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ABSTRACT: In the RSSI-based positioning algorithm, regarding the problem of a great conflict between precision
and cost, a low-power and low-cost synergic localization algorithm is proposed, where effective methods are adopted in
each phase of the localization process and fully use the detective information in the network to improve the positioning
precision and robustness. In the ranging period, the power attenuation factor is obtained through the wireless channel
modeling, and the RSSI value is transformed into distance. In the positioning period, the preferred reference nodes are
used to calculate coordinates. In the position optimization period, Taylor expansion and least-squared iterative update
algorithms are used to further improve the location precision. In the positioning, the notion of cooperative localization
is introduced, in which the located node satisfying certain demands will be upgraded to a reference node so that it can
participate in the positioning of other nodes, and improve the coverage and positioning precision. The results show
that on the same network conditions, the proposed algorithm in this paper is similar to the Taylor series expansion
algorithm based on the actual coordinates, but much higher than the basic least square algorithm, and the positioning
precision is improved rapidly with the reduce of the range error.

KEYWORDS: Wireless sensor networks; received signal strength (RSS); optimization algorithm; cooperative localiza-
tion; weighted least squares

1 Introduction

Wireless sensor networks (WSN) can be randomly deployed on a large scale in monitoring areas to
achieve the perception, collection, and processing of regional environment or event information, especially
in areas where people cannot reach dangerous areas, leveraging their advantages of 24-h uninterrupted
monitoring [1]. One of the main contents of environmental or event information monitoring is to grasp the
required data or the location of anomalies to provide services for correct decisions. Therefore, obtaining
location data is one of the important technologies for WSN applications [2,3]. The design of node localization
algorithms is constrained by the inherent characteristics of WSN, such as the dense deployment of nodes, lim-
ited communication and computing capabilities, and low-cost design for long-term network operation [4,5].
In practical applications, it is also necessary to consider the interference caused by obstacles, fading, and
noise in communication channels. Therefore, the design of positioning algorithms should consider multiple
factors to achieve an appropriate balance between performance and cost [6].

Positioning algorithms are usually divided into non-ranging algorithms and ranging algorithms [7–9].
TOA (Time of Arrival), TDOA (Time Difference of Arrival), AOA (Angle-of-Arrival), and RSSI (Received

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.059469
https://www.techscience.com/doi/10.32604/cmc.2025.059469
mailto:changbo@hyit.edu.cn


5080 Comput Mater Contin. 2025;82(3)

Signal Strength Indication) belong to the category of the ranging algorithms, which obtain the node
position coordinates by measuring the distance between nodes or wireless signal arrival angle information,
combined with positioning algorithms. The non-ranging algorithm can locate without inter-node distance or
orientation information, but the positioning accuracy is generally low due to the complex network topology
structure and the lack of full use of known information. In ranging algorithms, TOA/TDOA and AOA
ranging techniques are limited by the power consumption of WSN nodes, and the algorithm design cannot
achieve satisfactory positioning results. The RSSI ranging method utilizes the node’s built-in RF transmission
function, and based on the RSS, models the wireless signal propagation to obtain range information [10].
The advantages of using this method are low power consumption and cost, but the disadvantages are also
obvious, that is, RF signal transmission is greatly affected by environmental factors such as occlusion and
multipath effects, and channel fading is fast. Even at the same distance and in the same environment, RSSI
values may fluctuate [11]. In RF signal transmission modeling, the wireless path fading factor reflects the
overall environmental impact [12]. Therefore, the determination of the fading factor not only affects the
ranging accuracy but also is crucial for the accurate measurement of RSSI values. The general method is to
take multiple measurements and refining algorithms to reduce ranging errors [13].

Given that wireless signal transmission modeling is the foundation of RSS ranging, some scholars have
attempted to estimate its parameters. In [14], based on a detailed study of the statistical characteristics of
RSS measurements, the authors put forward a new weighted algorithm based on RSSI physical distance
to improve the positioning accuracy of traditional positioning algorithms, which achieved significant
advantages in positioning precision. In [15], to raise the precision of RSS ranging, the authors put forward an
RSSI-based distribution positioning method (RDL), which can achieve high positioning accuracy without
dense deployment of nodes. They also analyzed the distribution properties of different nodes at fine-
grained distances and constructed a cell-positioning model. The results showed that compared with existing
methods, the positioning accuracy of RDL has been improved by 50%, with an error of less than 1.5 m. In [16],
the authors first explained the factors that affect positioning precision, including the number and position
of sensors, the quality of received signals, and the principle of using the AOA, TDOA, and RSSI to achieve
positioning, and then the authors used the reference nodes and the arrival interval for node positioning.
The simulation showed that considering time synchronization, the system achieves lower average error for
estimating when using RSSI positioning, indicating that RSSI-based measurements provide higher accuracy
and precision during positioning.

Also based on improving the precision of RSS positioning, both Bayesian and non-Bayesian estimation
methods are applied. The shortcoming of the Bayesian estimation method is that the communication
cost and computing burden are large. Particle filter technology is an implementation method of Bayesian
estimation, especially when dealing with nonlinear and non-Gaussian systems, approximating the posterior
probability distribution in Bayesian estimation through the Monte Carlo method. However, particle filter
technology often encounters difficult problems such as particle degeneration and impoverishment [17],
leading to a decline in the positioning performance of WSN nodes or even making it impossible to implement
positioning. The non-Bayesian estimation method treats the location coordinates of the node to be located
as the determined undiscovered parameters and then uses methods such as the least squares (LS) estimation
method [18] or the maximum likelihood (ML) estimation method [19] to obtain the positioning solution.
In [20], the authors studied the LS collaborative localization problem under an arbitrary non-line of sight
(NLOS) ranging bias, and proposed the positioning error boundary of a network. In this paper, starting
from the Cramer Rao lower limit (CRLB), by quantifying LS, distance square LS, and weighted LS (WLS)
positioning accuracy deviation, the authors put forward a simple LS distributed algorithm that integrates
squared distance relaxation and Gaussian variation information for collaborative localization. In [21], the
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authors proposed a new hybrid collaborative localization scheme based on distance and angle measurements,
which modifies the TOA-AOA and AOA-RSS-based linear least squares (LLS) hybrid schemes and proposed
an optimized version of LLS estimation. Simulation results showed that this algorithm outperforms non-
collaborative algorithms and iterative nonlinear-LS algorithms based on mixture signals.

In recent years, some methods such as semi-definite programming, fingerprint matching, genetic
algorithm, and RSSI quantization have also achieved good results for localization problems. In [22], a new
location algorithm based on collaborative RSS was proposed by combining the semi-definite programming
method to achieve real-time localization. In this algorithm, the relative error estimation and semi-definite
programming (SDP) are used and the CRLB is derived for the collaborative localization based on RSS. Firstly,
the logarithmic normal shadow RSS measurement model is transformed into an equivalent multiplication
model. Then, the relative error analysis criterion is used together with the model to develop a non-convex
estimator to approximately gain the maximum likelihood solution. Finally, semi-definite relaxation is applied
to the non-convex estimation to obtain the SDP estimation. Compared with existing localization methods,
the proposed SDP estimator provides significant improvements. Based on the RSSI difference and distance
ratio, a new 3D positioning method is proposed in reference [23], which utilizes virtual fingerprints and
bidirectional ranging to overcome the four obvious shortcomings of traditional RSSI fingerprint recognition
methods. In [24], based on RSSI quantization and genetic algorithm, a two-stage centroid-positioning
algorithm was proposed, which is particularly suitable for irregular target regions. Finally, an experimental
environment is constructed to prove the property of the algorithm. In addition, the application of RSS-
based adaptive methods and filtering techniques in obtaining target positions further improves positioning
performance. According to reference [10], an adaptive ranging algorithm based on RSSI is proposed to
promote the quality of ranging under constantly varying outside surroundings. This algorithm contains
the RSSI estimation of the link, temperature compensation, path loss index (PLI) estimation, and inter-
node interval estimation, and finally evaluates the performance of the proposed algorithm. The research on
estimation algorithms of model parameters based on wireless signal transmission modeling or positioning
algorithms based on RSSI ranging has made efforts to improve positioning accuracy in various aspects
mentioned above. However, most of these algorithms have high computational and communication costs
and require high network topology. In practical WSN positioning applications, they are often difficult to
implement due to cost and power constraints.

This article focuses on the two key stages of ranging and positioning estimation. Based on intensive
research of the RSSI ranging principle and the demand of positioning systems, the power-fading factor
is periodically and dynamically obtained to acquire distance information. RSSI ranging calibration is
performed using the regional relative distance error coefficient. By selecting the reference nodes involved
in positioning, the computational complexity is reduced and the positioning efficiency is improved. Take
coordinate error correction measures for the estimated position coordinates, fully utilize known information,
suppress cumulative errors, and finally use the Taylor series least squares iterative refinement technique to
further promote location precision. To full use the superiority of collaborative positioning, the positioning
nodes that accord with the demands are upgraded to reference nodes to partake in the succedent positioning
process, which effectively improves the positioning accuracy and robustness. Due to the avoidance of
complex calculations caused by minimizing mathematical analysis and increasing communication volume
through collaboration between all nodes in this article, effective correction measures are taken at each stage
of positioning implementation to improve positioning accuracy. Therefore, compared to pure analytical algo-
rithms and inter-node collaboration schemes, the data volume is greatly reduced in terms of communication
and computational costs.
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2 Principle of Distance Estimation

2.1 Ranging Model and Ranging Algorithm
By utilizing the wireless communication function of nodes in WSN and the communication control chip

provided by nodes to provide RSSI measurement, RSSI value measurement can be completed without the
need for additional equipment during the positioning process. It can be seen that RSSI ranging technology
has low cost and power consumption, is easy to apply, and therefore has received widespread attention. When
applying RSSI ranging in practical applications, the effects of multipath, diffraction, and obstacle occlusion
are considered, and wireless signal transmission is modeled as

PR (d) = P +G − PL (d) = PR (d0) − 10nlg( d
d0
) + Xσ (1)

Among them, P is the propagating power, G is the antenna gain, and PL (d) is the power consumption
of the wireless signal after transmission distance d. The power consumption factor n usually ranges from 2
to 4. For reference distance d0, it is generally taken as 1 m. The PR (d0) is the received signal strength at a
distance of d0 from the emission point, and Xσ is a Gaussian random quantity with zero mean. The larger
the value of PR (d)measured by the receiving point, the closer the node space is.

Using the positional coordinates of known reference nodes, the signal intensity between adjacent
reference nodes is obtained by periodic dynamic measurement. The real-time power consumption factor
of the current reference node’s area can be obtained through the wireless signal transmission model.
Considering the value of PR (d) received by reference node R0 from two other reference nodes R1 and R2
within its communication range in a wireless network, we can obtain

PR (d1) = PR (d0) − 10n0 lg( d1

d0
) + Xσ (2)

PR (d2) = PR (d0) − 10n0 lg(d2

d0
) + Xσ (3)

where PR (d1) is the value of PR (d) between R0 and R1, PR (d2) is the value of PR (d) between R0 and R2, and
d1 is the actual range between R0 and R1, d2 is the actual distance between R0 and R2. Then the expression
for n0 is obtained from Eqs. (2) and (3):

n0 =
PR (d2) − PR (d1)

10 lg( d1
d0
) − 10 lg ( d2

d0
)

(4)

The n0 is the dynamic power consumption factor, which reflects the influence of the current wireless
channel environment on the signal energy consumption.

According to Eq. (4), the factor n0 is determined only by PR (d1) and PR (d2), as well as d1 and d2, and
is independent of the measured value of PR (d0). This method dynamically obtains the RSSI measurement
value at the reference node and calculates the more accurate power consumption factor in the area of the
current reference node in real-time. Therefore, the calculated RSSI distance measurement is less affected by
the signal transmission modeling, and the ranging accuracy is improved, thus adapting the RSSI ranging
algorithm to the wireless channel. In actual ranging, the distance can be calculated by applying Eq. (1) using
the obtained dynamic power consumption factor.
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2.2 Obtaining the Final Ranging Value by Error Correction
Collaboration technology typically refers to the process in which nodes in a network that are capable of

communication transmit messages or exchange information with each other, decentralize operations such as
computation, communication, and storage, and collaborate in processing and completing tasks such as event
detection [25]. Collaborative positioning means that collaborative technology is used in WSN positioning.
The information sources for estimation data in WSN collaborative positioning are diverse, such as the data
from sensor nodes themselves, communication data from adjacent nodes, position data of anchor nodes,
and environmental characteristic data, which together form the basis and basis for collaborative positioning
algorithms. By comprehensively utilizing these information sources, precise estimation and positioning of
node positions can be achieved.

Decentralized optimization and cooperative positioning normally contain two-procedure: node self-
positioning and data aggregation cooperation. The procedure of data aggregation cooperation is based upon
the fact that the observational message between nodes has been carried out for each node in the current
network (including between the unpositioned nodes and the reference nodes, between the reference nodes,
and between the unpositioned nodes). In addition, the positioned unknown nodes take over the positioning
message and observation message of adjacent nodes (including reference nodes and other located unknown
nodes), and then some cooperative positioning method is realized to obtain more precise positioning
message of unknown nodes. The diagram of the decentralized optimization and cooperative positioning
procedure is shown in Fig. 1.
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Figure 1: The diagram of the decentralized optimization and cooperative positioning process

The accuracy of distance data used for positioning estimation directly affects the positioning accuracy.
Therefore, before positioning calculation, it is generally necessary to preprocess the obtained distance data to
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obtain the distance data with the highest accuracy possible, providing a good data foundation for subsequent
positioning calculations. The preprocessing of distance data involves using suitable refinement algorithms,
cyclic refinement algorithms, or iterative refinement algorithms to reduce ranging errors and obtain more
accurate distance data.

Firstly, the received signal strength is measured, and then the distance between any reference node in the
network and its neighboring reference nodes is modeled through wireless transmission. Then, the differential
value between this distance and the physical distance calculated by the reference node is taken as the relative
measurement error of RSSI at that reference node. So when ranging unknown nodes, considering the RSSI
measurement error at each reference node can minimize the error caused by harsh wireless communication
environments on ranging.

The reference node to be corrected in the 2-D network is denoted as S0(x0, y0), and its neighboring
reference nodes are denoted as Si(xi , yi), i = 1, 2, ⋅ ⋅ ⋅ , n, where n is the number of neighboring reference
nodes. The actual calculated distance from S0(x0, y0) to Si(xi , yi) is denoted as ri , and the distance measured
through RSSI is denoted as di , i = 1, 2, ⋅ ⋅ ⋅ , n. The relative ranging error at reference node R0 is

μi =
di − ri

ri
(5)

The weighted RSSI ranging relative error correction coefficient at the reference node S0 is

μw =
n
∑
i=1

ri − di

d2
i ∑

n
i=1

1
di

(6)

μw comprehensively reflects the RSSI relative measurement error of reference node S0. Here, different
distance weights reflected by different RSSI values are considered to obtain the contribution of the error
correction coefficient. The distance corrected by the reference node weighted RSSI ranging relative error
correction coefficient is denoted as

dc
i = di (1 + μw) (7)

where di is the measured range between the unknown location node and the reference node Si , and dc
i is the

correction range between the unknown location node of the sensor and the reference node Si .

3 Distributed Collaborative Localization Algorithm

3.1 Node Coordinate Estimation
For the RSSI method, we choose the N reference nodes information that we received first. That is, all

the received PR (d) values are queued in descending order PR (d1) , PR (d2) , ⋅ ⋅ ⋅ , PR (dn), and the number
of PR (d) values that we have received is n in total. Define an anchor selection parameter SA as

SA =
∑N

i=1 PR (di)
∑n

i=1 PR (di)
(8)

Set the threshold of SA to τ, only when SA ≥ τ, it is guaranteed that there are sufficient reference nodes
to partake in the positioning estimation within a certain positioning error range. Too large or too small the
value of τ will lead to a decline in positioning accuracy. We take the N reference nodes corresponding to the
first PR (d) values to participate in the localization calculation. Since N is greater than or equal to 3, through
experiments, in general, SA ≥ 0.9 is sufficient.
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Assuming that there are N reference nodes in the network, denoted as Si(xi , yi), i = 1, 2, ⋅ ⋅ ⋅ , N . Their
measurement distance to the unknown node denoted as U(x , y) is di , i = 1, 2, ⋅ ⋅ ⋅ , N . Then the measurement
modeling is as follows:

d̂i = di + vi , i = 1, 2, ⋅ ⋅ ⋅ , N (9)

where

di =
√
(xi − x)2 + (yi − y)2 (10)

vi is the measurement error.
Inserting Eq. (10) into the Eq. (9) and squaring both sides of Eq. (9), we get:

x2 + y2 − 2xi x − 2yi y = (d̂l − vi)
2
− (x2

i + y2
i )

Arranging the above equation, it can be expressed in matrix form as

h = Gθ + v (11)

where

G =
⎡⎢⎢⎢⎢⎢⎣

−2x1 −2y1 1
⋮ ⋮ ⋮
−2xN −2yN 1

⎤⎥⎥⎥⎥⎥⎦
(12)

h = [ d̂2
1 − (x2

1 + y2
1 ) , . . . , d̂2

N − (x2
N + y2

N) ]
T

(13)

v = [ 2d̂1v1 − v1
2 , . . . , 2d̂NvN − vN

2 ]T (14)

θ = [ x y R ]T (15)

R = x2 + y2 (16)

Then the solution of the WLS (Weighted Least Squares) algorithm of Eq. (11) is

θ̂ = (GT WG)−1
GT W h (17)

where

W = cov−1 (v) (18)

W is a weighted matrix, and when the specific error statistical characteristics are unknown, W can be
set as the unit matrix.
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3.2 Node Coordinate Correction
Although the correction factor μw of range measurement can raise the range measurement precision

of RSSI, it cannot reduce the random deviation in the communication environment and the positioning
algorithm itself. To full use the known coordinate information of the reference nodes, we consider further
correcting the estimated coordinates to improve the positioning accuracy. Use the maximum likelihood
estimation method to calculate the estimated coordinates of the reference node, and then take the difference
between the real coordinates of the reference node and the estimated coordinates, which is the coordinate
error correction coefficient. Therefore, when estimating the positioning coordinates of unknown nodes,
considering the coordinate error at the reference node used can suppress various interferences such as
wireless channel environment and positioning algorithms, effectively improving positioning accuracy.

The reference node in the network is denoted as R0(x0, y0), and the neighboring reference nodes within
its communication range are denoted as Ri (xi , yi) , (i = 1, 2, ⋅ ⋅ ⋅ , n). Therefore, The position estimation
coordinate of R0 obtained by applying the positioning algorithm is Rc0(xc0, yc0), and the difference between
the two is used to obtain the coordinate error at reference node R0

⎧⎪⎪⎨⎪⎪⎩

ex0 = x0 − xc0

ey0 = y0 − yc0
(19)

The position error of the ith reference node in the network is denoted as

⎧⎪⎪⎨⎪⎪⎩

ex i = xi − xc i

ey i = yi − yc i
(20)

Then, the weighted position error ew of the positioning region is denoted as

ewx =
N
∑
i=1

ex i

dc
i ∑

N
i=1

1
d c

i

(21)

ew y =
N
∑
i=1

ey i

dc
i ∑

N
i=1

1
d c

i

(22)

where N is the number of reference nodes partaking in the error calculating of node positioning, which is
the number of neighboring reference nodes of unknown nodes; dc

i is the revising distance of the ith reference
node. The coordinate errors ewx and ew y reflect the impact of the network environment and positioning
algorithms on the positioning. The coordinates of unknown nodes in the network corrected by weighted
coordinate errors in the positioning area are

⎧⎪⎪⎨⎪⎪⎩

x = xc + ewx

y = yc + ew y
(23)

Among them, xc and yc are the coordinate values calculated using the maximum likelihood estimation
method for unknown nodes.
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3.3 Location Optimization
Iterative loop refinement is an effective method to promote positioning precision. To depress the error

further in coordinate estimation, the determined coordinate values are taken as initiative values and the
Taylor series least squares method is used for position optimization.

According to the distance Eq. (10), so that

f (x , y) =
√
(x − xi)2 + (y − yi)2 (24)

Set the initial coordinates are (x0, y0), expand Eq. (24) at (x0, y0) in a Taylor series, and ignore second-
order and higher-order components

f (x , y) = f (x0, y0) + fx (x0, y0)Δx + fy (x0, y0)Δy (25)

Eq. (25) can also be written as

d̂l = d̂l 0 + ax Δx + ay Δy (26)

where

d̂l =
√
(x − xi)2 + (y − yi)2

d̂l 0 =
√
(x0 − xi)2 + (y0 − yi)2

ax = fx (x0, y0)

ay = fy (x0, y0)

Considering errors, the above equation can be abbreviated as

h = GΔ + ε (d2) (27)

where

Δ = [Δx Δy]T

h = [ d̂l − d̂l 0, . . . , d̂N − d̂N0 ]
T

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 − x1

d̂10

y0 − y1

d̂10
⋮ ⋮

x0 − xN

d̂N0

y0 − yN

d̂N0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the WLS algorithm, we can obtain an estimate of Δ as follows:

Δ = (GT WG)−1
GT W h (28)
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where W is the correlation matrix of measuring deviation. Moreover, the updated parameter vector can be
obtained:

θ (k + 1) = θ (k) + Δ (29)

3.4 Algorithm Implementation Steps
In summary, considering RSSI localization, the following algorithm (Algorithm 1) is listed:

Algorithm 1: The proposed algorithm
Step1: Input PR (d1), PR (d2), obtain n0, then obtain di from (1);
Step2: Input di and μw , then obtain dc

i ;
Step3: Set SA = 0.9, then determine N from (8);
Step4: Then have θ̂ = (GT WG)−1 GT Wh from (9)–(18);
Step5: Input R0(x0, y0) and Ri(xi , yi), then obtain U(x , y) from (19)–(23);
Step6: Set Δ = (GT WG)−1 GT Wh, then obtain solution θ (k + 1) = θ (k) + Δ;
Step7: Set the value of parameter k, return.

In the above algorithm process, step 1 is to perform basic RSSI ranging according to the ranging model.
Step 2 is the estimated ranging stage, perform ranging correction according to Eqs. (5)–(7). Step 6 is the
position optimization stage, perform iterative optimization according to Eqs. (24)–(29).

3.5 Collaborative Positioning Implementation
We introduce the conception of collaborative positioning and full use the various measurement data

between nodes in the network to realize data aggregation. We carry out collaborative signal and information
processing between nodes, so that a single node can consume as little energy as possible and acquire
as much metrical information as possible, so as to increase the localization precision and robustness. If
the located node meets certain conditions, it will be upgraded as a reference node and participate in the
subsequent positioning calculation. At this time, the positioning requirements of the reference node should
be considered, that is, the relatively stable RSSI-ranging environment positioning ability comparable to
the reference node. According to Eqs. (2)–(4), the path loss coefficient between the reference nodes in the
communication range of the upgraded node is calculated, and the mean of these loss coefficients should
amount to the mean of the path loss coefficient between the other reference node in the communication
range of the reference node closest to the upgraded node. Namely

∣ 1
K

K
∑
k=1

nU k −
1
L

L
∑
l=1

nAl ∣ < nΔ (30)

where nU k is the path loss coefficient between K reference nodes within the transmission radius of upgraded
node U , and nAl is the path loss coefficient between node U and other reference nodes within the
transmission radius of the closest reference node to upgraded node L. nΔ is the threshold of the path loss
coefficient for node upgradation.
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4 Numerical Simulation and Performance Analysis

4.1 Simulation Scenario and Algorithm Evaluation Method
To verify the effectiveness of the algorithm proposed in this article, an RSSI ranging and positioning

simulation platform was established based on Matlab software, and the localization error of the algorithm
was analyzed by the experimental data. The parameters are set as follows: the positioning experiment
environment is a 2-D square area of 200 m × 200 m, with 200 nodes and 20 reference nodes in a network,
and the communication range of all nodes is 30~70 m adjustable. To validate effectively the algorithm
performance, the same experiment was repeated after each reset of the network topology, and the average of
100 simulation experiments was used as the result.

To study the interrelation between the transmission radius of nodes, the number and the density of
nodes, and the precision of the positioning algorithm, the average localization error of the nodes is used to
synthetically assess the performance of the algorithm. The average localization error of the nodes is denoted
as Ea

Ea =

√
∑N

i=1 ∣∣pi − zi ∣∣2

N ⋅ R (31)

Among them, N is the number of nodes to be located in a network, and the transmission radius is R.
pi = [ px i py i ]

T is the final estimated coordinates of node i, and zi = [ zx i zy i ]
T is the true position

of node i. The smaller the Ea , the more precise the positioning.
In the following simulation analysis, to evaluate the performance of the proposed algorithm, the

proposed algorithm is compared with two other algorithms. The Taylor Series Expansion algorithm based on
real coordinates is simply called the TSE algorithm. Since the TSE algorithm is calculated based on the real
position, its positioning precision should be the highest. LS (Least Square) algorithm is the most widely used
estimation method, and in a white noise environment, the LS algorithm can get gradual unbiased estimation,
whereas it is biased in a colored noise environment.

4.2 Interrelation between the Positioning Precision and the Number of Reference Nodes
Positioning precision can be represented by the average localization error. At this point, the simulation

experiment environment is set as follows: 100 sensor nodes are randomly distributed within the square area
of 100 m × 100 m, and the communication radius of the nodes is set to 40 m. The influence of the number of
reference nodes on the average positioning error obtained from the experimental results is shown in Fig. 2.

Figure 2: Effect of the number of reference nodes on the localization error
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From the curve trend in Fig. 2, it can be seen that as the number of reference nodes increases, the
average positioning error of the three algorithms decreases, but the performance of the proposed algorithm
is much better than that of LS algorithm. When the reference node numbers exceed 20, the improvement
of the LS algorithm’s positioning precision is limited and gradually tends to stabilize, while the positioning
precision of the proposed algorithm is still increasing. When the reference node numbers reach 30, the
average positioning error of the nodes is the same as that of the TSE algorithm, both of which are 0.19. As
the proposed algorithm adopts the error correction algorithm, it can further reduce the cumulative error
during the positioning process and achieve good positioning accuracy. Therefore, the positioning effect of
the algorithm proposed in this article is obvious.

4.3 Interrelation between the Positioning Precision and Transmission Radius
Secondly, we study the interrelation between transmission radius and average positioning error. Here

the experimental surroundings is set as follows: 200 sensor nodes in the network are randomly distributed
in the 200 m × 200 m area, and the number of reference nodes is 20. The impact of transmission radius on
the average positioning error of nodes is shown in Fig. 3.

Figure 3: The effect of the transmission radius on the average localization error

From the tendency of the curve in Fig. 3, it can be seen that as the transmission radius increases,
the average positioning error of the three algorithms gradually decreases. The proposed algorithm has
better performance than the LS algorithm and is close to the TSE algorithm. It is thus clear that when the
transmission radius is the same, the optimal reference point adopted by the proposed algorithm and the cyclic
actuarial method can further reduce the positioning error. It can also be observed from the figure that when
the transmission radius is 70 m, the average positioning error of the proposed algorithm no longer decreases,
and even shows an increasing trend. The reason for obtaining this result is that the transmission radius has
reached the maximum range of possible perception areas, the number of reference nodes no longer increases,
and the positioning accuracy no longer improves. In addition, due to the accumulation of estimation errors,
the positioning accuracy has decreased. On the other hand, the proposed algorithm’s performance is not
sensitive to the size of the transmission radius, meaning that it can achieve high positioning accuracy without
requiring a large communication power. This indicates that under the same network conditions and accuracy
requirements, its positioning power consumption is lower.
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4.4 Interrelation between the Positioning Precision and the Size of the Perceptual Region

Next, we will investigate the interrelation between the size of the perception area and the average
positioning error. The network experimental parameters are set as follows: the reference node is 20, the
transmission radius of the node is 40 m, the perception area increases, and the number of nodes also increases
from 100 to 600. The impact of the perceived area size on the average positioning error is shown in Fig. 4.

Figure 4: Effect of the perceived region size on the average localization error

From the positioning performance curve in Fig. 4, it can be seen that as the edge length of the
perception area continues to increase, i.e., the network size increases, the average positioning error of the
three algorithms gradually increases. However, the positioning error of the proposed algorithm is close to
the TSE algorithm and lower than the LS algorithm. The reason is that as the edge length of the perception
area increases, the network size continues to increase, and the number of nodes in the network that
need to be located increases. The measurement error and cumulative error of the positioning algorithm
also increase, resulting in an overall increase in positioning error and an increase in average positioning
error.

4.5 Interrelation between the Positioning Precision and the Number of Nodes

Let’s study the effect of increasing the number of nodes on the average positioning error when the
reference node value is n = 20. Here, the positioning experiment environment is still a 2-D square area of
200 m× 200 m. The network node numbers change from 100 to 400, and its impact on the average positioning
error is shown in Fig. 5.

From the average positioning error curve in Fig. 5, it can be seen that when the number of reference
nodes is fixed and unchanged, as the number of nodes to be located in the fixed network positioning
area increases, the positioning performance of all three algorithms improves. Comparatively speaking, the
positioning error of the proposed algorithm decreases rapidly and is much smaller than that of the LS
algorithm. The reason is that the former not only adopts distance measurement error correction but also
implements the measure of selecting optimal reference nodes when the network node density increases
and the number of reference nodes that can participate in positioning increases. In addition, the iterative
refinement algorithm further improves the positioning accuracy.
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Figure 5: Effect of the number of network nodes on the average localization error

4.6 Interrelation between the Positioning Precision and the RSSI Ranging Error
Finally, we study the interrelation between RSSI ranging error and positioning error. Setting the number

of reference nodes to 20, and the total number of nodes to be located in the network to 400. The impact of
RSSI ranging error on average positioning error is shown in Fig. 6.

Figure 6: Effect of the RSSI ranging error on the average localization error

From the trend of the positioning performance curve in Fig. 6, it can be seen that under the same
number of nodes, as the variance of RSSI distance measurement error gradually increases, the average
positioning error of all three algorithms increases. But the average positioning error of the proposed
algorithm increases much faster than the LS algorithm, and at the same RSSI distance measurement error
variance, the proposed algorithm’s positioning accuracy is always better than the LS algorithm and the
positioning results are also more stable. It can be seen that the dynamic acquisition technology using power-
fading factor and weighted ranging relative error correction can effectively and quickly reduce positioning
errors and improve positioning performance.

In order to provide a statistical analysis of the positioning results of the algorithm proposed in this
article, we calculated the statistical parameters of three algorithms, such as the mean error and standard
deviation indicators. The simulation scenario is described in Section 4.6, and the mean and standard
deviation of the errors of the three algorithms are shown in Table 1. It can be seen that the algorithm proposed
in this article uses relative distance error coefficient for RSSI ranging correction, and then uses reference
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node coordinate error to correct the position coordinates of the node to be located. Therefore, the mean error
of the positioning result of the proposed algorithm is close to the TSE algorithm, but much smaller than the
LS algorithm. The standard deviation of the proposed algorithm has always been maintained at a low level,
that is, lower than the TSE algorithm and the LS algorithm.

Table 1: Mean and standard deviation of errors for three algorithms

Statistical parameters of algorithms Proposed algorithm TSE algorithm LS algorithm
Mean of errors (m) 0.4152 0.4011 0.6218

Standard deviation of errors (m) 0.1015 0.1034 0.2269

4.7 Computation Time
In order to analyze and compare the complexity of the algorithm proposed in this article with other

algorithms, we calculated the average running time of several algorithms. The data simulation processing
platform consists of a PC with the following parameters: Intel (R) Core (TM) i7-8700 CPU @ 3.20 GHz,
16.0 GB RAM, 64-bit operating system based on ×64 processor, and MATLAB 2019A as the software testing
environment for executing the simulation process. The simulation scenario is described in Section 4.6, and
the running time of each algorithm positioning is shown in Table 2. The algorithm proposed in this article
introduces collaborative positioning, upgrading the already located nodes to reference nodes and partaking
in the positioning of other nodes. Finally, the Taylor series least squares iterative refinement algorithm is
used to obtain more accurate position coordinates of network nodes, but at the same time, it also comes at a
slightly higher cost, namely increased running time. Under the same positioning environment and operating
parameter conditions, it can be seen from the comparison of the running time of various algorithms that the
algorithm proposed in this paper, the proposed algorithm, has a slightly higher running time in estimating
the position of the node to be located than the TSE algorithm and LS algorithm.

Table 2: Average running time

Algorithm Proposed algorithm TSE algorithm LS algorithm
Time (ms) 0.75 0.68 0.46

5 Conclusion
On account of the dynamic acquisition technology of power fading factor using RSSI ranging and

weighted relative error correction, this article proposes a sensor network supervised positioning algorithm
based on coordinate error correction and Taylor series least squares iterative optimization. Through an
in-depth study of the RSSI ranging principle and the demands of the positioning system, we applied the
ranging algorithm of dynamically obtaining the power-fading factor, and used the relative distance error
coefficient of the reference node in the positioning area to conduct the RSSI distance correction. After
obtaining the solution of the least square positioning algorithm, we then use the location deviation of the
reference nodes to revise the position coordinates of the nodes to be located, and further improve the
positioning accuracy. Finally, we used the algorithm of Taylor series least squares loop iterative refinement to
obtain the accurate position coordinate information of the network nodes. In the localization based on the
RSSI ranging principle, there are always some nodes that become unloadable nodes due to various reasons
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(such as distribution outside the localization range, receiving insufficient information, etc.). By introducing
collaborative positioning, the located nodes are upgraded to reference nodes to partake in the positioning
of other nodes, which improves the coverage of positioning, so it can adapt to a wider range of scenarios
and environments that are more complex. Simulation shows that the positioning precision of the algorithm
in this article can meet the application demand of large-scale wireless sensor network systems, with low
computational complexity and communication overhead. It can effectively resist noise interference and has
good performance in both positioning precision and cost power consumption.

This article adopts a collaborative optimization method to solve the problem of improving the posi-
tioning accuracy of sensor networks. However, with the increasing complexity of algorithms caused by
environmental changes and interference, sensor network positioning systems still face many unresolved
issues. Therefore, the next step of this article will consider the assumptions of expanding network topology
or node capabilities, the uncertainty of sensor positions caused by dynamic networks, and the application of
collaborative and optimization methods to 3D extended localization and mobile sensor network localization
problems. At the same time, direct measurements between nodes are used for collaborative positioning,
and estimation theory is applied for evaluation to further reduce various system and measurement errors
in the positioning process, in order to improve positioning quality such as positioning accuracy and
robustness.
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