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ABSTRACT: To address the issues of slow diagnostic speed, low accuracy, and poor generalization performance
in traditional rolling bearing fault diagnosis methods, we propose a rolling bearing fault diagnosis method based
on Markov Transition Field (MTF) image encoding combined with a lightweight convolutional neural network that
integrates a Convolutional Block Attention Module (CBAM-LCNN). Specifically, we first use the Markov Transition
Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images. Then,
we construct a lightweight convolutional neural network incorporating the convolutional attention module (CBAM-
LCNN). Finally, the two-dimensional images obtained from MTF mapping are fed into the CBAM-LCNN network
for image feature extraction and fault diagnosis. We validate the effectiveness of the proposed method on the bearing
fault datasets from Guangdong University of Petrochemical Technology’s multi-stage centrifugal fan and Case Western
Reserve University. Experimental results show that, compared to other advanced baseline methods, the proposed
rolling bearing fault diagnosis method offers faster diagnostic speed and higher diagnostic accuracy. In addition, we
conducted experiments on the Xi’an Jiaotong University rolling bearing dataset, achieving excellent results in bearing
fault diagnosis. These results validate the strong generalization performance of the proposed method. The method
presented in this paper not only effectively diagnoses faults in rolling bearings but also serves as a reference for fault
diagnosis in other equipment.

KEYWORDS: Rolling bearing; fault diagnosis; markov transition field; lightweight convolutional neural network;
convolutional block attention module

1 Introduction
Rolling bearings are vital components of mechanical equipment, and their condition directly affects

machinery’s production safety. Thus, effective fault diagnosis is essential.
Traditional methods for rolling bearing fault diagnosis primarily rely on signal processing techniques.

Classic approaches include counterfactual augmentation for few-shot contrastive learning [1] and sequence
attention-based data augmentation with adversarial variational autoencoders [2]. These methods depend
on manual feature extraction and expert knowledge, representing shallow learning and lacking the capacity
to handle large-scale data [3]. With the development of artificial intelligence technology, deep learning
algorithms have gradually been applied to rolling bearing fault diagnosis, with classic convolutional neural
network (CNN) receiving significant attention [4]. However, most traditional deep learning-based fault
diagnosis methods for rolling bearings are based on one-dimensional (1D) vibration signals, which present
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challenges in feature extraction [5]. In contrast, two-dimensional (2D) image feature extraction is generally
easier than that of 1D fault vibration signals. Therefore, converting 1D vibration signals into 2D images
through various encoding methods has become a new trend in data preprocessing for rolling bearing fault
diagnosis [6].

Zhang et al. [7] introduced a method based on deep convolutional neural network to diagnose one-
dimensional fault vibration signals, achieving good classification results; however, traditional convolutional
neural networks suffer from slow convergence. Huang et al. [8] utilized a multi-scale cascading convolutional
neural network for bearing fault diagnosis, which significantly improved diagnostic accuracy compared
to standard convolutional neural network (CNN). Nevertheless, multi-scale cascading networks present
challenges in training difficulty and are prone to overfitting. Chen et al. [9] developed a fault diagnosis
algorithm based on deep attention mechanisms and dual-path mixed-domain residual networks, achieving
high fault diagnosis accuracy on a three-phase asynchronous motor experimental platform. Hou et al. [10]
extracted frequency domain features of raw data using fast Fourier transform (FFT) and employed a
designed multi-feature parallel fusion encoder to capture both local and global features of bearing data,
which were then sent to a cross-flip decoder for fault classification. Tao et al. [11] proposed a rolling
bearing fault diagnosis method based on wavelet transform and generalized Gaussian density modeling,
where statistical parameters estimated via the maximum likelihood method were concatenated to form
feature descriptors for classifying bearing faults. However, this method consumes significant computational
resources when processing large-scale data. Guo et al. [12] combined wavelet transform with deformable
convolutional neural network (D-CNN) to propose a fault diagnosis method for rolling bearings, noting
that parameter selection during data preprocessing significantly impacts diagnostic results. In practical
applications, careful consideration of data preprocessing steps and parameter choices is essential to ensure
the reliability of diagnostic outcomes. Che et al. [13] proposed a domain-adaptive deep belief network
(DBN) model, pre-trained with labeled samples generated from raw vibration signals and their time-domain
and frequency-domain indicators for rolling bearing fault diagnosis. During domain adaptation, the model
fine-tuned parameters by calculating the loss functions of multi-kernel maximum mean discrepancies
(MK-MMD) and classification errors. Gu et al. [14] proposed a bearing fault diagnosis method based on
complementary ensemble empirical mode decomposition (CEEMD). This method first detected abnormal
components of CEEMD using permutation entropy, then decomposed the remaining signals with CEEMD.
They selected intrinsic mode function components with high correlation coefficients for Hilbert envelope
spectrum analysis, extracting fault features from the envelope plot. Despite employing the complementary
CEEMD method and adding white noise with opposite signs to reduce reconstruction errors, the modal
aliasing phenomenon could not be completely eliminated. During the signal decomposition process, a
degree of modal confusion might occur, affecting the accurate extraction of fault features. Tang et al. [15]
introduced a bidirectional deep belief network (Bi-DBN) to address the issues of low-quality training data
and insufficient generalization ability. This model learns fault features from original vibration signals through
forward training and backward sample generation, while reducing the similarity between generated and
original samples. Additionally, quantum genetic algorithms were applied to optimize the parameters of
Bi-DBN, enhancing feature learning efficiency.

Zheng et al. [16] converted raw vibration data into two-dimensional images, combining them with
convolutional neural network (CNN) for rolling bearing fault diagnosis. However, traditional CNN suffer
from low computational efficiency and high memory usage. Zheng et al. [17] transformed raw vibration
signals into two-dimensional images and employed two-dimensional convolutional networks for fault
diagnosis, yet standard two-dimensional CNN exhibited low diagnostic accuracy. Han et al. [18] used
Gramian Angular Fields (GAF) to encode raw vibration signals and then employed random forest methods
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for fault diagnosis, achieving good results. Although GAF implicitly encodes temporal information, it cannot
directly preserve timestamps and order, leading to suboptimal performance in tasks dependent on temporal
sequences [19]. For noisy or non-stationary time series, GAF may not perform as well as other methods.
In contrast, Markov Transition Field (MTF) demonstrates advantages in capturing the dynamic behavior,
sequential dependencies, and noise resistance of time series, especially when handling non-stationary
and noisy data [20]. Therefore, this paper adopts MTF for image encoding of raw vibration data from
rolling bearings.

This paper proposes a rolling bearing fault diagnosis method integrating Markov Transition Field
(MTF) and a lightweight convolutional neural network with a convolutional block attention module (CBAM-
LCNN). Specifically, we first use MTF to convert the rolling bearing fault signal from a one-dimensional
vibration signal to a two-dimensional image. Then, we construct a lightweight convolutional fault diagnosis
neural network integrated with the convolutional block attention module (CBAM-LCNN). Finally, the two-
dimensional images obtained from the MTF conversion are input into the CBAM-LCNN network for feature
extraction and fault signal classification. We conducted experiments to validate the effectiveness of the
proposed method on the Guangdong University of Petrochemical Technology multi-stage centrifugal fan
dataset and the Case Western Reserve University dataset. The results indicate that, compared to other baseline
methods, the proposed rolling bearing fault diagnosis method demonstrates high diagnostic accuracy and
fast diagnostic speed. Meanwhile, we conducted experiments on the Xi’an Jiaotong University rolling bearing
dataset, achieving excellent results in bearing fault diagnosis. These results validate the strong generalization
performance of the proposed method. The method proposed in this paper not only effectively diagnoses
faults in rolling bearings but also provides a reference for intelligent fault diagnosis of other equipment.

2 Fundamental Theories of Rolling Bearing Fault Diagnosis

2.1 Markov Transition Field (MTF)
Markov Transition Field (MTF) is a coding method that converts one-dimensional data into two-

dimensional signals [21]. Suppose there exists a one-dimensional time series X = {x1 , x2, . . . , xt , . . . , xn},
t = 1, 2, . . . , n, where xt represents the observation of the signal at time t. Define a matrix P, which represents
the probability of one subdomain signal being followed by another subdomain signal across all subdomains.
The probability calculation formula in P is as follows:

ri , j = P (xi ∈ li ∣xi−1 ∈ l j) (x) (1)

∑
L
j=1 ri , j = 1, ri , j ≥ 0 (2)

In the formula, r(i , j) represents the probability value of point i being followed by point j in the
probability follow matrix, and the sum of the probabilities of point i being followed by other points equals 1.

By calculating the follow probability values for each element, we can obtain the L × L domain-weighted
transition matrix π, expressed as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 ⋅ ⋅ ⋅ r1L
r21 r22 ⋅ ⋅ ⋅ r2L
⋮ ⋮ ⋱ ⋮

rL1 rL2 ⋅ ⋅ ⋅ rLL

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3)

To address the limitation of the Markov transition matrix, which neglects the dependency between the
distribution of the time series X(t) and the time step t, time information is introduced to associate with the
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amplitude information of the vibration signal, generating the MTF matrix M. The matrix M encompasses
the temporal correlation between each fractional position and the time intervals, expressed as follows:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 ⋅ ⋅ ⋅ m1L
m21 m22 ⋅ ⋅ ⋅ m2L
⋮ ⋮ ⋱ ⋮

mL1 mL2 ⋅ ⋅ ⋅ mLL

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4)

mi j = P{ri j ∥ xi ∈ li , x j ∈ l j} (5)

In the formula, mi j represents the probability of a state transition from li to l j.
Compared to other image encoding methods, the MTF encoding method has the following advantages:
(1) Long-Range Dependency Capture. Through the transition matrix, MTF encoding can capture

dependencies over long time ranges in the time series, rather than being limited to relationships between
adjacent time points. This is especially important for data with complex temporal dependency structures.

(2) Robustness to Noise and Outliers. MTF encoding exhibits a certain robustness to noise and outliers,
as it primarily focuses on state transition patterns rather than specific values. This allows it to extract useful
features more stably when dealing with noisy time series data.

(3) Global and Local Feature Capture. MTF encoding can capture both global features (transition
patterns of the entire time series) and local features (transition patterns of specific time intervals). This com-
bination provides richer information, enhancing the model’s prediction capability and recognition accuracy.

2.2 Convolutional Block Attention Module (CBAM)

The Convolutional Block Attention Module (CBAM) integrates channel attention and spatial attention
mechanisms [22]. Compared to standard self-attention mechanisms, CBAM can be easily inserted into
various convolutional neural network. The channel attention mechanism identifies important feature dimen-
sions, enhancing useful information while suppressing irrelevant noise. The structure of CBAM is shown
in Fig. 1.

Spatial
attention module

Channel 
attention module

Input features Output features

Figure 1: Structure of convolutional block attention module

As shown in Fig. 1, the feature map is first enhanced by the channel attention module to produce an
augmented map, then further refined by the spatial attention module. Finally, a feature map with a dual
attention mechanism is output. CBAM can be embedded into various convolutional neural networks to
enhance the model’s representational capacity, thereby improving its performance in rolling bearing fault
diagnosis tasks.



Comput Mater Contin. 2025;82(3) 4867

2.3 Depthwise Separable Convolution Neural Network (DWCNN)
The Depthwise Separable Convolutional Neural Network (DWCNN), an improved version of the CNN

model, can be divided into depthwise and pointwise convolutions [23]. The structure of the DWCNN module
is illustrated in Fig. 2.

Channel Convolution 1*1 Convolution

Importation Convolution

M N

Exports Convolution Final output
(Df*Df *M) (k*k*M) Dg*Dg*M 1*1*N Dg*Dg*N

Figure 2: Depthwise separable convolutional neural network structure

As illustrated in Fig. 2, for the depthwise convolution, if the input image size is D f × D f ×M and the
convolution kernel size during the depthwise convolution process is k × k, the size of the output feature map
will be Dg × Dg ×M, where D f is the height and width of the input image, Dg is the height and width of the
output image, and M is the number of channels. For pointwise convolution, the kernel size is 1 × 1, and each
kernel has the same number of channels as the input feature map. If the number of convolution kernels is N,
the size of the output feature map will be Dg × Dg × N . The output of the DWCNN model will serve as the
input to the ShuffleNet V2 model.

2.4 ShuffleNet V2
ShuffleNet V2, introduced by Ma et al. in 2018 [24], is a lightweight convolutional neural network

architecture that improves upon ShuffleNet V1, which was designed for high efficiency on mobile devices.
The structure of the ShuffleNet V2 network is depicted in Fig. 3.
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Figure 3: Structure of ShuffleNet V2: (a) Step length = 1; (b) Step length = 2
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As shown in Fig. 3, ShuffleNet V2 aims to achieve efficient inference by reducing computational load and
memory usage while maintaining high accuracy. Its key design features include channel balance, minimizing
element-wise operations, parallel branch design, and channel shuffling. Channel balance ensures that the
number of input and output channels in convolution operations is equal. Element-wise operations are
minimized to improve efficiency. Parallel branches enhance computational efficiency, and channel shuffling
promotes cross-channel information exchange by rearranging the feature channels. Compared to ShuffleNet
V1, ShuffleNet V2 significantly enhances the network’s efficiency while maintaining a lightweight structure.
The main improvements can be summarized as follows:

Channel Grouping and Feature Shuffling. ShuffleNet V2 uses grouped convolutions to divide features
into multiple groups for separate convolution operations, reducing computational load. Additionally, by
introducing a “channel shuffle” operation, it rearranges the channels across groups, allowing effective
cross-group information exchange. This boosts the network’s representational power while maintaining a
lightweight design.

Layer-Wise Computational Efficiency Optimization. ShuffleNet V2 optimizes the operators and param-
eter sizes of each layer, ensuring fewer floating-point operations (FLOPs) at the same accuracy level. This
helps control the computational cost and model size.

Channel Splitting Mechanism. The network adopts a strategy to split part of the input channels, reducing
the number of feature maps requiring computation. This channel splitting mechanism further reduces
parameters and computational costs, allowing the model to operate efficiently even on resource-constrained
environments like mobile devices.

3 The Bearing Fault Diagnosis Method Proposed in This Paper

3.1 The Lightweight Convolutional Neural Network Constructed in This Paper
This paper introduces a lightweight convolutional neural network (LCNN) by integrating the depthwise

separable convolutional neural network (DWCNN) with ShuffleNet V2 [25]. The structure of the LCNN is
shown in Fig. 4.

ShuffleNet V2
Depthwise separable 

convolution

Image 

featue

Figure 4: LCNN model structure diagram

As shown in Fig. 4, after image feature extraction, depthwise separable convolutions are used to process
the spatial dimensions of the input features. This approach enhances feature extraction while effectively
reducing computational complexity. ShuffleNet V2 is a lightweight convolutional neural network that uses
pointwise convolutions to significantly reduce parameters and computations, enhancing computational
efficiency and supporting fault signal classification. The combination of depthwise separable convolution
networks and ShuffleNet V2 forms a lightweight convolutional neural network, which improves the speed of
both network training and diagnosis.
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3.2 The Bearing Fault Diagnosis Method Proposed in This Paper

The rolling bearing fault diagnosis method proposed in this paper is shown in Fig. 5.

Raw Vibration Signal 2D Image

MTF

Test platform

Validation 
set

Test setTraining 
set

Convolutional block attention 
module

Convolutional 
layer
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pooling

Depthwise separable 
convolution

ShuffleNet V2

Softmax Dense
2D Average 

Pooling

Output

Fault signal classification

Figure 5: Flowchart of the bearing fault diagnosis method

As shown in Fig. 5, the rolling bearing fault diagnosis method proposed in this paper is divided
into four parts. Data preprocessing, feature extraction, CBAM-LCNN model construction, and fault
signal classification.

Data Preprocessing. Initially, the original vibration signals for different rolling bearing faults are
collected on the experimental platform. These one-dimensional signals are then transformed into two-
dimensional images using the MTF. Finally, the dataset is split into training, validation, and testing sets with
a ratio of 6:2:2.

Feature Extraction. We employed a convolutional neural network with integrated batch normalization
layers for image feature extraction, incorporating the CBAM module between two convolutional layers to
enhance the network’s perceptual range and representation capability.
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LCNN Model Construction. The combination of the DWCNN and ShuffleNet V2 models enhances
feature extraction while reducing parameter and computational complexity, thereby improving the
computational efficiency of the bearing fault diagnosis model. The LCNN network is formed by integrating
the DWCNN and ShuffleNet V2 networks.

Bearing Fault Classification. Fault classification of rolling bearings is performed using the SoftMax
function following two Dense layers.

4 Experimental Verification and Result Analysis

4.1 Experimental Setup
4.1.1 Experiment 1

In Experiment 1, we used the bearing fault dataset of multi-stage centrifugal fans from Guangdong
University of Petrochemical Technology (GDUPT dataset). During the data collection process for this
dataset, the rolling bearing speed was 1200 r/min, the vibration sensor used was EMT390, the sampling
frequency of the sampler was 1024 Hz, and the sampling duration was 8 s. The bearing model used in the
experiment was HRB-1310ATN, with an inner diameter of 50 mm, an outer diameter of 110 mm, a height of
27 mm, and 13 rolling elements. The dataset contains 4,096,000 data samples for each of the four fault types.
Normal bearing, inner race worn, outer race worn, and rolling element missed. The data collection platform
for the GDUPT dataset is shown in Fig. 6.

Multi-stage 
Centrifugal Fans

Bearing Seat

Transmission

Load Controller

Variable 
Frequency 

Motors

Control 
Panel

Figure 6: GDUPT dataset collection test platform

As shown in Fig. 6, it can be seen that the bearing fault signal acquisition platform for the multi-stage
centrifugal fan mainly consists of five components. A variable frequency motor, transmission, load controller,
multi-stage centrifugal fan, bearing seat and control panel. The vibration signals of the four types of bearing
states included in the GDUPT dataset are shown in Fig. 7.

As shown in Fig. 7, the vibration signals of the four types of bearings included in the GDUPT dataset
are different when rotating, and there is an issue of sample data imbalance in the vibration signal graph of
the rolling element missed. To address this issue and to reduce the computational load of the model, we
performed segmented truncation of the vibration data while ensuring that the fault diagnosis accuracy was
not affected. We retained the first 1,024,000 sample data for each fault type for image encoding. The label
values for the vibration data of the four types of bearings are shown in Table 1.

Table 1 shows that the vibration data for the four types of bearings were labeled as normal, ou, ro, and
in, which aided in the subsequent classification of rolling bearing faults.
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Figure 7: Four types of bearing states included in the GDUPT dataset: (a) Inner race worn (b) Normal bearing (c)
Outer race worn (d) Rolling element missed

Table 1: GDUPT dataset label values

Fault type Label value
Normal bearings normal
Inner race worn in
Outer race worn ou

Rolling element missed ro

4.1.2 Experiment 2

To assess the generalization capability of the rolling bearing fault diagnosis method proposed in this
study, we utilized the Case Western Reserve University (CWRU) bearing fault dataset (referred to as the
CWRU dataset) for validation. This dataset includes fault signal acquisition experiments conducted using
SKF6203 and SKF6205 rolling bearings manufactured by Svenska Kullager-Fabriken [26]. The data collection
platform for the CWRU dataset is illustrated in Fig. 8.
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Figure 8: CWRU dataset collection test platform

To assess the generalization capability of the rolling bearing fault diagnosis method proposed in this
study, we utilized the Case Western Reserve University (CWRU) bearing fault dataset (referred to as the
CWRU dataset) for validation. This dataset includes fault signal acquisition experiments conducted using
SKF6203 and SKF6205 rolling bearings manufactured by Svenska Kullager-Fabriken [26]. The data collection
platform for the CWRU dataset is illustrated in Fig. 8.

As shown in Fig. 8, the CWRU dataset collection platform consists of a fan-side bearing, drive-end
bearing, motor, encoded torque sensor, and power meter. In the generalization experiment, we selected
the drive-end bearing fault data collected at a sampling frequency of 12 kHz. The experiment introduced
rolling element fault, inner race fault, and outer race fault data with defect diameters of 0.1778, 0.3556, and
0.5334 mm, respectively. Along with the data for bearings in a normal state, there are a total of 10 different
bearing state types. The 12k fan-side bearing state categories and label values are set is shown in Table 2.

Table 2: CWRU dataset label values

Fault type Label value Fault diameter/mm Load/W
Normal condition 0 0 0

Rolling Element Fault 1 1 0.177 8 0
Rolling Element Fault 2 2 0.355 6 735
Rolling Element Fault 3 3 0.533 4 1470

Inner Race Fault 1 4 0.177 8 0
Inner Race Fault 2 5 0.355 6 735
Inner Race Fault 3 6 0.533 4 1470
Outer Race Fault 1 7 0.177 8 0
Outer Race Fault 2 8 0.355 6 735
Outer Race Fault 3 9 0.533 4 1470

As shown in Table 2, we assigned label values ranging from 0 to 9 to the normal bearing and the nine
fault state bearings, facilitating the subsequent classification of rolling bearing faults in the CWRU dataset.

4.2 Image Encoding Parameter Settings
During MTF encoding, we sampled the raw signal using a sliding window. The number of generated

mapping images varies with different sliding window steps, and both the number of mapping images
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and the pixel size of the encoded images affect the accuracy of bearing fault diagnosis. To determine the
optimal sliding window step and pixel size for MTF encoding, we conducted experiments with various
sliding window steps and encoding pixel sizes, validated using the proposed method. The results are shown
in Table 3.

Table 3: Experimental results of encoding parameters

Sliding
window
step size

Total
number of
mappings

Pixel size Test set
accuracy
(%)

Test set
loss value

Training
time
(s/epoch)

Test time (s)

128 32,000

32 × 32 0.9142 0.4719 169 26
64 × 64 0.9886 0.0625 170 24

128 × 128 0.9898 0.0621 171 27
256 × 256 0.9955 0.0521 178 29
512 × 512 0.9967 0.0176 175 27

256 16,000

32 × 32 0.7273 2.1128 80 11
64 × 64 0.9465 0.2780 89 12

128 × 128 0.9725 0.1751 81 11
256 × 256 0.9756 0.1088 80 11
512 × 512 0.9941 0.0577 83 11

512 8000

32 × 32 0.5708 3.1965 43 8
64 × 64 0.8634 0.7199 43 11

128 × 128 0.9223 0.4917 44 10
256 × 256 0.9461 0.2837 43 16
512 × 512 0.9655 0.2391 44 25

As shown in Table 3, in selecting the sliding window step size, we primarily considered the impact of
commonly used step ranges on accuracy and computational efficiency. While a smaller step size can capture
finer-grained features, it significantly increases computational load and storage requirements, making it
unsuitable for lightweight models. Conversely, a step size exceeding 512 loses considerable detail, reducing
the accuracy of fault feature extraction. Therefore, we selected 128, 256, and 512 as experimental step sizes
to balance computational load and feature completeness. These values are commonly found in the literature
and provide stable performance support for our study.

The pixel size of the encoded image directly impacts feature clarity and computational resource
requirements. Smaller pixel sizes may lead to feature loss, making fault patterns harder to distinguish,
while excessively large pixel sizes substantially increase storage demands. In our experiments, we found
that dimensions of 256 × 256 and above effectively capture fault features, with 512 × 512 yielding optimal
performance in both diagnostic efficiency and accuracy. Thus, we experimented with the common pixel sizes
of 32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512 to ensure a balance between feature fidelity and
processing efficiency. Based on this analysis, we selected an MTF encoding sliding step size of 256 and a pixel
size of 512.

The two-dimensional mapping images obtained from the GDUPT dataset and the CWRU dataset using
the MTF image encoding method are shown in Fig. 9.
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(a) GDUPT (b) CWRU

Figure 9: MTF mapping diagrams of two datasets: (a) GDUPT (b) CWRU

As shown in Fig. 9, the two-dimensional mapping images obtained from the GDUPT dataset and the
CWRU dataset after MTF encoding exhibit clear textures and distinct features, facilitating the subsequent
diagnosis of rolling bearing faults.

4.3 Experimental Parameter Settings
In all experiments in this study, we used a server with an i9-12900KF CPU, an NVIDIA GeForce RTX

3090 GPU, 32 GB of memory, and the Windows 10 Professional operating system for training. The MTF-
CBAM-LCNN model and other benchmark models were trained and tested on two bearing fault datasets. The
hyperparameter settings for the MTF-CBAM-LCNN model and all benchmark models are shown in Table 4.

Table 4: Hyperparameter settings

Hyperparameter names Hyperparameter values
Optimizer Adam

Number of iterations 150
Learning rate 0.0001

Batch size 8

As shown in Table 4, to verify the advantage of faster diagnostic speed of the proposed CBAM-LCNN
method compared to other rolling bearing fault diagnosis methods, we set up three benchmark methods.
MTF-CNN [27], Mel-EfficientNetV2 [28], and VMD-FK-MobileNet V2 [29].

To compare the performance of the CBAM-LCNN model with other models in rolling bearing
fault diagnosis, we set up four advanced benchmark models. DS-GAF-ResNet [30], GNN-Film [31],
LAFICNN [32], and MMSI-SR-KNN [33].

4.4 Experimental Results and Analysis
We set the encoding sliding step size for the MTF encoding method to 256 and the encoding pixel size to

512 to perform image encoding on the GDUPT dataset. Comparative experiments were conducted using the
proposed MTF-CNN, Mel-EfficientNet V2, and VMD-FK-MobileNet V2 methods. The curves of training
accuracy and testing accuracy over iterations for the four methods are shown in Fig. 10.

As shown in Fig. 10, compared to the three benchmark methods—MTF-CNN, Mel-EfficientNet V2,
and VMD-FK-MobileNet V2—the proposed MTF-CBAM-LCNN model achieves high fault diagnosis
accuracy with fewer iterations, confirming the advantage of faster diagnostic speed for the MTF-CBAM-
LCNN method.
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Figure 10: Execution process of the four control methods: (a) Training set execution process (b) Value set execution
process

To further confirm the advantages of the MTF-CBAM-LCNN approach, we documented the test
accuracy, test loss, training time, and testing time for all benchmark methods. The results are presented
in Table 5.

Table 5: Comparison of the test results of the four methods

Model Test set
accuracy/%

Test set
loss value

Network training
time/(s/epoch)

Test time
t/s

MTF-CNN 0.8631 0.4926 90 25
Mel-EfficientNet V2 0.8233 0.7071 287 12

VMD-FK-MobileNet V2 0.9833 0.0625 95 13
MTF-CBAM-LCNN 0.9941 0.0577 83 11

As shown in Table 5, compared to the three benchmark models, MTF-CNN, Mel-EfficientNet V2, and
VMD-FK-MobileNet V2, the proposed method attains the highest test accuracy, the lowest test loss, and the
shortest network training and testing times, verifying the advantage of the MTF-CBAM-LCNN method in
terms of high fault diagnosis accuracy.

To further confirm the advantages of the MTF-CBAM-LCNN model in achieving higher accuracy and
faster diagnosis speed for bearing fault diagnosis, we performed experiments using the GDUPT dataset.
We recorded the test set accuracy, loss values, and memory usage of five methods: DS-GAF-ResNet [30],
GNN-Film [31], LAFICNN [32], MMSI-SR-KNN [33], and the proposed MTF-CBAM-LCNN. The results
are shown in Table 6.

As shown in Table 6, the proposed MTF-CBAM-LCNN model outperformed several advanced bench-
mark models in terms of test set accuracy, loss values, and memory usage during runtime. This further
validates the superiority of the MTF-CBAM-LCNN model in rolling bearing fault diagnosis.

We conducted a rigorous training and validation process to prevent overfitting. First, we used multiple
dataset validation methods to ensure consistent model performance across different training and validation
sets, thus evaluating its generalization ability. Second, we also reduced the risk of overfitting by controlling
the network’s complexity, such as reducing the number of parameters and using the lightweight ShuffleNet
V2 architecture.
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Table 6: Comparison of model parameters

Model Accuracy/% Loss Size/MB
DS-GAF-ResNet 0.9441 0.4738 19

GNN-Film 0.9765 0.1366 46
LAFICNN 0.9663 0.1259 39

MMSI-SR-KNN 0.9803 0.0742 78
MTF-CBAM-LCNN 0.9941 0.0577 7

To ensure data independence and prevent data leakage, we strictly followed standard data splitting
methods to separate the training and testing sets, ensuring that samples from the test set do not appear during
the training process. Specifically, in the data preprocessing phase, we carefully checked the data segmentation
and sliding window usage to ensure that each data sample was only involved in the training process once.
To further validate data independence, we used different datasets in the model validation experiments and
performed cross-validation, ensuring that the model performed well across multiple datasets without result
inaccuracies caused by bias in any specific dataset.

To more intuitively visualize the results of rolling bearing fault diagnosis, we plotted the classification
confusion matrices for the two datasets. The confusion matrices for the GDUPT and CWRU datasets are
shown in Fig. 11.

Figure 11: Classification confusion matrices of two datasets (a) GDUPT (b) CWRU

Fig. 11 shows the classification confusion matrix, where the horizontal axis represents the predicted
labels of the image-encoded dataset, and the vertical axis shows the true labels of the four types of bearings in
the dataset. Ideally, the diagonal elements should be close to 100%. In the GDUPT dataset, the classification
accuracy for outer race wear and normal state bearings reached 100%, while the classification accuracy for
the other two fault states was 99%, resulting in an overall test set accuracy of 99.4%. In the CWRU dataset,
among the ten fault signal categories, all fault types achieved 100% classification accuracy except for Normal
Condition, Inner Race Fault 2, and Outer Race Fault 1. The overall test set accuracy was 99.3%. The MTF-
CBAM-LCNN model demonstrated high accuracy in rolling bearing fault diagnosis across both datasets,
verifying its effectiveness in rolling bearing fault diagnosis.
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Misclassifications occurred between inner race faults and ball faults in the GDUPT dataset, while in
the CWRU dataset, misclassifications were observed in Normal Condition, Inner Race Fault 2, and Outer
Race Fault 1. These misclassifications may result from the feature similarities among these fault types and the
influence of minor signal fluctuations under specific operating conditions on feature extraction. Additionally,
noise and variations in operating conditions could contribute to a small number of misclassifications.

To verify the impact of integrating CBAM into LCNN on the accuracy of rolling bearing fault diagnosis,
we conducted experiments comparing LCNN with CBAM-LCNN. The fault diagnosis accuracy of the LCNN
method was 98.31%, which is nearly 1% lower than that of the CBAM-LCNN method. This result confirms
the effectiveness of incorporating CBAM into LCNN.

Additionally, to further validate the generalization performance of the MTF-CBAM-LCNN model,
additional experiments were conducted on the XJTU-SY dataset. The classification accuracy achieved
was 99.47%, with a training time of 77 s per iteration for the diagnostic network. Compared with the
baseline models in this study, the MTF-CBAM-LCNN model demonstrated higher fault diagnosis accuracy
and faster diagnostic speed. These results further confirm the characteristics of the MTF-CBAM-LCNN
model, including high diagnostic accuracy, fast processing speed, and strong generalization capability.
Additionally, they highlight the potential of the MTF-CBAM-LCNN model for real-world rolling bearing
fault diagnosis scenarios.

5 Conclusion
This study investigates the challenges of slow diagnostic speed, low accuracy, and limited generalization

associated with existing rolling bearing fault diagnosis methods. To address these issues, a novel rolling
bearing fault diagnosis approach is proposed, integrating Markov Transition Field (MTF) image encoding
with a CBAM-LCNN mechanism. Specifically, the raw vibration signals of bearing faults are first encoded
into two-dimensional images using MTF. Then, a lightweight convolutional neural network (CBAM-
LCNN) integrated with convolutional attention modules is constructed. Finally, the two-dimensional images
obtained through MTF encoding are used as input to the CBAM-LCNN network for feature extraction and
fault diagnosis.

We adopted ShuffleNet V2 as the foundation for constructing the lightweight convolutional neural
network (LCNN) and further optimized the model’s computational requirements through operations such
as channel grouping and feature shuffling, while maintaining accuracy. This approach enables the model
to achieve efficient feature extraction capabilities for fault diagnosis tasks while reducing computational
resource demands.

During the experiments, we monitored the model’s memory usage to evaluate its performance in prac-
tical application scenarios. The experimental results showed that the model meets real-time requirements
across various devices and achieves a good balance between accuracy and efficiency. Furthermore, to reduce
complexity, we explored different stride and pixel parameters during the experiments, ultimately selecting
the optimal combination for accuracy and computational efficiency.

To demonstrate the effectiveness and superiority of the proposed method, experiments were conducted
using the rolling bearing fault dataset of a multi-stage centrifugal fan from Guangdong University of
Petrochemical Technology and the rolling bearing fault dataset from Case Western Reserve University. The
study yielded the following findings. First, the MTF was employed to encode one-dimensional vibration
signals into two-dimensional images, effectively transforming the vibration signal-based fault diagnosis
problem into an image processing task. This approach mitigated the challenges posed by noise and poor
smoothness in one-dimensional signals. Second, convolutional attention modules were incorporated into
two convolutional layers, enhancing the model’s perceptual range and representational capacity, which
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significantly improved the accuracy of rolling bearing fault diagnosis. Third, DWCNN and ShuffleNet V2
were utilized to construct a lightweight convolutional neural network, reducing the model’s parameter count
and computational complexity, as well as shortening the training time. Finally, compared with three baseline
methods—MTF-CNN, Mel-EfficientNet V2, and VMD-FK-MobileNet V2—the CBAM-LCNN network
demonstrated the shortest training time per iteration and the highest diagnostic accuracy. Additionally,
compared with four advanced methods—DS-GAF-ResNet, GNN-Film, LAFICNN, and MMSI-SR-KNN—
the proposed MTF-CBAM-LCNN model achieved higher diagnostic accuracy, lower loss values, and smaller
memory consumption, effectively validating the efficiency of its lightweight design.

We conducted experiments on the CWRU, GDUPT, and XJTU-SY datasets using encoding parameters
of a sliding window step size of 256 and an encoding pixel size of 512 × 512. The diagnostic accuracies
of the MTF-CBAM-LCNN method on rolling bearing faults were 99.4%, 99.3%, and 99.47%, respectively,
demonstrating the model’s strong generalization capability in fault diagnosis methods. The MTF-CBAM-
LCNN model not only effectively diagnosed rolling bearing faults but also provides an important reference
for intelligent fault diagnosis of other equipment.
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