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ABSTRACT: In recent years, with the rapid development of deep learning technology, relational triplet extraction
techniques have also achieved groundbreaking progress. Traditional pipeline models have certain limitations due
to error propagation. To overcome the limitations of traditional pipeline models, recent research has focused on
jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.
To support future research, this paper provides a comprehensive review of recently published studies in the field
of relational triplet extraction. The review examines commonly used public datasets for relational triplet extraction
techniques and systematically reviews current mainstream joint extraction methods, including joint decoding methods
and parameter sharing methods, with joint decoding methods further divided into table filling, tagging, and sequence-
to-sequence approaches. In addition, this paper also conducts small-scale replication experiments on models that have
performed well in recent years for each method to verify the reproducibility of the code and to compare the performance
of different models under uniform conditions. Each method has its own advantages in terms of model design,
task handling, and application scenarios, but also faces challenges such as processing complex sentence structures,
cross-sentence relation extraction, and adaptability in low-resource environments. Finally, this paper systematically
summarizes each method and discusses the future development prospects of joint extraction of relational triples.
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1 Introduction
The relationship triplet is regarded as a crucial component in knowledge graphs, typically represented in

the structure (h, r, t), where h denotes the head entity, t signifies the tail entity, and r describes the relationship
between the two entities. For instance, the triplet (Paris, capital_of, France) conveys that “Paris is the capital
of France.” To construct knowledge graphs effectively, the extraction of relationship triplets is identified
as a vital step, which involves the task of extracting entities and their interrelations from unstructured
natural language text. This extraction process is generally divided into two key steps. The first step is named
entity recognition [1,2], which involves the identification of all specific entities within the text, including
names of people, locations, and organizations. The accuracy of this step is critical, as it relies on the ability
to extract entities from diverse and complex text data, providing the foundational elements necessary for
subsequent relationship extraction. Following this, the second step is relationship extraction [3,4], wherein
the relationships existing between the identified entities are analyzed and categorized. The challenge inherent
in this phase is the accurate identification of the semantics of relationships, particularly when relationships
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are implied or expressed in various forms. Consequently, by integrating the recognized entities with their
corresponding relationships, a complete triplet is constructed, which is further utilized for the expansion
and refinement of the knowledge graph.

This comprehensive process not only enhances the quality of structured information within knowledge
graphs but also establishes a solid foundation for automated information inference and knowledge discovery.
Overall, relationship triplet extraction has consistently been a prominent research topic in the field of natural
language processing. Fig. 1 illustrates the timeline of the development of the relation triplet extraction task.
In earlier studies, pipeline models [5] were predominantly employed to accomplish the triplet extraction
task. Within this model framework, named entity recognition and relationship extraction were systematically
decomposed into two independent subtasks. Initially, in the named entity recognition phase, potential entity
pairs were identified from the text; subsequently, in the relationship extraction phase, attempts were made
to determine and classify the relationships between the recognized entity pairs. Although this sequential
processing approach simplifies the complexity of the task, it simultaneously introduces several challenges
and limitations, such as the following:

Figure 1: Timeline of the relation triplet extraction task

1. Error Propagation: The main flaw of the pipeline model lies in the information loss resulting from
the independence of the subtasks. The lack of effective context and interaction information transfer between
named entity recognition and relationship extraction can lead to the accumulation of errors. For instance,
if named entity recognition incorrectly labels an entity, this error will prevent the relationship extraction
phase from accurately identifying or classifying the relationship between that entity and others. As the
tasks are processed sequentially, errors gradually amplify, negatively impacting the effectiveness of the final
relationship triplet extraction.

2. Lack of Interaction: Because the two subtasks work independently, the model cannot share infor-
mation or leverage the potential synergies between entity recognition and relationship classification. For
instance, the existence of certain relationships could provide valuable clues for identifying specific entity
types, but this information cannot be effectively utilized due to the independent nature of the tasks.

3. Information Loss: In each independent subtask, some useful contextual information might be
ignored or lost. This loss of information across tasks can negatively impact the overall extraction perfor-
mance.

4. Independent Optimization: The pipeline model usually optimizes each subtask independently,
meaning that each step’s model is trained and optimized separately without considering the global optimal
solution. This independent optimization may result in a decrease in the model’s overall performance.

5. Limited Ability to Handle Complex Relationships: Since each step can only handle local informa-
tion, it is difficult to capture the global syntactic and semantic structure. As a result, entities and relationships
in complex sentences may not be accurately extracted or parsed.
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6. High Time and Computational Costs: Each independent subtask requires separate model training
and execution, leading to higher time and computational costs for the pipeline model, making it relatively
less efficient overall.

In recent years, with a deepening understanding of the limitations of the pipeline model [6], joint
modeling of entity recognition and relationship extraction has gradually become a focal point of research.
This strategy of joint modeling aims to achieve the extraction of relationship triplets through a single
model framework, thereby enhancing overall processing efficiency and accuracy while reducing errors in
information transfer. The joint extraction model emerges as a transformative approach, markedly enhancing
extraction accuracy and efficiency through the simultaneous recognition of entities and extraction of
relationships. This method, while adeptly minimizing computational resource consumption, facilitates a
more nuanced understanding of contextual information. By fostering synergistic effects between tasks, it
enables the model to exhibit greater flexibility and precision throughout the information extraction process.

In particular, the ability to share information across multiple tasks plays a crucial role in reducing error
rates during extraction [7]. Furthermore, the incorporation of rich feature representations not only amplifies
the model’s generalization capabilities but also allows it to adapt seamlessly to diverse data scenarios. Thus,
the joint extraction strategy not only streamlines the data processing workflow but also presents a compelling
solution for applications in natural language processing and knowledge graph construction [8]. Ultimately,
this approach underscores the profound insights and practical significance inherent in cutting-edge research,
paving the way for future advancements in the field.

In summary, the contributions of this review can be articulated as follows:
1. The paper systematically categorizes joint extraction models for relationship triplets into two distinct

types based on their architectural frameworks: joint decoding methods and parameter sharing methods.
Additionally, it provides a succinct overview of commonly utilized datasets and evaluation criteria relevant to
the task of relationship triplet extraction, thereby establishing a foundational understanding for researchers.

2. A thorough analysis and comparative study of relationship triplet extraction models that employ
joint decoding methods is presented, which are further classified into three categories: table filling methods,
tagging methods, and sequence-to-sequence methods. This classification not only highlights the diversity of
approaches but also elucidates their respective strengths and applications.

3. Furthermore, the paper delves into a comparative analysis of models utilizing parameter sharing
methods, engaging in a comprehensive discussion of related work. This exploration serves to illuminate the
nuances and advancements in this area.

4. Finally, a brief yet insightful overview of the strengths and weaknesses of existing joint extraction
models for relationship triplets is provided, alongside an exploration of their application domains. This
culminates in a forward-looking perspective on future developments in the field, aiming to inspire further
research and innovation.

2 Task Description
Due to the possibility of relationship triplets sharing one or two entities, this overlap phenomenon com-

plicates the extraction task. Based on the characteristics of entity overlap [9], sentences can be categorized
into three types: (i) No Entity Overlap (NEO): This type of sentence contains one or more triplets, but there
are no shared entities among them. (ii) Entity Pair Overlap (EPO): Sentences of this kind feature multiple
triplets, where at least two triplets share the same entities, which may be in the same order or in reverse order.
(iii) Single Entity Overlap (SEO): In this case, a sentence contains multiple triplets, with at least two triplets
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sharing one common entity. The primary objective of relationship triplet extraction is to identify all existing
relationship triplets present in the sentence.

Traditional relationship triplet extraction techniques typically divide this task into two independent
phases: first, entity recognition is performed, followed by the analysis of the relationships between these
entities based on contextual relationships. However, employing a joint modeling approach allows for the
simultaneous execution of entity recognition and relationship extraction, thereby forming an integrated
model that simplifies this process. This joint modeling strategy enhances the synergy between entity recogni-
tion and relationship extraction by sharing contextual information. Consequently, this information-sharing
mechanism significantly improves the accuracy and overall efficiency of the extraction process.

3 Datasets
There are many datasets available for relational triplet extraction. For instance, WikiEvents offers a

wealth of event descriptions along with their associated entities and relationships, making it particularly
suitable for understanding event-driven relations. Meanwhile, TACRED serves as a comprehensive bench-
mark dataset that encompasses various types of texts and relationships, thus becoming a crucial reference for
evaluating model performance. Additionally, the SemEval [10] series of competitions presents multilingual
datasets that broaden the application scenarios for relation extraction. Lastly, the ACE [11] dataset is
dedicated to extracting events and relationships from news articles and other texts, thereby enriching the
research materials available in this domain. However, this paper will focus on detailing the two most widely
used datasets in recent years: NYT and WebNLG.

3.1 NYT
The NYT [12] dataset is a textual resource primarily sourced from news articles published in The New

York Times, encompassing a rich collection of natural language text. This dataset contains information from
various domains, including text content, entities, and relationships, making it widely applicable in natural
language processing, particularly in the extraction of relationship triplets.

The dataset includes examples with multiple relationships and overlapping entities, annotated with
information from the Freebase knowledge graph to ensure accuracy and high quality of the annotations. The
NYT dataset comprises a total of 66,194 sentences, covering 24 types of relationship categories. Specifically,
56,195 sentences are allocated to the training set, 4999 sentences are designated as the validation set, while
the remaining 5000 sentences are used for testing.

When extracting relationship triplets from the NYT dataset, a variety of challenges regarding annotation
quality arises, primarily concerning consistency, noise, and ambiguity. Moreover, contextual dependency
and domain specificity significantly influence annotation accuracy, further contributing to the complexity of
the extraction process and thereby limiting model performance.

Furthermore, the difficulty intensifies with certain relationship types, such as implicit relationships,
multiple relationships, temporal and spatial relationships, and sentiment or attitude relationships. These
complexities not only demand advanced reasoning capabilities but also require precise judgment within
diverse contexts.

3.2 WebNLG
The WebNLG [13] dataset was originally developed by INRIA (the French National Institute for Research

in Computer Science and Automation) and contains a variety of triplets along with their corresponding
human-written natural language descriptions. It is primarily used to study how to generate fluent natural
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language descriptions from knowledge graphs. The data in the WebNLG dataset is mainly sourced from
DBpedia, a knowledge base that extracts structured information from Wikipedia.

The WebNLG dataset comprises a total of 6222 sentences and 246 relationship categories. Each instance
in this dataset consists of a set of triplets and several human-written reference sentences, with each reference
sentence containing all the triplets for that instance. For detailed statistics on these two datasets, please refer
to Table 1.

Table 1: Statistics of the datasets. N is the number of triples in a sentence

Dataset NYT WebNLG
Training set 56195 5019

Test set 5000 500
Dev set 4999 703

Relations 24 246
NEO 3222 239
EPO 969 6
SPO 1273 448
N = 1 3240 256
N = 2 1047 175
N = 3 314 138
N = 4 290 93
N > 5 109 41

Triples 8120 1607

In the WebNLG dataset, the challenges surrounding annotation quality primarily manifest in the
diversity and consistency between generated natural language descriptions and the triplets. While the
overarching goal is to transform structured data into fluent text, the reality is that a single triplet can be
expressed in multiple valid linguistic forms, leading to significant complexity in evaluating the generated text.
Moreover, annotations frequently lack essential contextual information, resulting in generated texts that may
be semantically inaccurate or incomplete. Furthermore, the generated texts are not infrequently plagued by
grammatical errors or unclear expressions, which, in turn, adversely affects the overall quality and usability
of the data.

4 Evaluation Metrics
In the process of relationship triplet extraction, it is crucial to accurately identify the boundaries and

types of entities, as well as the relationship between the head entity and the tail entity. Only when these
elements are correctly identified can the extracted relationship triplets be considered valid. For this task,
several commonly used evaluation metrics [14] are as follows:

Precision (Prec.): This refers to the ratio of the number of correctly identified relationship triplets to
the total number of triplets identified by the model. The calculation formula is as follows:

Precision = TP
TP + FP

(1)

where TP (true positive): denotes the identification of a completely correct relational triad; FP (false positive):
denotes that it is not the relational triad but the model determines it to be a relational triad.
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Recall (Rec.): This measures the proportion of relationship triplets successfully identified by the model
among all the relationship triplets that actually exist. The calculation formula is as follows:

Recal l = TP
TP + FN

(2)

where FN (false negative): indicates that it should have been recognized but the model did not actually
recognize it.

F1 score (F1): This metric is the harmonic mean of precision and recall, providing a comprehensive
assessment of performance in both aspects. A higher F1 score reflects the overall effectiveness of the model.

F1 =
2Precision × Recal l
Precision + Recal l

(3)

Micro-average: An overall evaluation of all relational triplets, calculating global Precision, Recal l , and
F1. This approach treats each instance equally and combines the contributions of all categories into a single
set of metrics, giving equal weight to each instance.

Precisionmicro =
∑n

i=1 TPi

∑n
i=1 TPi +∑

n
i=1 FPi

(4)

Recal lmicro =
∑n

i=1 TPi

∑n
i=1 TPi +∑

n
i=1 FNi

(5)

micro − F1 = 2 × Precisionmicro × Recal lmicro

Precisionmicro + Recal lmicro
(6)

Macro-average: As an evaluation method, this computes the Precision, Recal l , and F1 for each
category separately, and then averages these results. In this process, all categories are treated equally,
regardless of the number of samples in each category, ensuring that the performance of smaller categories
receives appropriate attention and is not overshadowed by larger categories.

Precisionmacro =
1
n

n
∑
i=1

Precisioni (7)

Recal lmacro =
1
n

n
∑
i=1

Recal li (8)

macro − F1 = 2 × Precisionmacro × Recal lmacro

Precisionmacro + Recal lmacro
(9)

Top-k Evaluation Metrics: When a system can output multiple candidate triplets, Top-k evaluation
metrics such as Top-1, Top-5, Top-10, etc., are used to assess the model’s performance. Specifically, the
essence of the Top-k metric lies in its ability to assess the proportion of correct results among the top k
outcomes returned by a model. This metric enjoys widespread popularity due to its simplicity and ease of
understanding; however, it is crucial to acknowledge its limitations. Notably, the Top-k metric focuses solely
on the top k results, which may lead to the oversight of the overall quality of the results. This characteristic
becomes particularly pronounced in the context of relationship triplet extraction tasks. Consequently,
the Top-k metric is often best employed in conjunction with other evaluation metrics to achieve a more
comprehensive assessment of model performance.

By integrating multiple evaluation dimensions, researchers are better positioned to gain a nuanced
understanding of how models perform on complex tasks, thereby avoiding the pitfalls of relying on a singular
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metric that could yield a skewed perspective. Therefore, adopting a diversified set of evaluation standards
in the assessment of relationship triplet extraction performance is instrumental in uncovering both the
strengths and weaknesses of models, ultimately fostering advancement within this field.

5 Joint Extraction

5.1 Joint Decoding
To overcome certain limitations of traditional pipeline models, researchers have proposed a joint

decoding strategy. Currently, research on joint decoding in the field of relationship triplet extraction
primarily focuses on three directions: (i) Table Filling: This method creates a table or matrix where the
rows and columns represent different entities in the sentence, and each cell in the matrix indicates the
relationship between the two entities. (ii) Tagging: This method treats relationship triplet extraction as a
sequence labeling problem, introducing relationship information into the labeling system. (iii) Sequence-
to-Sequence: This method takes unstructured text as input and directly generates relationship triplets,
presenting them in a sequential output format.

5.1.1 Table Filling
The table filling approach typically maintains a separate table for each relationship, and the triplets

are extracted based on the populated relationship tables. TPLinker [15] and UniRE [16] are among the
most effective table filling models. TPLinker treats the joint extraction problem as a token-pair linking
task, constructs a single-step model that avoids interdependent steps, and introduces a handshake tagging
scheme that efficiently and accurately extracts relational triplets through a linking mechanism, addressing
exposure bias and error accumulation issues. However, the model has high tagging complexity, resulting in
redundant operations and information. UniRE, on the other hand, proposes an innovative unified label space
approach, treating relational triplet extraction as a table filling problem. It uses a unified classifier to predict
the labels for each cell in the table, simplifying task learning and enhancing the interdependence between
tasks. Hu et al. [17] introduce a hybrid deep relational matrix bidirectional method, combining relationship
matrix representation and bidirectional processing to achieve joint extraction of relational triplets. GRTE [18]
enhances model performance by incorporating a global feature-oriented strategy and an improved matrix-
filling strategy, effectively capturing complex dependencies in sentences. Yan et al. [19] propose an innovative
partition filtering mechanism that effectively captures fine-grained information and enhances overall task
performance through joint learning. Liu et al. [20] view relationships as attention distributions, using
attention weights to represent relationships between entities, enabling the model to simultaneously identify
multiple entities and capture the relationships between them. Fig. 2 shows an example of a table filling model.

OneRel [21] introduced the Rel-Spec Horns tagging strategy, reducing the required number of label
matrices from 2N + 1 to N, with each relationship having a single matrix. This reduction in redundancy
allowed for the efficient extraction of relational triplets using a single module. Meanwhile, Wang et al. [22]
combined the strengths of table filling and sequence encoding in an end-to-end approach for joint extraction.
Similarly, Ning et al. [23] borrowed the object detection concept from computer vision, treating entities
and relationships in text as “objects” to be detected through a single-stage framework, simultaneously
identifying and extracting entities and their relationships. Additionally, Zhang et al. [24] used relationship
prompts as part of the input to guide the model in accurately recognizing and extracting entities and
relationships within the text. Wang et al. [25] further improved joint extraction by locating potential entity
spans and using a relational graph to capture relationships between these entities. To better handle complex
sentence structures and overlapping relationships, Han et al. [26] adopted span representations, while Tian
et al. [27] enhanced the understanding of entities and relationships through a multi-view information
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fusion strategy. Finally, Tang et al. [28] proposed the UniRel model, which utilizes the Transformer’s self-
attention mechanism to model interactions between entity-entity and entity-relationship pairs within a single
interaction map. In contrast, Wang et al. [29] employed tensor decomposition techniques to effectively
model complex dependencies between entities and relationships, demonstrating excellent performance in
processing intricate texts. Table 2 show the current state-of-the-art in table filling models.

(a) Mr= Located in (b) Mr=Contains

Figure 2: Example of a table filling method

Table 2: Current state-of-the-art in table filling models

Model NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1
TPLinkerLST M [15] 86.0 82.0 84.0 91.9 81.6 86.4
TPLinkerBERT [15] 91.4 92.6 92.0 88.9 84.5 86.7

OneRel [21] 93.2 92.6 92.9 91.8 90.3 91.0
GRETLST M [18] 86.2 87.1 86.6 88.0 86.3 87.1
GRETBERT [18] 93.4 93.5 93.4 92.3 87.9 90.0

PFN [19] – – 92.4 – – 93.6
Document [20] 88.1 78.5 83.0 89.5 86.0 87.7
Span-RG [22] 83.4 68.1 74.9 66.5 62.8 64.6
DMBRE [17] 92.1 93.5 92.8 89.0 88.8 88.9
OD-RTE [23] 94.2 93.6 93.9 92.8 92.1 92.5

RPSS [24] 93.5 93.2 93.3 94.7 95.1 94.9
SMHS [26] 97.5 82.0 89.1 – – –

StereoRel [27] 92.0 92.3 92.2 91.6 92.6 92.1
UniRel [28] 93.5 94.0 93.7 94.8 94.6 94.7
TLRel [29] 88.5 85.2 86.8 91.8 92.7 92.2
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The table filling approach necessitates that the model enumerate all potential entity pairs. While this
process demonstrates commendable performance in managing local entities and relationships, it encounters
significant challenges when the distance between entities and relationships increases. In such cases, the
model’s ability to learn the corresponding positions within the matrix becomes compromised. Moreover,
as longer sentences are processed, the size of the matrix expands rapidly, leading to a marked increase in
the demand for computational resources, including memory and storage. Consequently, this computational
complexity becomes particularly pronounced when handling long texts, often resulting in diminished model
efficiency. It is essential to underscore that in the pursuit of both accuracy and comprehensiveness, optimiz-
ing the use of computational resources remains a critical challenge for this method. This consideration not
only highlights the intricacies involved in algorithm design but also points the way toward future research
endeavors aimed at developing more efficient model architectures and methodologies.

5.1.2 Tagging
The tagging approach processes input text as a linear sequence by assigning a corresponding label to each

word and gradually extracting the required triples by processing each element in the sequence. PRGC [30]
is a more advanced tagging model that breaks down the joint extraction of triples into three subtasks:
relation judgment, entity extraction, and head-tail entity alignment. It enhances overall extraction accuracy
by predicting potential relationships in the text through a latent relationship module combined with a global
alignment mechanism. However, it still suffers from issues such as error propagation and exposure bias.
Additionally, Cheng et al. [31] propose an innovative cascaded double-decoder architecture, which effectively
reduces the negative impact of entity recognition errors on the relationship classification task, thereby
better capturing the dependencies between entities and relationships. Moreover, Qiao et al. [32] leverage
the powerful representation capabilities of BERT to construct a model that jointly learns entity recognition
and relation extraction tasks. Furthermore, CasRel [33] adopts a cascaded binary labeling strategy, breaking
down the complex relation extraction task into simpler subtasks by first extracting the subject entity, and
then simultaneously extracting the relation and its corresponding object entity, thereby reducing the model’s
learning difficulty. Lastly, Yuan et al. [34] assign different attention weights to each type of relationship,
allowing the model to accurately capture entities related to specific relationships. Fig. 3 shows an example of
a Tagging model.

Figure 3: Example of a tagging method
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Ren et al. [35] proposed a bidirectional extraction framework that enhances the overall performance and
accuracy of the model by processing the text from left to right and right to left. Similarly, Xu et al. [36] inno-
vatively employed a joint entity labeling approach, significantly improving the effectiveness of information
extraction. Furthermore, Chen et al. [37] enhanced the model’s ability to identify entities and relationships by
introducing a position-aware attention mechanism and relationship embedding techniques. Hang et al. [38]
identified entities in the text using a multi-label annotation method and employed a relationship alignment
mechanism to clarify the relationships between these entities. Meanwhile, Zhang et al. [39] utilized the
characteristics of capsule networks to capture information in both forward and backward directions and
processed complex entity and relationship extraction tasks through a cascading structure. Finally, Wu
et al. [40] achieved synchronous extraction of entities and relationships while employing a cross-type
attention mechanism to capture the interdependencies between entities and relationships. Table 3 show the
current state-of-the-art in Tagging models.

The tagging approach serves as a straightforward and efficient method for extracting relational triplets,
which renders it particularly well-suited for handling short texts and tasks characterized by relatively simple
structures. However, when confronted with overlapping entities, nested entities, multiple relationships, or
long-distance dependencies, this method may encounter significant challenges. Given that it cannot assign
multiple distinct labels to the same entity, there arises a need to design more complex labeling structures or
to introduce more sophisticated model architectures to effectively address these issues. This reality not only
highlights the limitations of the tagging method in specific contexts but also underscores the necessity of
exploring more flexible strategies and solutions in the processing of more complex texts.

Table 3: Current state-of-the-art in Tagging models

Model NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1
PRGC [30] 93.5 91.9 92.7 89.9 87.2 88.5

Document [31] 89.9 91.4 90.6 88.0 88.9 88.4
Document [32] 61.0 51.3 55.7 – – –
CASREL [33] 89.7 89.5 89.6 93.4 90.1 91.8

RSAN [34] 85.7 83.6 84.6 80.5 83.8 82.1
BiRTE [35] 91.9 93.7 92.8 89.0 89.5 89.3

GraphJoint [36] 88.7 83.8 86.2 88.3 87.7 87.9
PARE-Joint [37] 92.9 91.4 92.1 93.4 90.8 92.1

MLRA-LSTM-CRF [38] 74.9 45.3 56.5 – – –
CBCapsule [39] 88.4 87.2 87.8 90.9 89.2 90.0

SDN [40] 94.2 91.5 92.8 92.7 89.6 91.1

5.1.3 Sequence-to-Sequence
The basic concept of the sequence-to-sequence method is to transform the input sequence into a

fixed-length vector representation, after which a decoder is used to generate a new sequence from that
representation. Nayak et al. [41] effectively addressed the interdependence between entity recognition
and relationship extraction by leveraging the advantages of the encoder-decoder structure, providing a
viable joint extraction strategy for both tasks. Zeng et al. [42] proposed an end-to-end neural network
model that combines generation and copying mechanisms, significantly improving accuracy when handling
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complex entities and relationships. Sui et al. [43] employed a set prediction network to jointly model entity
recognition and relationship extraction, enabling the model to simultaneously handle multiple entities and
relationships. Zhao et al. [44] designed a joint extraction model based on heterogeneous graph neural
networks, which iteratively integrated global information to enhance the precision of the extraction task.
Zhang et al. [45] introduced a bias minimization strategy aimed at improving the accuracy of the joint
extraction model by reducing exposure bias. Additionally, the BTDM model [46] utilized a bidirectional
translation decoding mechanism, allowing the model to better leverage contextual information to ensure the
accuracy of entity and relationship extraction. Chang et al. [47] incorporated techniques such as constrained
decoding, representation reuse, and fusion to ensure that the generated entity and relationship triples adhere
to syntactic and semantic rules. Finally, Ye et al. [48] combined generative Transformers with contrastive
learning to enhance the model’s discriminative capability, enabling it to handle more complex sentence
structures. Fig. 4 shows an example of a sequence-to-sequence model.

Figure 4: Example of a sequence-to-sequence method

Wang et al. [49] enhanced the model’s capability to recognize entities and relationships by integrating
various semantic features, enabling effective handling of texts that contain complex structures and rich
semantic information. Chen et al. [50] successfully addressed the joint extraction problem of entities and
relationships using an enhanced binary pointer network, while identifying implicit relationships in the text
through reasoning patterns. Simultaneously, Tan et al. [51] introduced a query mechanism and instance
differentiation method to better distinguish complex contexts and similar instances in relationship extraction
tasks, thereby improving the accuracy of entity and relationship extraction. Zhang et al. [52] combined
external knowledge resources with contextual information to enhance the accuracy and robustness of
entity and relationship extraction tasks. Additionally, Shang et al. [53] simplified the extraction process by
simultaneously executing all extraction operations within a unified model. Li et al. [54] emphasized the
approach of first identifying relationships within the text and then inferring and filling in the corresponding
entities to complete the extraction of triples. Lai et al. [55] proposed a neural network model that incorporates
a multi-head attention mechanism, effectively capturing the dependencies between entities and relation-
ships in the text by introducing relationship-aware multi-head attention mechanisms. Furthermore, Liang
et al. [56] employed a standard sequence-to-sequence architecture, treating the input text as a sequence and
generating an output sequence that represents entity and relationship triples. Finally, Li et al. [57] proposed a
decoding scheme called TDEER, which views relationships as transformations from the subject to the object,
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effectively addressing the issue of overlapping relationship triples. Table 4 show the current state-of-the-art
in sequence-to-sequence models.

Table 4: Current state-of-the-art in sequence-to-sequence models

Model NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1
PNDec [41] 89.3 78.8 83.8 – – –

CopyRE [42] 61.0 56.6 58.7 37.7 36.4 37.1
SPN [43] 92.5 92.2 92.3 93.1 93.6 93.4

RIFRE [44] 93.6 90.5 92.0 93.3 92.0 92.6
Seq2UMTree [45] 79.1 75.1 77.1 – – –

BTDM [46] 93.1 92.4 92.7 90.9 90.1 90.5
Document [47] 92.8 93.1 92.9 90.4 92.4 91.4
Document [49] 93.6 91.7 92.6 94.9 92.3 93.5

CGT [48] 94.7 84.2 89.1 92.9 75.6 83.4
R-BPtrNet [50] 94.0 92.9 93.5 94.3 93.3 93.8

QIDN [51] 93.4 92.6 93.0 94.1 93.7 93.9
REKnow [52] 93.1 94.1 93.6 90.4 87.9 89.1
DirectRel [53] 93.6 92.2 92.9 91.0 89.0 90.0
RFBFN [54] 93.7 93.6 93.6 91.5 89.4 90.4
RMAN [55] 87.1 83.8 85.4 83.6 85.3 84.5

Seq2Seq-RE [56] 88.3 77.3 82.5 – – –
TDEER [57] 93.0 92.1 92.5 93.8 92.4 93.1

The sequence-to-sequence approach naturally excels at handling nested entities, overlapping entities,
and complex multiple relationships, as its decoding process allows for output generation at any position
rather than being constrained by a fixed set of labels. However, a notable distinction arises during training,
where the decoder typically relies on the ground truth label from the preceding word, while in the inference
phase, it must depend on the labels it generates itself. This discrepancy can lead to a decline in model
performance during inference.

Moreover, the model may still encounter challenges when generating long sequences, particularly when
tasked with extracting relationships that span multiple sentences, where accuracy is likely to diminish.
Consequently, although the sequence-to-sequence method possesses significant potential in addressing
complex structures, the critical difference between training and inference phases, along with the difficulties
associated with long sequence generation, highlights the limitations of the model in practical applications.

5.2 Parameter Sharing
Unlike the joint decoding approach, the parameter-sharing method adopts a multi-module, multi-step

process to extract relational triplets. Essentially, parameter-sharing still divides the relational triplet extrac-
tion task into two subtasks: named entity recognition and relation extraction. By sharing the parameters of
the encoding layer in a joint model, it enables joint learning, thus facilitating interdependency between entity
recognition and relation extraction. Existing parameter-sharing methods mainly rely on joint decoding or
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multi-task learning techniques, enhancing the interaction between these two subtasks by sharing underlying
parameters, ultimately achieving joint extraction of relational triplets.

Geng et al. [58] enhanced the model’s ability to understand complex relationships within texts by
integrating various semantic features, resulting in improved performance when handling multiple entities
and longer sentences. Similarly, Gao et al. [59] proposed a relation decomposition-based triple extraction
model. This model generates sentence-level vector representations by merging the word vectors of the
input text, classifying the relationships within the text first, and then identifying the corresponding entities.
Building on CopyRE, Zeng et al. [60] employed a multi-task learning strategy to generate entity and relation-
ship labels for extraction, improving the accuracy of the generated results through a copying mechanism.
Li et al. [61] introduced a joint extraction model based on a decomposition strategy, enhancing overall
extraction performance by sharing information between tasks. Yu et al. [62] simplified the complex entity-
relationship extraction task into several sub-tasks and achieved end-to-end joint extraction. Sun et al. [63]
utilized a recursive mechanism to enable continuous information exchange, optimizing entity recognition
and relationship extraction to improve the accuracy of the extraction process. Zhang et al. [64] proposed a
coarse-to-fine extraction framework, initially performing rough extraction followed by detailed refinement.
Finally, Wang et al. [65] adopted a decoupling and aggregation strategy, processing entity recognition
and relationship extraction tasks separately and then integrating the results in subsequent stages, thereby
enhancing the flexibility of the extraction process. Fig. 5 shows an example of a Parameter Sharing model.

Figure 5: Example of a parameter sharing method

Yang et al. [66] incorporated relationship information into the attention mechanism, enabling the
model to more effectively focus on entities and their contexts related to specific relationships. Meanwhile,
Duan et al. [67] developed an adaptive mechanism that flexibly adjusts processing strategies based on the
features of entities and relationships within the context, thereby enhancing extraction accuracy. The triple
relationship network mechanism proposed by Wang et al. [68] significantly improved the accuracy and
efficiency of joint extraction by directly modeling the complex interactions between entities and relationship
triples. Furthermore, Wang et al. [69] leveraged BERT’s powerful pre-training capabilities in conjunction
with a decomposition strategy to comprehensively enhance the performance of entity and relationship
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extraction. Yang et al. [70] adopted a bidirectional relationship-guided attention mechanism that integrates
semantics and knowledge, enabling the model to better tackle the challenges posed by complex texts.
Gao et al. [71] enhanced the model’s ability to handle long sentences by combining stage-wise processing
with a global entity docking mechanism. In addition, Sun et al. [72] implemented progressive multi-task
learning, achieving more precise entity and relationship extraction by gradually learning each sub-task and
effectively controlling the flow of information. Huang et al. [73] utilized transformation rules in knowledge
graph embeddings to learn relationship representations, proposing a special relationship called NA and
dynamically selecting suitable relationships through a bias loss function. Zhuang et al. [74] designed a
priority-driven joint extraction model that prioritizes relationship extraction to guide entity recognition
and triple generation. Finally, Chen et al. [75] improved the joint extraction capabilities of entities and
relationships by transforming and reinforcing the relationships between text and knowledge graphs. Table 5
shows the current state-of-the-art in Parameter Sharing models.

Table 5: Current state-of-the-art in Parameter Sharing models

Model NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1
RS-Joint [58] 80.3 57.2 66.8 – – –

Document [59] 91.5 90.0 90.7 91.4 92.2 91.8
CopyMTL [60] 75.7 68.7 72.0 58.0 54.9 56.4
Document [61] 86.5 73.2 79.3 85.3 83.1 84.2
ETL-Span [62] 85.5 71.7 78.0 84.3 82.0 83.1

RIN [63] 83.9 85.5 84.7 77.3 76.8 77.0
C2FERE [64] 93.7 92.6 93.1 91.5 89.2 90.3

BiDArtER [65] – – 92.6 – – 94.1
RGAM [66] 90.6 92.0 91.3 93.5 91.9 92.6

Document [67] 81.3 76.7 79.4 67.4 65.1 66.3
TRN [68] 93.0 92.3 92.6 93.5 92.7 93.1

Document [69] 87.0 85.1 86.0 – – –
BRASK [70] 93.0 91.5 92.2 94.8 92.2 93.5
ERGM [71] 93.3 91.5 92.4 94.2 91.2 92.7
PMEI [72] 88.4 88.9 88.7 80.8 82.8 81.8

TransRel [73] 90.1 93.9 92.0 92.7 94.9 93.8
RFTE [74] 88.9 90.5 89.7 91.3 92.5 91.9
MTG [75] 95.6 93.1 94.3 94.8 95.1 94.9

In joint extraction models, parameter sharing techniques effectively reduce the number of parameters
by allowing certain parameters to be shared between the tasks of entity recognition and relationship
extraction. This approach enhances training efficiency and improves the model’s generalization capability.
However, when significant differences exist between these tasks, parameter sharing can have detrimental
effects, ultimately weakening overall performance. The adjustment of shared parameters affects all tasks
simultaneously, which often leads to difficulties in fine-tuning specific tasks.

Consequently, this limitation not only restricts the flexibility and adaptability of the parameter-sharing
model but also raises concerns regarding its performance in diverse task settings. Therefore, exploring how to
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balance the benefits of parameter sharing with the unique requirements of individual tasks becomes essential.
This inquiry not only offers potential avenues for enhancing the performance of joint extraction models but
also lays the groundwork for future research in this area.

6 Experiments
In order to validate the reproducibility of current state-of-the-art relational triplet extraction techniques

and address the lack of performance comparisons across different models under uniform conditions,
this paper will conduct small-scale comparative experiments under consistent hardware settings. These
experiments will utilize the same datasets and evaluation metrics to ensure fairness and reliability. Moreover,
additional small-scale experiments will be carried out, focusing on the number of relational triplets present
in sentences and the types of overlapping triplets. Through these analyses, the paper aims to evaluate
and compare the performance of various extraction models across different datasets, providing a deeper
understanding of their strengths and limitations in diverse scenarios.

6.1 Datasets and Evaluation Metrics
To provide a clear and intuitive comparison of the strengths and weaknesses of various methods in

practical tasks, this paper employs the NYT and WebNLG datasets, as introduced in Section 3, for the
comparative experiments. In order to further investigate how different approaches handle complex scenarios,
sentences containing varying types of overlapping triplets and sentences with different numbers of triplets
are used to test all models.

For the evaluation, precision (Prec.), recall (Rec.), and F1 score (F1) are adopted as the primary metrics,
allowing for a comprehensive assessment of the models’ performance through the combined analysis of
these various indicators. This approach ensures a robust and nuanced evaluation of the methods under
different conditions.

6.2 Implementation Details
To facilitate a systematic comparison of the discussed models under uniform conditions, all training

processes in our experiments are conducted on a workstation equipped with an Intel Xeon Gold 6133
CPU, 256 GB memory, an RTX 4090 GPU, and running Ubuntu 20.04. The model parameters used are
directly derived from those provided in the respective papers, ensuring consistency with the original
experimental settings.

6.3 Baselines
To validate the reproducibility of the models and compare the strengths and weaknesses across different

types, we have selected a number of advanced models from each category for the comparative experiments.
The models chosen include: (1) Table filling: OneRel [21], TPLinker [15], and GRTE [18]; (2) Tagging:
PRGC [30], CASREL [33], and BiRTE [35]; (3) Sequence-to-sequence: BTDM [46], R-BPtrNet [50], and
RFBFN [54]; (4) Parameter sharing: C2FERE [64], ERGM [71], and MTG [75]. The code for all these
models is sourced from the publicly available implementations provided in the respective papers. This
selection ensures a representative and comprehensive evaluation of the models’ performance across various
extraction tasks.
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6.4 Results and Analysis
From Table 6, it can be observed that the best-performing model is MTG, which demonstrates

exceptional handling of overlapping relational triplets in sentences, particularly excelling with an F1 score
of 98.0% on the EPO-type data in the WebNLG dataset. In addition, the table filling model shows generally
strong performance across both datasets; however, its performance on the WebNLG dataset, particularly
with SPO-type data, is slightly lower than its performance on the NYT dataset. This discrepancy highlights
a limitation in the table filling model’s ability to effectively handle the more complex sentence structures
and natural language expressions present in WebNLG. The tagging model, while performing at an average
level across all models, effectively leverages contextual information, enabling it to exhibit stable performance
across various sentence types. Moreover, it demonstrates good generalization ability, consistently performing
well on different datasets.

Table 6: F1 scores on sentences with different overlapping patterns

Model NYT WebNLG

NEO EPO SPO NEO EPO SPO
OneRel [21] 90.6 95.1 94.8 91.9 95.4 94.7

TPLinker [15] 90.1 94.0 93.4 87.9 95.3 92.5
GRTE [18] 91.1 95.0 94.4 90.6 94.5 96.0

PRGC [30] 91.0 94.5 94.0 90.4 95.9 93.6
CASREL [33] 87.3 92.0 91.4 89.4 94.7 92.2

BiRTE [35] 91.4 94.2 94.7 90.1 94.3 95.9

BTDM [46] 90.8 94.7 94.9 91.0 94.3 93.5
R-BPtrNet [50] 90.4 95.2 94.4 89.5 96.1 93.9

RFBFN [54] 91.2 95.6 95.2 91.0 96.5 94.6

C2FERE [64] 91.9 95.1 94.5 91.8 96.3 94.7
ERGM [71] 90.9 94.1 93.6 90.3 96.0 93.8
MTG [75] 91.1 96.7 95.7 90.0 98.0 94.5

As for the sequence-to-sequence model, its overall performance on EPO-type triplets is relatively stable
across both datasets, showcasing sensitivity to entities and relations in complex sentences. This is particularly
important, as errors in entity recognition have a much larger impact than errors in relation classification for
EPO-type triplets. However, the sequence-to-sequence model’s performance on the SPO-type data in the
WebNLG dataset lags behind its performance on the NYT dataset, possibly due to suboptimal utilization
of contextual information. Finally, the parameter-sharing model shows superior performance on the EPO-
type data in the WebNLG dataset compared to the NYT dataset, reflecting the model’s strong capabilities
under low-resource conditions. This suggests that, in scenarios with limited resources, the parameter-sharing
model can still perform remarkably well.

Table 7 presents the extraction performance of different models when handling sentences with varying
numbers of triplets. When N < 3, C2FERE demonstrates the best performance, indicating its strong ability
to handle simpler sentence structures. In contrast, when N > 3, MTG outperforms all other models,
highlighting its superior understanding of more complex sentence structures. Overall, the parameter-sharing
model excels in handling sentence structures with varying numbers of triplets, which can be attributed to its
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unique construction approach. By employing a multi-task learning framework that combines named entity
recognition and relation extraction, the model enhances extraction performance.

Table 7: F1 scores on sentences with different triple numbers

Model NYT WebNLG

N = 1 N = 2 N = 3 N = 4 N > 5 N = 1 N = 2 N = 3 N = 4 N > 5
OneRel [21] 90.5 93.4 93.9 96.5 94.2 91.4 93.0 95.9 95.7 94.5

TPLinker [15] 90.0 92.8 93.1 96.1 90.0 88.0 90.1 94.6 93.3 91.6
GRTE [18] 90.8 93.7 94.4 96.2 93.4 90.6 92.5 96.5 95.5 94.4

PRGC [30] 91.1 93.0 93.5 95.5 93.0 89.9 91.6 95.0 94.8 92.8
CASREL [33] 88.2 90.3 91.9 94.2 83.7 89.3 90.8 94.2 92.4 90.9

BiRTE [35] 91.5 93.7 93.9 95.8 92.1 90.2 92.9 95.7 94.6 92.0

BTDM [46] 90.7 93.4 94.2 96.2 94.0 90.8 92.5 96.1 95.4 92.7
R-BPtrNet [50] 89.5 93.1 93.5 96.7 91.3 88.5 91.4 96.2 94.9 94.2

RFBFN [54] 91.4 93.8 94.8 96.4 93.9 90.8 92.6 96.6 94.7 94.5

C2FERE [64] 91.7 94.2 94.2 96.1 93.6 91.7 92.4 96.2 95.3 94.5
ERGM [71] 90.9 93.4 93.1 95.7 90.1 90.3 91.5 95.1 94.0 92.5
MTG [75] 90.6 93.6 94.4 97.8 92.4 89.2 92.0 96.5 95.9 95.4

Additionally, the table filling model shows results just below the parameter-sharing model, which
can be explained by its need to enumerate all possible entity-relation pairs and construct a relation
matrix for each triplet. While this approach performs well in more complex environments, it inevitably
increases computational demand, thus reducing efficiency. In the case of sentences with fewer triplets, the
tagging model demonstrates relatively stable performance; however, when N > 5, its performance declines
significantly. This suggests that, in scenarios involving multiple triplets, the model struggles to fully utilize
contextual information, revealing limitations when processing complex sentences. As for the sequence-to-
sequence model, it generally performs well, with the RFBFN model standing out in particular when handling
N < 3. This model demonstrates superior performance compared to others, which underscores its advantage
in more complex extraction scenarios.

7 Current State-of-the-Art & Trends
Despite the significant advancements achieved in accuracy and efficiency by triplet joint extraction

models, their limitations remain noteworthy. Primarily, the issue of computational complexity often restricts
their practical application. Table 8 shows the computational complexity and applicable scenarios of different
relation triplet extraction techniques; particularly when handling large-scale data, the training and inference
processes of these models can consume substantial computational resources, resulting in extended response
times. Additionally, concerns regarding scalability arise, as many existing methods struggle to maintain
consistent performance in the face of an ever-increasing variety of entities and relation types. More critically,
in resource-constrained environments, the performance of these models may decline markedly, given that
their updates typically necessitate extensive annotated data and computational resources.

In addition, as the complexity of relation triplet extraction models continues to increase, the compu-
tational resources required for training these models, along with their environmental impact, have become
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increasingly critical concerns. The training of large-scale deep learning models typically relies on high-
performance computing hardware, such as GPUs or TPUs, which consume substantial amounts of electricity
and contribute significantly to carbon emissions. Particularly when dealing with vast amounts of textual data,
the training process can extend over several days or even weeks, further escalating energy consumption and
the environmental burden [76]. Moreover, in order to achieve high model performance, researchers often
depend on large datasets and distributed computing frameworks, which not only place greater demands on
computational power but also increase energy consumption associated with data storage and transmission.
Given the growing importance of sustainability, finding ways to optimize the use of computational resources
while reducing environmental impact, without compromising model performance, has emerged as a key
research direction in the field.

Table 8: Computational complexity and applicable scenarios of relation triplet extraction techniques, n is the number
of entities in the text

Methods Computational complexity Applicable scenarios
Table filling O(n2) Structured output, suitable for text data with

fixed formats or structures.
Tagging O(n)∼O(n2) Suitable for tasks that extract relationships step

by step, ideal for simple relation extraction tasks.
Sequence-to-sequence O(n2) ∼O(n3) Applicable to joint extraction of long texts and

complex relationships.
Parameter sharing O(n2)∼O(n3) Sharing features in multi-task learning to

enhance the overall performance of the model.

In recent years, Transformer-based architectures such as BERT [77] and GPT-3 have demonstrated
immense potential in the field of relational triplet extraction. BERT, with its bidirectional encoder and
pretraining-finetuning framework, effectively captures contextual information, thereby enhancing the accu-
racy and generalization capability of relation extraction tasks. On the other hand, GPT-3 leverages its
powerful generative capacity and few-shot learning advantage, allowing it to excel in complex and low-
resource environments. Both models combine robust language modeling abilities and exhibit unique
strengths when dealing with intricate sentence structures and multiple relations. Furthermore, the integra-
tion of technologies like Graph Neural Networks (GNN) can further enhance model performance, thereby
positioning Transformer-based architectures as highly promising and valuable in the context of relational
triplet extraction tasks, with significant potential for both application and research advancement.

On the application front, the potential of joint relation triplet extraction technology is vast. It signif-
icantly improves answer accuracy in intelligent question-answering systems, thereby serving as a crucial
foundation for information extraction and knowledge graph construction. In personalized recommendation
systems, it enhances user experience, enabling more precise recommendations. Furthermore, in dialogue
systems, it bolsters context comprehension, resulting in more natural and fluid exchanges. In the realm of
social network analysis, this technology aids in identifying interactions among users, providing valuable
data support for marketing strategies [78]. In biomedical fields, it contributes to drug development by
extracting key relations that drive scientific discoveries. Collectively, these applications not only accelerate
the rapid advancement of relation triplet extraction technology but also lay a vital technological foundation
for the intelligent transformation of various industries. As the field evolves, an increasing array of innovative
applications is anticipated, highlighting its profound societal value and academic significance.
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8 Outlook of Future Works
The future development prospects of joint relation triplet extraction undoubtedly brim with vast

potential. On the technical front, the growing emphasis on interpretability and transparency is increasingly
vital; this focus not only fosters user trust in the decision-making processes of models but also deepens
the understanding of deep learning mechanisms. Simultaneously, the emergence of multimodal learning
enables models to integrate diverse data sources such as text, images, and videos, thus enhancing their
performance in navigating complex scenarios [79]. Furthermore, the incorporation of continuous learning
capabilities is poised to become a crucial factor, allowing models to self-update and adapt flexibly to the
rapidly changing landscape of knowledge and environments. In addition, combining few-shot learning and
self-supervised learning with relation triplet joint extraction techniques has the potential to significantly
enhance the generalization capabilities of relation extraction systems. This is particularly true in low-resource
scenarios, where such approaches can improve the scalability of models, enabling them to perform effectively
even when labeled data is scarce or difficult to obtain. Additionally, the adaptation to cross-domain and
cross-language contexts is likely to emerge as a focal point of research, thereby broadening the applicability
of these models across various fields and languages [80].

In terms of applications, the technology of relation triplet extraction is set to intertwine more closely
with the construction of knowledge graphs, facilitating ongoing advancements in intelligent question-
answering, personalized recommendations, social network analysis, and biomedical information extraction.
This synergy is expected not only to optimize user experiences and enhance the efficiency of information
retrieval and decision support but also to drive the intelligent transformation of sectors such as corporate
decision-making, marketing, and scientific research. As technology continues to evolve and application
scenarios diversify, relation triplet extraction is positioned to reveal its profound social value while igniting
new avenues for exploration and innovation within academic research, thus underscoring its pivotal role in
advancing the construction of a smart society.

9 Conclusion
This paper provides a brief review of joint extraction technologies for relational triples, categorizing

them into two major approaches: joint decoding and parameter sharing. Joint decoding methods can be
further divided into three types: table filling, tagging, and sequence-to-sequence. While joint decoding is
effective for extracting triples from short sequence texts and allows for easier overall task model adjustments,
its performance diminishes when dealing with long sequence texts and complex texts. On the other hand,
parameter sharing methods enable the two subtasks of relational triple extraction to share some or all of
the parameters, thereby reducing redundancy in model parameters. However, modifying shared parameters
affects all tasks, thus limiting the model’s flexibility. With the continuous advancement of deep learning and
natural language processing technologies, future research directions primarily focus on optimizing both the
performance of joint decoding and parameter sharing methods across different text scenarios. Additionally,
enhancing the extraction of cross-document relational triples and exploring few-shot learning and transfer
learning will also be crucial for improving adaptability in low-resource languages and domains.
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