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ABSTRACT: Networking, storage, and hardware are just a few of the virtual computing resources that the infrastruc-
ture service model offers, depending on what the client needs. One essential aspect of cloud computing that improves
resource allocation techniques is host load prediction. This difficulty means that hardware resource allocation in cloud
computing still results in hosting initialization issues, which add several minutes to response times. To solve this
issue and accurately predict cloud capacity, cloud data centers use prediction algorithms. This permits dynamic cloud
scalability while maintaining superior service quality. For host prediction, we therefore present a hybrid convolutional
neural network long with short-term memory model in this work. First, the suggested hybrid model is input is subjected
to the vector auto regression technique. The data in many variables that, prior to analysis, has been filtered to eliminate
linear interdependencies. After that, the persisting data are processed and sent into the convolutional neural network
layer, which gathers intricate details about the utilization of each virtual machine and central processing unit. The next
step involves the use of extended short-term memory, which is suitable for representing the temporal information of
irregular trends in time series components. The key to the entire process is that we used the most appropriate activation
function for this type of model a scaled polynomial constant unit. Cloud systems require accurate prediction due to
the increasing degrees of unpredictability in data centers. Because of this, two actual load traces were used in this
study’s assessment of the performance. An example of the load trace is in the typical dispersed system. In comparison to
CNN, VAR-GRU, VAR-MLP, ARIMA-LSTM, and other models, the experiment results demonstrate that our suggested
approach offers state-of-the-art performance with higher accuracy in both datasets.
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1 Introduction
The three main services that cloud computing provides are infrastructure as a service (IaaS), platform

as a service (PaaS), and software as a service (SaaS). These services are provided to users via the Internet
in accordance with the pay-and-gain policy. One of the main purposes of cloud computing is to provide
the user with access to a large amount of virtualized resources [1,2]. Compute as a service, which enables
customers to access different resources like hardware, software, CPUs, and apps via the internet, is one of
the main characteristics of cloud computing. Cloud technology is widely employed in many aspects of life
because of its biggest resource on-demand delivery, low resource cost, and flexible resource scalability [3].
Different numbers of applications have been developed using the cloud platform to improve these programs;
other methods, including prediction, are employed for resource allocation. However, there are still several
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problems with this technology, such as resource and application balance, which could enhance system
performance [4].

Predicting workload and resources is a crucial aspect of cloud management platforms and systems.
Prediction processes increase accuracy rates and have a direct impact on security, service quality, economy,
and management processes, all of which enhance cloud-computing performance. Load and application
prediction usually describes the future behavior of resources and applications on a specific feature of the
obtained knowledge base [5,6]. Performance parameters for load prediction can include metrics like CPU
use, reaction time, throughput, memory utilization, and network utilization. Future prediction techniques
will be separated into load prediction and application prediction. Several machine-learning algorithms that
leverage cloud application background recordings for a specific amount of time are applied proactively.

Developing an intelligent resource management system based on historical data is one of the key goals of
the machine learning technique [7]. One of the essential aspects for efficient resource management in cloud
computing is application prediction, which accounts for future demand projections. Application prediction
work is done in various domains, such as workload prediction, service-level agreement (SLA) measures, and
quality of service (QoS) [8]. To quickly estimate future resource, requirements prediction techniques are
crucial in cloud computing because they are precise. It is possible to predict resource management in a cloud
environment with accuracy during the application process. Because of this, precise forecasting is essential
for cost reduction and resource management at its best [9,10]. Most cloud providers offer scalable services
that give computer resources (such as CPU, memory, and storage) on demand because Infrastructure as a
Service (IaaS) provides speedy and flexible IT resources.

Nonetheless, the main cause of the several-minute lag is the scaling time needed to set up a virtual
machine and CPU. Minimizing scaling time delays requires exact resource allocation to be predetermined.
For this reason, predicting CPU and virtual machine consumption is crucial to resolve this problem [11].
Previous studies have identified challenges in host utilization, i.e., dynamic workload, resource conflict,
scalability, data availability, latency etc. These challenges collectively highlight the limitations of traditional
and single-architecture models, necessitating a hybrid CNN-LSTM approach that can leverage both local
feature extraction and long-term memory retention to provide accurate and timely host load predictions in
cloud environments. We summarize the challenges in Table 1.

Table 1: Challenges in host utilization

Challenge Description Impact
Dynamic workload Because workload patterns and

demand are always changing, it can
lead to fluctuating resource

requirements and challenges to
predict utilization.

The possibility of over-provisioning
or under-utilization of resources

depending on demand will increase.

Resource conflict When several virtual machines
(VMs) vie for the same resources,

performance can become erratic, and
forecasts become erroneous.

The performance of the host may be
disrupted with potential bottlenecks

in resource access.

Scalability It gets harder to scale prediction
models effectively as cloud
environments get bigger.

Decreased efficiency and difficulty in
maintaining optimal resource use.

(Continued)



Comput Mater Contin. 2025;82(3) 5187

Table 1 (continued)

Challenge Description Impact
Data availability Accurate forecasts may be hampered

by a lack of high-quality, diversified
datasets.

Reduced uptime and potential data
access and accurate forecasts may

hamper user experience.
Latency and real-time

requirement
Accurate real-time predictions are

necessary for efficient resource
management, but this can be a

computationally demanding task.

Delayed response time may affect
user experience.

Overhead in
monitoring

The system’s overall performance is
impacted by the overhead of

continuously gathering data for
utilization prediction.

Additional resource consumption
reduces efficiency for actual

workload tasks.

Energy efficiency The difficulty to strike a balance
between resource use and energy
efficiency, particularly in dynamic

cloud environments.

Inefficient resource usage increases
energy costs and affects sustainability

goals.

Model complexity Complex models for resource
allocation may require high

computational power, affecting host
efficiency.

Increase computational load.

Moreover, since cloud computing provides scalable, on-demand resources to accommodate changing
workload requirements, it has become essential to current IT infrastructures. Effective resource management
is still a major obstacle, though, since under-provisioning causes performance bottlenecks while over-
provisioning wastes resources. To ensure the best possible allocation of computer resources, lower operating
costs, and improve system performance, an accurate host utilization forecast is essential. A customized neural
network can improve resource management, forecast host use more accurately, and support more effective,
economical cloud operations. This justifies our motivation to conduct this study which aims to improve the
load prediction approach to maximize the utilization of cloud resources. The contributions of this study are
outlined as follows:

a) This study proposes a hybrid CNN and LSTM model for multivariate resource prediction in cloud
data centers.

b) The proposed model is implemented with the activation function of scaled polynomial continuous unit,
which is the main contribution of the proposed model.

c) The suggested approach is utilized in cloud data centers to anticipate host load more accurately.
d) This study calculates and contrasts the suggested hybrid model with various industry standards.
e) This study also consists of comprehensive experimental assessment for various data sets including

conventional distributed system data sets and publicly accessible Google cluster trace centers within a
cloud-computing environment.

The remainder of the document is structured as follows: Section 2 provides the background information
required for resource prediction; Section 3 presents the proposed model; Section 4 describes the dataset and
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experimental results; Section 5 highlights the contribution of the proposed model, and Section 6 presents
the conclusion.

2 Related Work
Cloud computing offers flexible resource distribution according to cloud customers’ requirements. Since

the demand for cloud users fluctuates over time, creating a resource-forecasting model is difficult [12]. Since
cloud computing relies heavily on the round-trip time (RTT) of cloud servers, Damaševičius et al. [13]
proposed a neuron fuzzy network with eight probability distribution functions to forecast RTT. This method
was used to quantify the time it takes for data to travel from a source node to a destination node and back. The
recommended approach boosts productivity and reduces error rates. The offloading method and prediction
rate were enhanced by the author’s efforts.

To get a greater prediction accuracy rate, Kholidy et al. [14] presented the swarm intelligence-based
prediction method known as SIBPA to predict resource allocations for CPU, memory, and storage consump-
tion. The results of the suggested algorithm are contrasted with those of established algorithms including
Linear regression, Neural Network and Support Vector Machines. In [15], the multi-agent system (MAS)
for the cloud computing computational resource allocation system’s dynamic monitor prediction system is
presented by the authors. The reasoning agent technique that is being discussed works in concert with the
architectural system through its three-layer components. Many linear regressions models with lower means
for the error system were shown. Based on the findings, the author claims that the Google platform achieves
a respectable rate of prediction and accuracy. Because load balancing techniques and balance optimization
systems are so important to cloud computing’s use of hardware resources, a concept called an LSTM (long
short-term memory) encoder-decoder was proposed by Zhu et al. [16]. The authors proposed two models
where the first model employs the feature context of the past workload while the second model integrates the
attention mechanism into the decoder network and performs the prediction. The study uses the workload
traces datasets from Alibaba and Dinda. Based on the results, it is claimed that the suggested solution works
more accurately and requires a smaller sequence monitor system.

Most current estimating approaches employ a single model technique to evaluate resource consumption
in the cloud data center, either underloaded or overloaded. Biswas et al. [17] proposed a New Linear
Regression Model to predict future CPU utilization based on Virtual Machine (VM) consolidation process.
This model demonstrates the ability to reduce energy consumption in cloud data centers by improving
the utilization of resources. In cloud data centers, the load balancing technique is essential for optimizing
resource use and reducing resource waste [18]. Huang et al. [19] proposed a hybrid approach to reduce
energy consumption and predict load prediction via dynamic resource allocation in the cloud. The approach
achieved around 98% accuracy in predicting energy consumption when validated using the SPECpower
benchmark, which is an industry-standard benchmark to compare performance of servers in data centers.
In another study, de Lima et al. [20] proposed an artificial neural network approach known as the TLP-
Allocator. TLP refers to thread-level parallelism which improves computational efficiency and performance.
The proposed method managed performed better than other state-of-the-art resource allocations methods
on cloud environments in terms of overall optimal energy-delay product (EDP). To anticipate future multi-
attribute host resource utilization, Abdullah et al. [21] used support vector regression (SVRT), a supervised
learning technique suitable for non-linear cloud resource load forecasting. The recommended technique
employed the sequential minimal optimization algorithm (SMOA) to optimize the training and regression
sections using different types of datasets. The results show that the recommended approach reduces error
percentage by 4%–16% and outperforms state-of-the-art approaches by between 8% and 20%, generally.
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It is imperative to keep in mind that accurate data forecast the cloud data center’s resource utilization
requires careful planning, which includes load balancing, workload placement, energy conservation, and
scheduling. However, accurately calculating resource consumption is a considerable challenge due to the
diverse range of infrastructures and dynamic nature. Consequently, Baig et al. [22] proposed a model
based on methods for deep learning adaptive window size selection. Resource consumption is assessed
using the sliding window size technique by estimating each trend period and contrasting it with the most
recent resource use trend. The proposed estimating strategy increases prediction accuracy by 16%–54%
when compared to baseline methods. Similar to Jyoti et al. [18], the authors also highlighted that the
load balancing technique is one of the essential elements of cloud computing, extending the duration
of the system. As a result, the Osmotic Hybrid artificial Bee and Ant Colony (OH_BAC) algorithm was
introduced in [23]. The proposed method is a cross between an artificial beehive and an ant colony, as it
decreases the quantity of virtual computers in use and ultimately increases the lifetime of the network. To
forecast resources, the author employs simple linear regression and optimal piecewise linear regression.
Then, based on the forecast results, it selects the most appropriate virtual machine (VM) for maximum
utilization. The recommended algorithm improves network stability and system minimization over the
classical algorithm. According to Bilski et al. [24], previous research attempted to predict cloud computing
load prediction using the Levenberg-Marquardt (LM) and Gradient Descent (GD) algorithms. However, the
model suffers from high computational complexity, like classic LM model. Hence, the authors proposed a
vector calculations approach to significantly reduce the LM computational time when tested on different
feedforward networks topologies. The model yields shorter training time compared to the classic LM.
Javadpour et al. [25] proposed a method called Dynamic Voltage and Frequency Scaling (DVFS) which
migrates tasks under certain situations to improve network performance. Experimental results demonstrate
that the method reduces power consumption but with a longer working period which generates better profit
for cloud providers. Table 2 displays a summary of related work.

Table 2: Summary of related work

Algorithm name Platform Metric Pre-
processing

Prediction
section

Hybrid
neuron-fuzzy

network

MATLAB/cloud-
based game

sessions

QoS,
communication

Yes Server round-trip
time

SIBPA technique Amazon/Cloud data
set/CloudSim

Response time,
throughput, and

memory utilization
predictions

Yes Resource section

Adaptive window
size predictor

method

CloudSim/Alibaba/
Bit brains

CPU, memory
response time

Yes Resource
utilization

Attention-based
LSTM encoder

decoder network

MATLAB/Alibaba/
Dinda

Prediction
accuracy

No Workload
prediction

SVRT technique Bit Brain (BB),
Planet Lab (PL)

Accuracy, reduce
error percentage

Yes Host resource
utilization

(Continued)



5190 Comput Mater Contin. 2025;82(3)

Table 2 (continued)

Algorithm name Platform Metric Pre-
processing

Prediction
section

CNN.SVT
Technique

CloudSim/Alibaba/
Bit brains

CPU, memory
response time

Yes Resource
utilization

OH-BACFUP
algorithm

CloudSim API
3.0.3/Cloudlets

Energy
consumption

No Single resource
utilization

OBD-based LM
adaptation
algorithm

Google cluster trace
and Planet Lab

workload

CPU utilization No CPU usage
prediction

3 Proposed Model
We know that the LSTM model, which is used for temporal information, maps important time into

separable space in order to provide predictions, and that CNN is a useful technique for removing noise
and accounting for correlations between variables and multivariate data. Our proposed model uses CNN-
LSTM to predict virtual machine (VM) and CPU use. A multivariate time series that is recorded over time,
VM usage contains irregular patterns of both spatial and temporal information across variables [26,27]. The
recommended models that are used for resource prediction metrics are CPU and RM. The proposed model
architecture is presented in Fig. 1.

Figure 1: Proposed model architecture

In the initial step of input data analysis, the linear interdependencies between the multivariate variables
are filtered using the VAR regression approach. Next, the leftover data are computed and incorporated into
the CNN layer. It acquires the complex properties of every CPU and virtual machine component, uses
LSTM to extract the temporal data of irregular time series components, and generates a prediction. Since



Comput Mater Contin. 2025;82(3) 5191

the multivariate time serious data are split into linear and nonlinear parts, we can ascertain the following.

xt = Lt + Nt + E, (1)

Lt indicates the nonlinearity section for the error term E value utilized; t presents the linearity of the data
for time t employed. The VAR model, which analyzes the line trends, is used to examine the first part
for multivariate time series t. On the other hand, nonlinear or residuals of the model portion Nt , which
incorporate temporal and geographical information, are employed.

Nt = S + T (2)

In the spatial part model, CNN was used to extract features. A hybrid CNN-LSTM model was then
applied for the input process, which is appropriate for modeling temporal information after the final
prediction has been entirely formed. We initially address the commonalities between these two models, then
go on to multivariate workload prediction in cloud data centers by introducing our own approach. Vector
autoregressive models are intended for forecasting or prediction purposes because of the way their steps
are constructed, which requires values from the preceding variable in order to proceed when the present
values of a set of variables are partially explained. The main purpose of this model is to elucidate the joint
producing mechanism of the variable [28,29]. The arrangement of every variable in the current or previous
logs’ liner function.

In Eqs. (3)–(6), the RM movement in CPU usage is t − 1 (the lag number in this section is 1), and the
CPU is represented by the values y1(t), y2(t), y3(t), and y4(t); likewise, the CPU is represented by the values
y1(t−1), y2(t−1), y3(t−1), and y4(t−1). The constant terms are a1, a2, a3, and a4, etc. whereas e1, e2, e3, and e4
are the four error words that are employed. They have h coefficients.

y1 (t) = a1 +w11 y1 (t − 1) +w12 y2 (t − 1) +w13 y3 (t − 1) +w14 y4 (t − 1) + e1 (t − 1) (3)
y2 (t) = a2 +w21 y1 (t − 1) +w22 y2 (t − 1) +w23 y3 (t − 1) +w24 y4 (t − 1) + e2 (t − 1) (4)
y3 (t) = a3 +w31 y1 (t − 1) +w32 y2 (t − 1) +w33 y3 (t − 1) +w34 y4 (t − 1) + e3 (t − 1) (5)
y4 (t) = a4 +w41 y1 (t − 1) +w42 y2 (t − 1) +w43 y3 (t − 1) +w44 y4 (t − 1) + e4 (t − 1) (6)

We establish the order p for the two series prior to the VAR model’s estimate section. The vector
auto regression (VAR) model is a comprehensive, versatile, and very significant method for examining
multivariate time series [30–33]. This particular kind involves delaying the test. Making use of the univariate
multivariate time series using the autoregressive approach. The VAR model is one of the most flexible
for forecasts since it established the criteria future path of a particular variable in the system. Impulse
response study of VAR lag order is a crucial preliminary step in calculating impulse response using vector
autoregressive models [34–36]. In this work, we have opted to estimate parameters using the AIC measure
as in Eq. (7).

xt − Lt = Nt (7)

When it comes to the degree of freedom, the likelihood function’s value is displayed by the LN
(L < X) notation, which represents the parameters used in the equation. When we have a compact model
and have an AIC value, we obtain better outcomes and a better model. The residual values are calculated
and then determined to the ensuing CNN-LSTM model. The nonlinear elements are anticipated to persist
since the VAR model detected the linear trend [34,35]. The convolutional neural network (CNN), which is
modeled after the human brain system, performs optimally in a wide range of applications. CNN’s two main
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characteristics are sparse connections and shared weight typical. The convolutional layer, the subsampling or
pooling layer, and the fully connected layer which is utilized for classification—are the three computational
layers in which CNN is used as a hierarchical model [32]. This type of neural network is specialized and
designed to operate with data that has multiple dimensions, such as two or three. A 1D CNN can read
input out of order and automatically identify the relevant pieces in the time series-forecasting problem. A
convolutional hidden layer CNN model operating on a 1D sequence is referred to as a CNN in one dimension.
When given sequence numbers as input, a 1D CNN may read it and finally determine the important
characteristics for time series or forecasting applications. 1D CNN is quite good at creating topographies
from a fixed-length portion of the whole dataset; regardless of the location of the data segment, it will work
correctly in the relevant area for any application [36,37].

Eq. (8), which is the result of vector y1, represents the lengthy input sequence in some cases. The
second convolutional layer is placed after the first. xi , j in the equation represents the input vector; section
b1

j represents the base of the j-th feature map; the kernel weight is present; and σ represents the activation
function, such as ReLU, and variable m indicates the filter index value. The pooling layer, which follows
the convolution layer, is in charge of distilling the convolution layer’s output to its most crucial elements.
The main purpose of the pooling layer is to minimize the size of the representation parameter, and the
expenses associated with network calculations. Max pooling forecasts or anticipates resource use by using
the maximum value of each neuron and the cluster from the preceding layer. Additionally, this component
modifies the overfitting section.

y1
i j = σ(b1

j +
M
∑
m=1

w1
m , jx

0
i+m−1, j) (8)

Eq. (9) shows the highest possible layer of pooling. R is the pooling size that is less than the input y, and
T is the stride that determines how far to move the area of input data.

p1
i j = max y1

rεR i × T + r. j (9)

The LSTM layer, which deduces the properties gathered by the convolutional part of the proposed
model, comes after the pooling and convolutional layers. A flatten layer is positioned between the convolu-
tions layer and the LSTM layer. Its purpose is to compress successive mappings into a single one-dimensional
vector [38]. CNN is known to be composed of several layers, the lowest of which is CNN-LSTM. CNN-LSTM
stores qualities of power that must be restored with the assistance of CNN and LSTM combine memory
units that preserve previous buried states in order to create a theory that is resistant to microorganisms.
long-term memory. This feature facilitates the easy determination of the temporal relationship on a long-
term sequence by transferring the output values from the preceding CNN layer to the gate units. The LSTM
network can predict power consumption by tackling the issues of vanishing gradient and explosion. Four
interacting neural networks make up the LSTM cell: one for the input, forget, input candidate, and output
gates. A vector with element values ranging from zero to one is produced by the forget gate. Because it can
handle evaporation and explosion inclination issues, an LSTM network is appropriate for power demand
prediction [39,40].

The LSTM cell contrast is made up of four neural interactions networks, every one of which is a gate. The
function depicted in Fig. 2 and denoted by the same symbol is the logistic function, which is also referred to
as the scaled polynomial constant unit activation function. The model’s ability to be nonlinear is due to the
activation function. We’ve already discussed the two property values of the LSTM: concealed condition. The
cell’s fluctuating H(t) value and C(t) presentation of the cell state enable long-term memory maintenance.
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Information can be added to or removed from the cell state by LSTM. To display the cell state C(t), for
instance, it can connect input X(t) for the prior concealed state H(t−1). The cell can remember or disregard
the use of X(t) and H(t−1) thanks to this function. Ascertain the input value feed for input sections I(t) and
I(t) to the cell state C(t). When it serves a forgetter that is multiplied to the call state, it employs a separate
time step to eliminate values that are not needed for prediction and keep those that are. The output gate
o(t) also selects the exit based on the process of the cell state, as can be seen in the below. The instruction
above explains the LSTM gate and its operation conditions. The activation function that provides the model
with its nonlinear capabilities is the fir logistic function, which is also represented in Fig. 3 using the same
notation. It is also referred to as the scaled polynomial constant unit. Consequently, we used the altered
activation function in this model. In the next step, the input gate and candidate gate work together to create
the new state cell, or State [41]. As stated in the comping section, the next step in this part is to use the scaled
polynomial constant unit in the input gate and the hyperbolic tangent in the input candidate as the activation
function for the renewed cell state. The four stages of the proposed hybrid CNN-LSTM model prediction
approach include data preparation, model rectification, model fitting, and model estimate and prediction.
As was already indicated, the algorithm passes the residual value calculated by the CNN-LSTM model. The
recommended approach divides each sample into a four-time phase and the CNN model is used to infer
each subsequence from a pair of subsequences so that the LSTM can put together the interpretation from
the subsequences. The CNN was set up to assume two parts per subsequence, with four possible outcomes,
after this subsequence was separated into two pieces. Next, a time-distributed wrapper layer was placed over
the whole CNN model to ensure that it applied to each subsequence of the sample. The LSTM layer, which
used fifty blocks or neurons, then assessed the result, and finally the dense layer generated the prediction.
Below, Fig. 2 illustrates the operation of the active function [42,43].

F (t) = σ(Wf [H (t − 1) , X (t) + B f ] (10)
I (t) = σ(WI [H (t − 1) , X (t) + Bi] (11)
O (t) = σ(WO [H (t − 1) , X (t) + Bo] (12)
I (t) = σ(Wi [H (t − 1) , X (t) + Bi] (13)
C (t) = F (t) .C (t − 1) + I (t) .I(t) (14)
H (t) = O (t) . tanh (C (t)) (15)

The LSTM block and CCN layer adopt the rectified linear unit and scaled polynomial constant unit
activation function [43–45]. The scaled polynomial constant unit activation function was defined by Kisělák
et al. [46] in 2021 and goes by that name. The network is trained with a batch size of 1 for 100 epochs. The ReLU
activation function can significantly lessen the fading gradient issue when X delivers the input to the neuron.

The proposed modified algorithm overall complexity can be expressed as follows:
T{([(a × b) + (b × c)] + 13) + ([{(a × b)/2} + {(b × c)/2}] + 6) + [b + c]}.
It should be emphasized that as the number of layers and neurons increases, the computational

complexity increases significantly. Additionally, the algorithm depends on T iterations. Therefore, as the
value of T increases, so does the complexity.

4 Experimental Results and Analysis
This section presents various results, comparing the prediction performance of our suggested model

with four models, i.e., ARIMA-LSTM, VAR-GRU, VAR-MLP, and CNN, and presents the prediction
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effectiveness of each model. The primary justification for comparing these methods is that, according to
earlier research, they yield effective results.

Figure 2: Activation function

Figure 3: CPU mean load forecast: (a) CPU usage and (b) RM usage

4.1 Dataset Description
The workload provides time stamps for the execution and completion of various actions as well as data

arrival. We examine and forecast the CPU and RM resource utilization parameters in this study. We produce
and examine the out-of-sample forecasts for the upcoming 80 (fifty minutes), 200 (sixty minutes), and 400
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(one hundred and twenty minutes) steps. Values for resource utilization are combined every 4 s. Based on
a cluster of over 12,500 machines, Google Cluster Traces give information on the arrival times of various
jobs at the center over a 29-day period. For the purpose of training the resource prediction models, we
collected 70,800 samples over the course of seven days. The following thirty (4-min) time series samples are
available as validation data to help with parameter selection. Prior to that, in order to train the network, we
first preprocessed the data using a method called standardization, which involves dividing the training data’s
standard deviation and removing its mean value [47]. When gradient descent is employed to the networks,
ascending methods can benefit in combination and significantly enhance model performance. To ensure a
fair comparison, standardization was performed to all linked methodologies during the experiment.

Table 3 lists the parameters selected by the validating set for 670,000 tasks. Approximately 4 million task
occurrences were tracked by the data set for a period of 12,500 machines darning 29 days. These parameters
ensured that the load traces selected for evaluation represented a variety of realistic scenarios, providing
a comprehensive assessment of the hybrid model’s accuracy, adaptability, and robustness under diverse
workload conditions. Google trace gathered more than 10 metrics, including CPU use, allocated memory,
page-cache memory usage, and disk I/O. disk space and time. We are only able to anticipate the CPU and
RM use values, much like the previous approaches.

Table 3: An explanation of the four load traces

Name Description Load traces Mean Standard deviation
axp7 Lightly loaded batch machine 1,123,200 0.12 0.14
axp0 Heavily loaded, highly 1,296,000 1.00 0.54

Sahara Memory compute server 345,600 0.22 0.33
Themis Moderately loaded desktop machine 345,600 0.49 0.50

4.2 Average Load Estimation
An exponentially segmented pattern, a metric used to quantify the host load fluctuation across

successive time intervals whose durations rise exponentially, was employed to make the result comparable
with other models [48]. The mean segment squared error (MSSE), which is defined as follows, was used
to measure how well mean load prediction performed. The predicted means value is the true value and is
represented by the baseline segment in Eq. (16).

MSSE (s) = 1
s∑

n
i=1 si(li − Li)2 (16)

The sum of the segments’ values within the prediction interval where si = b, 2i−2, s =∑n
i = 1, b, these are

baseline segment, li is the predicated means value Li is the true value and n is the total value of segments in
the predication interval [43].

After first projecting the load over a single load interval in the simulation, we converted the prediction
into a load pattern. The findings of the suggested model are contrasted in Fig. 3a with the cutting-edge
method, which forecasts the mean load throughout the subsequent future time intervals shown in Fig. 3b.
There is just one load interval displayed for the procedure. A thorough comparison of our suggested model
with other models, along with mean load projections for a given future interval, is shown in Fig. 3b. Based
on those data, our model generates better outcomes than any of the five single periods due to its nonlinear
generalization capacity. Due to the significant host load fluctuation and noise, the MSSE’s length is not
smooth; Fig. 4 displays the findings of that particular section.
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Figure 4: Prediction results based on different models

4.3 Forecast Outcome
Improving resource usage in cloud data centers requires precise forecasting of CPU and RM utilization.

The accuracy of the prediction outcomes for this method was assessed using mean-squared error (MSE),
which is defined in Eq. (17).

MSE (s) = I
n

n
∑

i
(yi − ŷi)2 (17)

where yi is the actual or real load value, ŷi is the anticipated load value at time value i, and n is the prediction
length. Due to the straightforward, regular changes shown in Fig. 4, our suggested model is able to produce
an accurate prediction with historical values. Following the simulation, two types of results are obtained: a
specific result and an overall result.

The cumulative distribution function (CDF) of MSE for several models is displayed in Fig. 4a–d. The
Google load trace interval is 5 min, and the steps ahead where a T = 0.5 h are up to 2 h. T = 1.0 h for (b).
Based on the data from Fig. 4c, T = 1.5 h and (d) T = 2.0 h, our suggested model predicts better results than
the other models.

4.4 Load Trace Distribution on the System
The time services chosen here originated from the four most interesting host loads—Axp0, AXP7,

Sahara, and Themis—that were collected from load traces on Unix systems by [49]. We employed an HPC
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system to forecast load traces. Table 4 illustrates these four load traces’ varieties in terms of capture times
and machine types, in addition to other aspects. After the load trace was scaled to a range of (0,1,0, 9), each
load trace was normalized using the previously described algorithm. Eq. (18) presents the upper bound and
lower bound, respectively, of each load trace’s maximum and minimum values. Fig. 5 displays the outcome
of one of the traces.

Xi = LWB + xi − xmin

xmax − xmin
(UPB − LWB) (18)

Table 4: The mean load prediction’s average MSE

Methods 0.5 h 1.0 h 2.0 h
ARIMA-LSTM 0.66 0.65 0.50

VAR-GRU 0.77 0.65 0.65
VAR-MLP 0.76 0.96 0.56

CNN 0.80 0.72 0.60
Proposed model 0.88 0.78 0.64

Figure 5: Normalized load trace system
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The normalized axp7 load trace in Fig. 5 refers to two distinct load traces: the entire load trace and the
axp7 load trace. These are further described in the trace’s Fig. 5b,c and Fig. 5a,d sections. If each load trace
has a length of 1,200,000 and a b length of 200, and the highest and minimum values are denoted by the
variables xmax and xmin, respectively. UPB is the upper bound and LWB is the lower bound.

An essential part of improving the cloud computing resource allocation system is predicting host load.
Because data centers vary more than ever, cloud systems require accurate prediction. Because of this, two
actual load traces were used in this paper’s assessment of the performance. The initial is one load traced in
the Google data center, and the other in a conventional distributed system. The experiment results show
that our proposed method achieves higher accuracy and state-of-the-art performance in both datasets. By
comparing our suggested model with the other four models only based on projected real load levels, we assess
each model’s capacity to generate data by giving it the original Google cluster dataset hyper-parameters.
Each load trace had 80% of its duration devoted to training and the remaining portion devoted to testing for
the purposes of this study. The prediction findings are listed in Figs. 6 and 7. The proposed model proposes
strong generation based on execution and time based on such facts.

Figure 6: Predication results of RM

The actual load forecast findings are mentioned in Left, together with the two load projections
from Figs. 6 and 7. the Unix platforms listed in Right for the axp7 load traces. Sharp swings are seen in the
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noisy load trace of the Google cluster data. These findings show that the performance of our proposed model
is essentially satisfactory.

Figure 7: Overall predication result of different algorithms

The MSE load prediction results are shown in Table 4. Our suggested model outperforms existing
models in terms of accuracy, as evidenced by the findings, which show an increase of 88.78% in mean load
prediction 0.5 h ahead of time, 78.06% in 0.5 h, and 64.71% in 1 h, respectively. 91% of the mean load estimate
made 0.5 h in advance was accurate, 83% in 0.5 h, and 65% in 1 h. The results of traditional data are displayed
in Table 5, where the recommended approach yields an efficient outcome when compared to alternative
methods. Table 6 displays the outcome.

Table 5: Average MSE of mean load prediction

Methods 0.5 h 1.0 h 2.0 h
ARIMA-LSTM 0.66 0.65 0.50

VAR-GRU 0.77 0.65 0.52
VAR-MLP 0.77 0.69 0.56

CNN 0.80 0.72 0.65
Proposed model 0.91 0.83 0.65

Overall, the proposed CNN-LSTM-VAR hybrid model outperforms traditional models like ARIMA and
MLP in handling non-linear, irregular patterns, capturing long-term dependencies, and achieving higher
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accuracy with lower prediction errors. While it is computationally more demanding, its advantages in
adaptability, generalization, and robustness make it well-suited for complex time series forecasting tasks,
such as virtual machine (VM) or CPU utilization prediction.

Table 6: Overall results

Technique name 0.5 h 1.0 h 2.0 h Mean Standard deviation Overall result
Proposed model 0.8800 0.7800 0.6400 0.10 0.12 88%

MSE on google trace data 0.7800 0.9800 0.8800 0.12 0.14 87%
Traditional data 0.0066 0.0089 0.0065 1.00 0.54 78%

5 Contributions of the Proposed Model
Giving consumers access to virtual computing resources including networking, storage, and hardware,

the infrastructure service model offers adaptable, scalable, and reasonably priced solutions. It enables on-
demand resource access, improving scaling, cutting down on operational costs, and optimizing resource
consumption. Host load prediction maximizes cost, efficiency, and performance by better allocating cloud
resources. Response times are impacted by issues like virtual machine migration and over-subscription, but
prediction algorithms can help by predicting resource consumption, reducing latency, and improving system
performance. Dynamic scalability modifies resources in response to demand, preserving the quality of the
service. By integrating these capabilities, the proposed model supports dynamic cloud scalability with an
advanced level of service quality, optimizing resource allocation for both cost-efficiency and performance
reliability. Moreover, detecting spatial and temporal data patterns, CNNs and LSTMs enhance cloud resource
analysis and forecasting, while vector auto-regression models forecast resource requirements based on
historical usage. When combined, these methods enhance service quality, performance, and resource
efficiency in cloud infrastructures.

By fusing CNN’s spatial-temporal feature extraction with LSTM’s long-term memory retention and
VAR’s capacity to manage linear relationships, the suggested CNN-LSTM-VAR hybrid model overcomes
the drawbacks of conventional methods. The model can learn intricate patterns, adjust to non-linear
dependencies, and enhance prediction accuracy and generalization thanks to its integration. CNNs bring
valuable insights into VM and CPU utilization by extracting intricate spatial-temporal patterns, enabling
efficient anomaly detection, capturing both granular and long-term trends, and supporting adaptive and
scalable analysis. These capabilities make CNNs powerful tools for optimizing virtualized environments and
enhancing the performance of cloud infrastructure.

Using VAR as a preprocessing step or as a complementary component in the hybrid CNN-LSTM model
improves its ability to capture both linear and non-linear dependencies in time-series data. This combination
can ultimately lead to more accurate predictions, lower error rates, and better generalization to unseen data.
By improving the learning of non-linear correlations, decreasing convergence time, and boosting robustness,
filtering data to eliminate linear interdependencies further maximizes model performance. It allows CNN-
LSTM models to concentrate on learning non-linear, intricate patterns, leading to improved generalization,
faster convergence, and overall better model performance. This preprocessing step helps ensure that each
layer is used to its full potential, contributing to a more robust and efficient hybrid model.

Additionally, using a scaled polynomial constant activation function, dead neurons are avoided which
enhances consistency across layers. The function provides stability in gradient flow across CNN and
LSTM layers and makes handling varying data scales more flexible. These advantages make the scaled
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polynomial constant activation function particularly well-suited for handling the complex dependencies
and feature hierarchies involved in tasks like resource utilization analysis, anomaly detection, and predictive
maintenance in VM and CPU data monitoring.

Moreover, Extended Short-Term Memory (E-STM) networks are particularly advantageous for time
series data with irregular trends due to their adaptive memory retention, dynamic time step handling,
resilience to irregular sampling and missing values and capability to capture both short-term and long-term
dependencies. These features make E-STMs especially useful for cloud host utilization predication where
trends are unpredictable and vary over time. In this proposed model, the E-STM improves the model’s
attention to important events while controlling multi-scale temporal dynamics, which makes it perfect for
applications with erratic patterns, such as predictive maintenance and anomaly detection.

6 Conclusion
One important aspect of cloud computing was allocating resources and apps based on actual consump-

tion. However, the process of allocating resources required a setup time. This implied that planning would
be necessary in order to predict the quantity of resources required in the future. In this work, we therefore
introduced a novel host prediction technique that incorporates CPU utilization prediction with RM. The
hybrid CNN-LSTM model for multivariate workload prediction was just released. Complex features were
extracted from the CPU and virtual machine utilization components with the help of this enabled feature.
This method made use of the temporal knowledge of irregular tendencies in the time series components.
Using two different test types based on dataset results, we additionally assessed our proposed model.
The suggested method performed well in both datasets. Our recommended approach produced successful
outcomes in both preprocess and post-process conditions when compared to earlier models. However, in
order to lower data center costs and increase resource efficiency using various dataset kinds in the actual
cloud computing environment, the proposed method had to be integrated into the scheduling algorithm.
The proposed algorithm design may be further improved by implementing automated search techniques
for tuning hyperparameters, compressing the model to enable low-resource devices implementation or
incorporating explainability models such as SHAP and LIME to improve understanding on the predictions
made by the proposed model.
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