1 exp(sim(xi , xk)/τ)

, (1)

where the query sample, the positive support sample, and the negative support sample are denoted by xi , x j,
and xk , respectively; τ is a temperature parameter that regulates the distribution’s sharpness.

Remark 1. The model draws samples from the same class closer in the feature space while simultaneously
separating samples from other classes due to the contrastive loss in (1). This aspect of contrastive loss allows the
model to capture feature representations that generalize well across different classes, even with very few labeled
samples [4,32].

3.2 Data Augmentation Method: PatchMix
The main idea of PatchMix proposed in [24] is to incorporate patches from different parts of an image

into the training process, enhancing the data variety and reducing the model reliance on simple correlations
in the image. The model is used to learn the true semantic characteristics of the image. Fig. 1 illustrates the
PatchMix augmentation process, where the key idea is to extract patches from different parts of the original
image and mix them into the query image to generate augmented samples.

More specifically, PatchMix operates on each query sample xi with label yi , as well as another sample xk
with label yk , where the patch p from xk is swapped into the query sample xi . For example, as shown in Fig. 1,
a random region [w1 ∶ h1 , w2 ∶ h2] from xk is extracted, where [w1 ∶ h1] represents the top-left corner and
[w2 ∶ h2] represents the bottom-right corner. This patch p from xk is then mixed into the corresponding
region of the original image xi . Each mixed patch p retains its original label, ensuring that the region remains
associated with its original class. The specific operation is as follows:

xi[w1 ∶ h1 , w2 ∶ h2] = xk[w1 ∶ h1 , w2 ∶ h2]. (2)
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Figure 1: PatchMix data augmentation process

Remark 2. In standard training, models often pick up biases, focusing on background features over key objects,
which leads to overfitting and poor generalization. PatchMix tackles this by augmenting data with mixed patches
that retain class labels, helping models to distinguish task-relevant (causal) features from incidental (non-causal)
ones. This reduces dependency on superficial correlations, improving the model adaptability across diverse
environments essential for real-world applications where datasets often lack full coverage due to cost, privacy,
or physical limits. To mitigate mislabeling and irrelevant background interference, we could select patches from
images with similar labels.

3.3 Differential Privacy Technique
Dwork first proposed differential privacy in [25], providing a strong privacy protection paradigm

independent of past information. The Laplace mechanism is a main tools used to achieve differential
privacy [33]. The Laplace mechanism is typically used for numerical data. By preventing user data from being
disclosed during the model aggregation process, the use of differential privacy in federated learning further
improves data privacy. The ability to generalize is further improved since, even after adding noise, the data
from a single user won’t have a major impact on the global model.

Given a dataset D and a query function or algorithm K, definitions on ε-differential privacy, sensitivity,
and Laplace mechanism are defined as follows.

Definition 1. A mechanism K is regarded as providing ε-differential privacy under the condition that, given
any two neighboring datasets D and D′ which vary in only one element, and for any subset of outputs S, the
following inequality holds:

Pr[K(D) ∈ S] ≤ exp(ε) ⋅ Pr[K(D′) ∈ S]. (3)

where ε is a non-negative privacy parameter that controls the privacy guarantee. A small ε provides stronger
privacy guarantees.

Definition 2. For a query function K that maps the dataset D toR
d , the sensitivity Δ f of K, which represents

the greatest alteration in the output resulting from any single modification in the input, is defined in the
following way:

M(D) = K(D) + Lap(Δ f /ε). (4)

Definition 3. The Laplace mechanism incorporates random noise that is drawn from the Laplace distri-
bution. The scale parameter for this noise is set as Δ f /ε. Here, Δ f stands for the sensitivity of the query
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function, while ε plays a role in governing the magnitude of the noise. The noise has a standard deviation of
Δ f /ε.

Remark 3. The Laplace mechanism guarantees that the output of the query function won’t change substantially,
irrespective of whether an individual’s data is contained within the dataset. In this way, it offers protection against
potential privacy attacks that aim to deduce information regarding individual data entries.

4 Main Method
In this section, we will illustrate the main results of this paper, including the overall system design,

federated few-shot learning, PatchMix augmentation, and local differential privacy-based model protection.

4.1 Overall System Design
To carry out the task of few-shot image classification, we aim to address these two important problems:

model training and data privacy protection. In this paper, we enhance the generalization ability of the model
by employing data augmentation methods such as PatchMix for few-shot data and leveraging differential
privacy techniques to protect sensitive data. Based on the federated learning framework, a novel few-shot
image classification method that ensures privacy protection is proposed. The research framework of DFFCL
is shown in Fig. 2.

Figure 2: DFFCL framework diagram

In Fig. 2, the DFFCL framework illustrates a decentralized learning scenario involving m clients. Each
client i (i = 1, . . . , m) maintains its local model parameters, ωi , and optimizes its own local loss function
L(ωi). The clients utilize local few-shot datasets and apply techniques such as contrastive learning and
data augmentation to enhance image classification capabilities. To ensure data privacy and security, local
differential privacy mechanisms, including weight pruning and noise injection, are implemented before
model updates are uploaded to the cloud server. In addition to enhancing the model performance in
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scenarios with limited data samples, our method protects user privacy when training collaboratively. For
every client i, the local objective is specified as follows:

min L(ωi) =
1

Qi

Qi

∑
i=1

f (xi , yi ; ωi), (5)

where Qi is the number of data owned by client i; xi and yi represent the data samples and their labels,
respectively; f (⋅) is the local evaluation function used to assess the model’s prediction loss on data samples.
It is assumed that all clients have a similar loss function. The global objective is the weighted average of the
local objectives, which is defined as:

min L(ω) =
m
∑
i=1

Qi

Q
L(ωi), (6)

where L(ω) is the global loss function, and ω is the global model parameters, and Q is the total number of
data samples of all the m clients.

4.2 Federated Few-Shot Learning
4.2.1 Client-Side Few-Shot Contrastive Learning

We will describe in this section how to incorporate few-shot contrastive learning into the federated
learning architecture.

Let’s start by thinking about how to use the federated learning strategy to carry out the local training
on each client i. The federated few-shot learning used in this paper is N-way k-shot. Also, we assume that: 1)
each client’s local dataset contains support images from N classes. 2) For each class, it has k support images
and nq query images. In FSL, for each training session or query sample xq

i , there is a corresponding label yq
i .

Therefore, for each query sample, support samples sharing the same label are considered positive examples,
while those assigned different labels are treated as negative examples. Positive and negative examples in the
support set are distinguished by xs

j and xs
k , respectively. And the corresponding labels are presented by ys

j and
ys

k , respectively. Let Φ represent the embedded network, and the deep learning-based embedded network
is ResNet12 proposed in [34]. The client-side few-shot local contrastive learning procedure is illustrated
in Fig. 3.

The N-way k-shot setting is used for both training and testing. z represents the output features of the
embedding network Φ, whereas zs

j and zs
k stand for the positive and negative output features, respectively.

Motivated by [35], in this paper, we assume that both zs
j and zs

k have been normalized, so no further
normalization of the output features is required.

For learning from a partial view of the image, each query sample xq
i is divided into w × h patches. For

each small patch of query sample xq
i , it is denoted as xq

iw h , labeled as yq
iw h , and output feature denoted as

zq
iw h . Similarly, the support image also undergoes random masking, and part of the support image is selected

and input into the embedding network Φ. Random masks can be used to help models better learn invariant
features. By using random masks, the model can be trained in different contexts, thereby improving its
adaptability to different backgrounds and targets. Random masks and PatchMix will not conflict. In fact, they
can be combined to improve the model. Certain parts of the input image can be changed during each training
session, providing the model with more diversity and broader feature learning, which can help reduce the
impact of label errors.
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Figure 3: Client-side few-shot local contrastive learning

For both query and support samples, identical embedding networks Φ are applied. Motivated by [36],
the loss function for a small query sample xq

iw h is expressed:

L = − log
⎛
⎜
⎝

∑ys
j=yq

i
ezq

iwh ⋅z
s
j

∑ys
j=yq

i
ezq

iwh ⋅z
s
j +∑ys

k≠yq
i

ezq
iwh ⋅z

s
k

⎞
⎟
⎠

, (7)

where zq
iw h ⋅ z

s
j represents the inner product between the features of the query zq

iw h and positive support
image zs

j . Similar for the inner product of zq
iw h ⋅ z

s
k . Keep in mind that the goal of (7) is to minimize the inner

product for the negative support images and maximize it for the query and positive support images.
For a given query image, the dot product of the features between all support samples is calculated, while

the network Φ is frozen during the test phase. For each query sample xq
i , its feature zq

i is first obtained. Then,
the support sample zs

j with the largest inner product with respect to zq
i is identified as:

j∗ = arg max
j

zq
i zs

j . (8)

Finally, the prediction result yq
i = ys

j is obtained, yielding the classification outcome for the query image.

4.2.2 Server-Side Model Aggregation
In the federated learning context, the training data is spread across different devices. Also, each device

is responsible for data with several specific types. Specifically, we consider the local training on each device
i. The device i has local dataset Di , updates its model parameters by reducing its local loss function. The
objective of each device is to reduce the local loss. All the m devices communicate with the server through
periodic aggregation iterations.

During every training iteration t, the local model parameter of each device ωt
i is updated as follows:

ωt+1
i = ωt

i − α∇L(ωt
i), (9)
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where ωt+1
i denotes the newly refined local model weights after the t-th training iteration, α is the learning

rate, and∇L(ωt
i) is the gradient of the local loss function L concerning the model parameters ωi . Once local

training on all the m devices is completed, each device i sends its updated model parameter ωt+1
i to the server

for model aggregation. The server then combines the weights from all the m devices to obtain the updated
global model.

To implement weighted aggregation based on local validation loss, a weighted average formula is
introduced. The loss of each client i on its local validation set is denoted as Li , and the weighting factor
is represented as βi = 1

Li
, where a lower loss corresponds to a higher weight. The aggregated global model

parameter ωt+1 can be expressed as:

ωt+1 = ∑
m
i=1 βi ωt+1

i

∑m
i=1 βi

. (10)

Here, m represents the total number of devices that are taking part, and ωt+1 refers to the aggregated
global model parameters. At the conclusion of each aggregation round, the server transmits the revised global
model parameters ωt+1 to all m devices. Subsequently, these devices utilize these parameters during the
following training cycle.

4.3 PatchMix Augmentation for Few-Shot Image Data
In this section, we explain how model generalization is achieved through the implementation of the

PatchMix augmentation method.
It should be noted that the classification model may fare well in generalizing training data for few-shot

image classification. We use the PatchMix image augmentation method to address the challenge of learning
from small amounts of training data in new scenarios and improve the model’s generalization across target
classes. We do this by randomly blending query images with patches from other images to improve training
and reduce the risk of overfitting.

For each query image {xq
i , yq

i } with width W and height H, another query image is randomly selected
as gallery image {xs

k , ys
k}, and information is collected from this gallery image for replacement. Next, a frame

is randomly selected with width ŵ and height ĥ. A random variable λ that follows the uniform distribution
is chosen between [0, 1], and the value of width ŵ of the frame is obtained by multiplying the image width W
by
√

1 − λ, while the value of height ĥ of the frame is obtained by multiplying the image height H by
√

1 − λ.
The aforementioned procedure is specified as:

λ = Unif[0, 1],
ŵ =W

√
1 − λ,

ĥ = H
√

1 − λ,

(11)

where Unif[0, 1] indicates the uniformed distribution between 0 and 1. Moreover, the center (cw , ch) of the
patch p is random chosen as:

cw = Unif[w/2, W −w/2],
ch = Unif[h/2, H − h/2].

(12)
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Let w1 , w2, h1 , h2 be the left, right, top, and bottom boundaries of the frame with center coordinates
(cw , ch), width ŵ, and height ĥ. Then, a mask M and the mixed image x̂ q

i can be generated as:

M =
⎧⎪⎪⎨⎪⎪⎩

1, if w1 ≤ i ≤ w2, h1 ≤ j ≤ h2,
0, otherwise,

(13)

and

x̂ q
i = M ⊙ xs

k + (1 −M) ⊙ xq
i . (14)

Unlike CutMix, which uses image-level labels, PatchMix retains pixel-level labels for supervision. The
selected patch is remapped to the original query image xq

i , with its placement in xq
i determined based on

specific design criteria as:

w′1 =
w1

W
, w′2 =

w2

W
,

h′1 =
h1

H
, h′2 =

h2

H
.

(15)

(15) maps the position back to the original query image xq
i . Moreover, the new label Yi , j is applied to

the blended image as:

Yi , j = {
ys

k , if w′1 ≤ i ≤ w′2, h′1 ≤ j ≤ h′2,
yq

i , o.w..
(16)

Eventually, the blended image xq
i is fed into the embedding network Φ and integrated with the original

few-shot image data. In this way, the augmented data with label Yi , j is generated and to be used in the model
training procedure.

4.4 Model Protection Based on Local Differential Privacy
By including privacy-preserving noise in the local model update procedure, differential privacy is

accomplished. Each client updates its model in this work using local data of its own. Without interacting
with the server or other clients, this operation is carried out locally. To safeguard privacy, noise is injected to
the model weights after the model updates. In this context, local differential privacy is used to safeguard the
privacy of model updates, with a primary focus on noise addition, sensitivity calculation, and weight clipping.

In order to prevent any one weight element from making an excessive contribution to the model update,
weight clipping is first used. This can increase the model’s robustnes by reducing the impact of individual
data points. The following is the definition of the clipping process:

ωclipped
i = ωi ⋅min(1, C

∥ωi∥2
) , (17)

where ωi represents the model weights, C is a hyperparameter denoting the clipping threshold, and ∥ωi∥2
indicates the 2−norm of ωi . The value of C is adjusted according to the specific requirements of the model
and the privacy budget.

Next, the sensitivity Δ f of the Laplace noise is determined, which is defined as the maximum difference
in model weights computed from any two neighboring datasets. For the updated model weights, the change
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in each element is limited by the sensitivity Δ f . Therefore, weight clipping helps bind the sensitivity of the
model updates.

Finally, to ensure privacy protection for each weight update, the Laplace noise is added to the clipped
model weights as:

ωprivate
i = ωclipped

i + Lap(C/ε), (18)

where Lap(C/ε) represents Laplace noise with scale parameter ε is the privacy budget, and ωprivate
i indicates

the noised-added model weights. While local differential privacy and weight clipping may affect few-shot
learning performance, optimizing noise and clipping can reduce this impact. Contrastive learning and data
augmentation further balance data privacy and classification accuracy.

Remark 4. In this paper, we choose the values of ε and C carefully because they directly impact the balance
between privacy protection and accuracy. Smaller ε results in stronger privacy protection but will add more noise
to the model, which may affect the classification accuracy. Conversely, a larger ε introduces less noise, providing
weaker privacy protection but maintaining higher classification accuracy.

To further clarify the implementation steps of the above methods, Algorithm 1 summarizes the entire
process of few-shot contrastive learning in federated learning, including PatchMix data augmentation, local
model training on the client side, and the differential privacy-based model protection strategy.

Algorithm 1: Differentially private federated few-shot contrastive learning (DFFCL) with weighted
aggregation and PatchMix augmentation
1: Input: Local datasets {Di}m

i=1 for each client i, privacy parameters ε, C, learning rate α
2: Output: Global model parameters ω(T)
3: for each round t = 1, 2, . . . , T do
4: for each client i = 1, . . . , m in parallel do
5: Local Few-Shot Dataset Preparation:
6: Perform PatchMix data augmentation on local dataset Di
7: Client-side Few-Shot Contrastive Learning:
8: for each query sample xq

j in Di do
9: Extract feature zq

j = Φ(xq
j )

10: for each support sample xs
j in the support set of xq

j do
11: Extract feature zs

j = Φ(xs
j)

12: Compute similarity s j = zq
j ⋅ zs

j
13: end for
14: Identify j∗ = arg max j s j for highest similarity
15: Predict label ŷq = ys

j∗

16: end for
17: Model Training with Local Objective:
18: for each local iteration do
19: Update local model parameters ω(t+1)

i = ω(t)
i − α∇L(ω(t)

i )

20: Clip weights: ωclipped
i = ωi ⋅min(1, C

∥ωi∥2
)

21: Add noise for differential privacy: ωprivate
i = ωclipped

i + Lap(C/ε)
22: end for

(Continued)
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Algorithm 1 (continued)
23: Compute validation loss Li on local validation set
24: Compute weight βi =

1
Li

25: Send ωprivate
i and βi to the server

26: end for
27: Server: Aggregate model parameters using weighted average:

28: ω(t+1) = ∑
m
i=1 βi ⋅ ωprivate

i

∑m
i=1 βi

29: end for

5 Experiments Results and Analysis
The settings of our few-shot image categorization approach are demonstrated in this section.

5.1 Experimental Environment
A system running Ubuntu 20.04.6 with deep learning frameworks based on Pytorch 2.0.0 was used for

the studies. Python 3.9.17 was the programming environment. The GPU was an NVIDIA GeForce RTX 4090,
and the CPU was an Intel Xeon Platinum 8336C. 64 GB RAM was also included in the device.

5.2 Datasets
In the experiments, we utilized the MiniImageNet [37] and TieredImageNe [38] datasets. The Mini-

ImageNet dataset comprises 100 classes, each containing 600 images. The TieredImageNet dataset follows a
hierarchical structure, consisting of 608 classes organized into 34 super categories. With 351 classes set aside
for training, 97 for validation, and 160 for testing, it has a total of 779,165 images. Both datasets use images
with a resolution of 84 × 84 pixels. During training, data augmentation was performed by using random
cropping and horizontal flipping.

5.3 Baseline Methods
We contrasted the suggested DFFCL approach with the following five baseline approaches in order

to assess its performance. We reimplemented and improved all baseline procedures in our experiments to
provide a fair comparison. This adjustment guarantees that each method operates under optimized settings,
thereby enhancing the validity and fairness of the experimental results.

• Local: This baseline trains a model independently on each client without any communication
between clients.

• FL-MAML: This approach combines MAML with federated learning [39], enabling local updates on
each client and sending the new model back to the server.

• FedFSL: This approach [15] builds a consistent feature space by combining adversarial learning
strategies [40] and MAML, aggregating based on FedAvg.

• F2L: This method [16] combines meta-learning to construct a consistent feature space, aggregating based
on the FedAvg algorithm.

• DFFCL: The proposed method utilizes contrastive learning with few-shot learning to enhance per-
formance. PatchMix augmentation is applied for more efficient training, and feature aggregation is
performed using FedAvg strategies.
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We created tests with the settings 5-way 1-shot and 5-way 5-shot to assess the model’s performance on
both tasks, since the 1-shot task is a more severe situation and the 5-shot task offers a more difficult scenario.
The model architecture selected was ResNet12, and the TADAM optimization approach was used for opti-
mization. The optimizer we selected was Stochastic Gradient Descent (SGD) [41]. In [42], a gradual decrease
of the learning rate during training was introduced, at an initial learning rate of 0.1. For MiniImageNet, we
trained the model for 120,000 steps with validation every 16,000 steps. For TieredImageNet, training was
conducted for 240,000 steps with validation every 20,000 steps. Regular validation helps assess the model
convergence and prevents overfitting and underfitting issues [39]. For the experiment, we used a test set of
2000 episodes, evaluating four episodes in each testing session, which contributes to stable test results [43].

5.4 Experimental Results and Analysis
5.4.1 Comparison of Classification Accuracy on the MiniImageNet Dataset

Using the MiniImageNet dataset, we first compare the classification accuracy of FL-MAML, FedFSL,
F2L, and DFFCL. We perform trials under both IID and non-IID data partition conditions to demonstrate
the stability of our system across different data distributions. Samples from every class are distributed equally
across all clients in the IID scenario. We use a common strategy uesd in [44,45] for the non-IID situation,
allocating samples to clients using a Dirichlet distribution with a concentration parameter of 1.0. The average
classification accuracy over ten trials is used to evaluate performance.

Table 1 displays the outcomes of the experiment.

Table 1: Comparison on classification accuracy

Distribution IID Non-IID

Method 1-shot 5-shot 1-shot 5-shot
FL-MAML 52.47% 65.59% 47.67% 63.34%

FedFSL 54.36% 70.29% 53.82% 69.23%
F2L 56.31% 74.23% 56.01% 73.24%

DFFCL 58.14% 73.41% 57.15% 72.16%

From Table 1, it is evident that DFFCL, proposed in this study, demonstrates superior performance in
the 1-shot learning task, achieving an accuracy of 58.14% on IID data, outperforming all other methods.
This result indicates DFFCL’s capability in extracting robust feature representations under extreme few-
shot conditions by effectively utilizing the limited information available. For the 5-shot learning scenario,
DFFCL scores 73.41%, which, while slightly lower than F2L at 74.23%, remains competitive. This balanced
performance across both 1-shot and 5-shot tasks highlights DFFCL’s adaptability and generalization strength,
making it a valuable approach in scenarios with constrained data and high variability.

5.4.2 Comparison of Data Augmentation Techniques
In this section, we first conducted comparative experiments focused on data augmentation techniques

using the MiniImageNet and TieredImageNet datasets, specifically within the federated learning framework
for 1-shot and 5-shot tasks. Initially, we compared the local model and the model without PatchMix
augmentation, denoted as DFFCL-P, to perform an ablation study, aiming to examine the effectiveness of
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PatchMix augmentation in federated few-shot image classification. Outcomes of experiment are presented
in Table 2.

Table 2: Results of ablation experiments

Dataset MiniImageNet TieredImageNet

Method 1-shot 5-shot 1-shot 5-shot
Local 55.71% 68.97% 57.59% 77.10%

DFFCL-P 56.62% 71.36% 58.48% 77.76%
DFFCL 58.14% 73.41% 60.67% 78.77%

As shown in Table 2, the DFFCL method delivers notable improvements on both the MiniImageNet and
TieredImageNet datasets. In particular, for the MiniImageNet 1-shot and 5-shot tasks, DFFCL outperforms
other methods, demonstrating an approximately 2% higher accuracy. This performance can be credited to the
implementation of PatchMix, which introduces randomness into the data augmentation process, increasing
data diversity and helping the model capture more robust feature representations. These experiment results
validate the effectiveness of the PatchMix-based data augmentation method in federated learning scenarios.
Similarly, on the TieredImageNet dataset, DFFCL shows a similar trend, with significant accuracy gains
over the baseline and the DFFCL-P models. This confirms the general applicability of the proposed DFFCL
method, not only on MiniImageNet but also on TieredImageNet, where it shows improved performance
across all tasks.

We next contrasted the PatchMix method with the Mixup and AugMix data augmentation techniques
in the 1-shot and 5-shot settings. Table 3 displays the experimental outcomes. PatchMix outperforms Mixup
and AugMix, increasing classification accuracy by roughly 2% for both tasks, as indicated in Table 3. These
findings also show how PatchMix may successfully increase data diversity, which helps the model better
adapt to unseen samples and strengthen its generalization ability on overfitted data.

Table 3: Comparison of classification accuracy among several data augmentation methods

Method 1-shot 5-shot
Mixup 57.18% 71.75%

AugMix 57.74% 72.55%
PatchMix 58.14% 73.41%

5.4.3 Effect of Client Number on Classification Accuracy
We will continue to examine how the quantity of clients affects classification accuracy in this section. As

a case study, we employ the MiniImageNet dataset, with 2, 4, 8, 16, and 32 clients participating, respectively.
With varying client numbers, we assessed accuracy for the 5-way 1-shot and 5-way 5-shot tasks. Fig. 4
provides an illustration of the results.

From Fig. 4, we can observe the following. 1) DFFCL shows a clear trend of accuracy improvement
across all client number settings. With the number of clients increasing, DFFCL improves significantly,
indicating that it adapts well to distributed learning environments and is able to maintain robust feature
representation even when more clients participate. 2) In the 5-way 1-shot scenario, DFFCL maintains stable
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performance even when the number of clients reaches 32, outperforming other methods. In the 5-way, 5-
shot scenario, DFFCL consistently maintains stable accuracy, showing a slight performance decrease as the
number of clients increases but still retaining a clear advantage over the other methods. 3) In contrast,
FedFSIL, F2L, and FL-MAML experience noticeable drops in classification accuracy as the quantity of clients
expands, particularly when the number of clients reaches 32, where the gap between DFFCL and the other
methods becomes more apparent.

Figure 4: Effect of client number on classification accuracy

These experimental results demonstrate the potential of DFFCL in maintaining high accuracy and
stability, even in challenging federated few-shot learning scenarios with increasing numbers of clients.
Whether in situations with small amounts of data (1-shot) or relatively larger datasets (5-shot), DFFCL
exhibits strong robustness, making it particularly suitable for applications requiring distributed learning in
environments with many clients.

5.4.4 Impact of Differential Privacy Noise on Classification Accuracy
The effect of noise on model performance under various parameter settings is further investigated in this

section. Finding the ideal balance between model accuracy and privacy protection is crucial in differential
privacy. The amount of noise supplied grows as the privacy budget ε drops, which can both boost privacy
protection and decrease model accuracy. Table 4 displays the model’s performance under various ε [46] and
C [47] conditions for the 5-way 1-shot scenario with four clients.

Table 4: Experimental results under different ε and C

Setting ε = 0.05 ε = 0.1 ε = 1
C = 0.01 50.36% 52.89% 54.16%
C = 0.05 52.36% 53.34% 54.54%
C = 0.1 53.78% 54.21% 55.54%

From Table 4, one can have that, when ε = 0.05, the classification accuracy is between 50.36% and
54.34%, depending on the value of C. As ε increases (up to 1), accuracy improves progressively. For example,
with ε = 0.1, the accuracy ranges from 52.89% to 55.54%.
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The accuracy improves as the privacy budget rises, according to the results. The model’s performance is
obviously impacted by the additional noise at smaller ε values (stronger privacy protection). This illustrates
how differential privacy noise permits the model to retain a respectable accuracy range despite adding
randomness. A key consideration in federated learning applications with varying privacy needs is the
balance between the ε and C parameters, which can offer both robust model performance and efficient
privacy protection.

To evaluate the performance of the DFFCL in balancing privacy and utility, we compared it with two
privacy-preserving methods, LDP-FedSGD [48] and FedIOD [49], both of which also incorporate privacy
techniques, and the comparison result is shown in Fig. 5. The accuracy of each method increases as the
privacy budget ε increases. Overall, our DFFCL outperforms the two comparison methods across privacy
levels, with its advantage becoming more pronounced as ε grows. This demonstrates DFFCL’s effectiveness
in achieving a superior balance between privacy and model accuracy, especially under large privacy budgets.

Figure 5: Comparison of DFFCL and others

6 Conclusion
In this paper, a federated few-shot learning framework, DFFCL, that incorporates differential privacy

protection to address the unique characteristics and privacy requirements of few-shot image classification
has been proposed. First, contrastive learning has been employed for local few-shot image training, and
the PatchMix has been used for data augmentation to enhance the diversity of the training data. Then,
local differential privacy techniques and weight clipping have been adopted to protect the privacy of
client data during model updates. Also, the effectiveness of DFFCL was verified through experimental
results. Experiment results demonstrated that the DFFCL has a strong capability to effectively handle
limited data and improve generalization performance, especially when enhanced with PatchMix-based data
augmentation, which significantly boosts the model’s ability to generalize.

Future research will explore optimization strategies for federated few-shot learning, including reducing
the communication costs, improving the computational efficiency of few-shot learning in distributed data
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environments. Additionally, there will be further investigation into the specific impact of differential privacy
techniques on model performance to achieve more refined privacy control mechanisms.
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