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ABSTRACT: In the field of Weakly Supervised Semantic Segmentation (WSSS), methods based on image-level
annotation face challenges in accurately capturing objects of varying sizes, lacking sensitivity to image details, and
having high computational costs. To address these issues, we improve the dual-branch architecture of the Conformer
as the fundamental network for generating class activation graphs, proposing a multi-scale efficient weakly-supervised
semantic segmentation method based on the improved Conformer. In the Convolution Neural Network (CNN) branch,
a cross-scale feature integration convolution module is designed, incorporating multi-receptive field convolution layers
to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects. In
the Vision Transformer (ViT) branch, an efficient multi-head self-attention module is developed, reducing unnecessary
computation through spatial compression and feature partitioning, thereby improving overall network efficiency.
Finally, a multi-feature coupling module is introduced to complement the features generated by both branches. This
design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of
Vision Transformer to capture comprehensive global features. Experimental results show that the mean Intersection
over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL
VOC 2012 datasets are improved by 2.9% and 3.6%, respectively, over the TransCAM algorithm. Besides, the improved
model demonstrates a 1.3% increase of the mean Intersections over Union on the COCO 2014 datasets. Additionally,
the number of parameters and the floating-point operations are reduced by 16.2% and 12.9%. However, the proposed
method still has limitations of poor performance when dealing with complex scenarios. There is a need for further
enhancing the performance of this method to address this issue.
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1 Introduction
In today’s era of exploding visual information, we are in constant contact with images. Whether it’s the

vast number of photos on social media or the monitoring images of harsh weather conditions in reality [1],
the understanding and analysis of images are of utmost importance. Semantic segmentation, as a pivotal
task in the field of computer vision, is like a magical key that can unlock the abundant semantic information
contained within images. In recent years, although traditional semantic segmentation methods based on
deep learning have made significant progress [2,3]. However, these methods typically rely on extensive
of pixel-level annotated training datasets, the acquisition of which is not only expensive but also time-
consuming and labor-intensive. As a result, weakly supervised semantic segmentation (WSSS) technology
emerges as the times require. It seeks to train segmentation models through simpler supervision information
and has become a major hotspot in current academic research. It only requires some relatively easily obtained
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image annotations, such as bounding boxes [4], scribbles [5], point annotations [6], and image-level class
labels [7], to achieve efficient semantic segmentation. Since large-scale datasets like ImageNet [8] already
provide image-level class labels, this form of supervision is the easiest to access. By integrating WSSS with
image-level annotations and other artificial intelligence technologies, it can be applied in fields such as
autonomous driving and medical image diagnosis [9], and then promote the development of various fields
in the direction of intelligence.

In recent years, research on weakly supervised semantic segmentation has made remarkable progress.
Among various methods, a common method is to first utilize a convolutional neural network (CNN) to
generate a class activation map (CAM) for locating the position of the target. The class activation map is
then employed to produce a pseudo-label for the segmentation network. This pseudo-label is then used
as the ground-truth to train the existing highly precise fully supervised image segmentation network,
finally obtaining the image segmentation result. However, CAMs generated by CNNs often focus only on
activating partial regions of the target object in an image. Although many studies have proposed various
methods to generate larger activation regions aligned with the full object region [10–13], the defects when
applied to weakly supervised semantic segmentation still have not been directly resolved. Vision Transformer
(ViT) [14], which incorporates a multi-head self-attention (MHSA) mechanism inspired by the Transformer
model [15], has attained breakthrough performance in image recognition tasks and has subsequently been
utilized within the domain of weakly supervised semantic segmentation. Different from convolutional neural
networks, Vision Transformer leverages its global attention mechanism to provide a broader global receptive
field. When applied within the domain of WSSS, attention maps can be used to capture global features, but
there is a defect of lacking local features. Since CNN and ViT-based methods have their own strengths and
weaknesses, there has been growing research focused on combining both networks to improve performance
by complementing each other. A notable example is TransCAM [16], based on the Conformer [17]. This
method uses the class activation map generated by the convolutional neural network and at the same time
uses the attention map obtained by Vision Transformer to enhance the obtained class activation map, thereby
achieving better results. However, in this method, the convolutional neural network branch uses a traditional
feature pyramid structure, where each convolutional block generates feature maps at a single scale, resulting
in the loss of small object information and limiting its ability to handle complex scenes with multi-scale
objects. In addition, the Vision Transformer branch structure’s attention mechanism entails a substantial
quadratic computational complexity, resulting in a heavy computational demand problem.

To address these issues, we improve main modules in the dual-branch structure of the Conformer
network and introduces a multi-feature coupling module that leverages the distinct strengths of both
convolutional neural networks and Vision Transformers to their fullest potential.

The following points outline the primary contributions of this paper:
(1) In the convolutional neural network branch, a multi-feeling field convolutional layer is introduced to

construct a cross-scale feature integration convolutional module, which augments the capacity of the CNN
branch to grasp long-distance dependencies, making the model perform better in coping with targets of
different sizes, capturing more details and improving the sensitivity to multi-scale targets.

(2) An efficient multi-head self-attention module is proposed to replace the self-attention module in
the Vision Transformer branch. Spatial compression and feature partitioning operations are introduced into
the traditional self-attention module to perform spatial compression on keys and values tensors to reduce
unnecessary computations, thereby improving the overall efficiency of the network.

(3) For the feature complementarity of the above two branches, a multi-feature coupling module is
constructed to fully utilize the advantages of features from different resolutions and levels, while retaining the
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respective strengths of CNN and ViT in local and global feature extraction. Experimental results show that,
compared to existing mainstream methods, the proposed approach notably diminishes the computational
complexity of WSSS while enhancing segmentation precision.

2 Related Work

2.1 Weakly Supervised Semantic Segmentation
In fully supervised semantic segmentation models based on deep learning, fully convolutional networks,

encoder-decoder structure networks, multi-scale dilated convolutional neural networks, and attention
mechanism-based networks are mainly used as the feature extraction module. These networks can generate
prediction results for each pixel of the input image and achieve pixel-level semantic segmentation. However,
the training data used in fully supervised semantic segmentation is costly and time-consuming and labor-
intensive. As a result, algorithms based on weak supervision have emerged and been widely used in various
fields. For example, Melih [2] applied it in the field of healthcare and obtained effective results. Most weakly
supervised semantic segmentation approaches rooted in image-level labels typically consist of three stages.
Firstly, a classification network is used to produce a preliminary localization map, referred to as a class
activation map. Then the initial localization map is refined to produce pseudo-labels. Finally, these pseudo-
labels are utilized to train a segmentation network. If the class activation map generated in the first stage is
excessively sparse, it will significantly impact the performance of the subsequent two stages. Consequently,
the research focus of this paper lies in determining how to ascertain methods for generating precise class
activation maps.

2.2 CNN-Based Weakly Supervised Semantic Segmentation
Convolutional neural networks, as pivotal technologies in artificial intelligence, have found extensive

applications across many fields with their advantages of diverse structural types and data-driven learning
processes, especially in the field of image processing. For example, Zhang et al. [1] and others applied it to the
field of image dehazing and achieved extremely excellent results. The field of image processing has witnessed
rapid advancements in weakly supervised semantic segmentation, largely attributed to the evolution of
convolutional neural networks. In the field of weakly supervised semantic segmentation, a common approach
is to generate pseudo-labels using class activation maps generated by classification networks. These pseudo-
labels are subsequently employed as training data for supervised segmentation tasks. However, a limitation
of utilizing convolutional neural networks can lead to the problem of activating only local regions of the
target. For this, many researchers have carried out research on the local problem of local activation problem
in class activation maps and have continued to make significant progress in recent years. Kolesnikov et al. [18]
extended the thermal range of CAM by enlarging the seed region. Wei et al. [19] activated the remaining lower
discriminative regions by removing the higher discriminative regions of an object. Wang et al. [7] applied
consistency regularization for the first time to CAM predicted from affine transformed images and proposed
a pixel correlation module to enhance the consistency of CAM. Kumar et al. [20] randomly hid patches in
the image during training as a way to motivate the network to explore other relevant parts. Zhang et al. [21]
partitioned the image into complementary patches by in order to obtain a more comprehensive seed region
in CAM. Ahn et al. [11] used a learning network to forecast the semantic affinity matrix among adjacent image
coordinate pairs and used random walks to propagate the semantic affinity matrix. Despite numerous notable
advancements in these research endeavors, methods rooted in convolutional neural networks (CNNs) still
exhibit constraints in capturing global features, ultimately yielding suboptimal outcomes.
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2.3 Transformer-Based Weakly Supervised Semantic Segmentation
Nowadays Vision Transformer has made significant breakthroughs in image processing tasks and many

recent researches have applied it to the domain of weakly supervised semantic segmentation with good
results. Researchers have proposed many advanced methods applied to WSSS by taking advantage of the
Transformer’s strengths in capturing global features. TS-CAM proposed by Gao et al. [22] provides an
innovative method based on visual Transformer for weakly supervised object localization. This method
utilizes the self-attention mechanism to achieve more extensive localization accuracy of the target area and
significantly improves the localization accuracy. MCTformer+ proposed by Xu et al. [23] generates category-
specific localization maps by introducing multiple class tokens and designs a contrastive class token module
to enhance category discriminability. Zhu et al. [24] generate high-quality class activation maps through an
adaptive attentional fusion module and introduce a gradient-clipping decoder for online retaining to improve
segmentation accuracy.

2.4 Weakly Supervised Semantic Segmentation Based on the Fusion of CNN and Transformer
Since CNN and Transformer have their respective advantages when applied to WSSS tasks, some

researchers have begun to try to utilize Conformer [17], which has a dual-branch structure, as a backbone
network for generating more accurate class activation maps. The advantage of Conformer is to utilize CNN
branches and Transformer components to interdependently fuse regional and comprehensive features as a
way to simultaneously utilize the advantages of both branches in feature extraction. Based on the Conformer
backbone network, Liu et al. [25] inspired by CPN [21] convert the input image into complementary patches.
They reduce false detections by learning multiple estimation of complementary patches in different phases. At
the same time, they also introduce an Adaptive Conflict Module (ACM) that can adaptively filter conflicting
pixels and further improve the quality of pseudo-labels. He et al. [26] proposed a completely new adaptive
reactivation mechanism, aiming to alleviate the uncontrolled over-smoothing problem of Transformer in
weakly supervised semantic segmentation. This mechanism supervises the deep attention matrix to make
it more focused on semantic objects, and further improves the quality of pseudo-labels while reducing
background noise. Li et al. [16] proposed the TransCAM, which applies the Conformer as a backbone
network. This network combines the attention weights generated by the Transformer component of the
Conformer to enhance the class activation map produced by the CNN component, thus solving the constraint
related to the limited local receptive field. However, due to the fact that Conformer’s two-branch structure
uses traditional convolutional blocks and Transformer blocks, it is not precise enough to capture different
targets in the image and the computational complexity is too high. Therefore, this paper improves the
main blocks of Conformer’s dual-branch structure, and obtains an advanced method based on CNN and
Transformer dual-branch structure.

3 Methodology

3.1 Network Architecture
To address the limitations of existing weakly supervised semantic segmentation methods, such as

the loss of small target information, inability to handle complex and multi-scale target scenes, and high
computational complexity of the network. We introduce a supervised semantic segmentation approach
that leverages an enhanced Conformer network as its foundational backbone framework. The overall
network architecture is shown in Fig. 1. First, the stem module is used to perform preliminary feature
extraction on the image and input it to the CNN and Transformer branches. Then, the feature map of the
last convolutional layer of the convolutional neural network is multiplied by the corresponding category
weight and accumulated to obtain the class activation map. In this process, the coupling module is used to
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continuously couple the features of the Transformer branch and the convolutional neural network branch.
Finally, the attention weight from the Transformer component is used for further optimizing the class
activation map produced by the CNN branch. To bolster the CNN branch’s capability, we construct a
cross-scale feature integration convolution module to capture more details and improve the sensitivity to
multi-scale targets. For the Transformer branch, we construct an efficient multi-head self-attention module
to increase the multi-scale feature extraction ability and reduce the computational complexity. Additionally,
a multi-feature coupling module is designed to promote the improvement of the local-global feature mutual
coupling performance when coupling the features of the dual-branch network.

Figure 1: Multi-scale efficient weakly supervised semantic segmentation network

The overall network uses the same number of convolutional blocks and Transformer blocks to form
a dual-branch structure to generate class activation maps, and uses the features of the Transformer branch
to optimize the class activation maps. Our innovation lies in constructing a cross-scale feature integration
convolutional module (CSConv Block) and an efficient multi-head self-attention module (Etrans Block)
which are applied to the CNN and Transformer branches respectively, and constructing a multi-feature
coupling module (MFUC) which is applied to the feature coupling of the two branches.

3.2 Cross-Scale Feature Integration Convolution Module
To enable the network to capture more details and improve the sensitivity to multi-scale targets, we

construct a cross-scale feature integration convolutional module as the convolutional block of the CNN
branch. This module can fuse multi-scale feature information and enhance the capacity to capture long-range
pixel dependencies, thereby generating more comprehensive and accurate class activation maps. The specific
structure is shown in Fig. 2.
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Figure 2: Cross-scale feature integration convolution module

The input image is initially extracted by the stem module in Fig. 1 and then obtains the feature pyramids
C3, C4, and C5 through a series of convolution operations. First, the dimension-reduced features are obtained
through the linear projection layer. Then, the features are divided into M groups in the channel dimension
and processed by depth wise separable convolutions with corresponding receptive field sizes. Finally, the
processed features are connected and the dimension is increased through the linear projection layer.

After passing through the stem module in Fig. 1, the preliminary features of the image are obtained.
Then, the feature map is further processed through a series of convolution operations. This generates a set
of multi-scale features {C3, C4, C5} with resolutions of 1

8 , 1
16 and 1

32 . These feature maps are then flattened

and concatenated into a feature block C ∈ R(
HW
82 + HW

162 + HW
322 )×D , followed by dimensionality reduction through

a linear projection layer. Next, the features are divided into M groups along the channel dimensions, and
each group is processed by depthwise separable convolutions of different sizes to enhance the receptive
field representation. Each group of features is processed by convolution layers with different receptive fields
to increase receptive field diversity. Finally, the processed feature blocks are concatenated and expanded
through another linear projection layer. The process of this module processing the feature map is shown
in Eq. (1).

F = FC (DWConv (FC (C))) , (1)

where F denotes the feature output by this module, FC (•) represents the linear projection,DWConv (•)
denotes a set of depth wise convolutions with different convolution kernel sizes and C denotes the input
multi-scale feature set. To retain multi-scale information while generating accurate class activation maps, we
unify the feature map output from the last CNN block to the 7 × 7 resolution through feature fusion. This
approach not only preserves multi-scale perception but also ensures that the final output feature map meets
the required resolution through adjustment and fusion. Finally, the specific weight of the classification layer
is multiplied by the corresponding channel of the feature map to obtain the activation map corresponding
to each class.

3.3 Efficient Multi-Head Self-Attention Module
To compensate for the limitation of the CNN branch’s local receptive field, a dual-branch network is

formed by using the same number of Transformer blocks as the convolutional blocks. Starting from the
second block, a coupling module is used for feature coupling between each group of convolutional blocks and
Transformer blocks to achieve the complementary effect of local details and global features. Furthermore,
the attention maps from each Transformer block are amalgamated into a single average attention map, which
is then multiplied with the class activation map produced by the CNN part, yielding a more comprehensive
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and precise class activation map. Since the self-attention mechanism in traditional Transformer blocks
involves large matrix operations. When processing high-resolution images, this significantly increases the
computational demand and complexity. To improve performance on images with different resolutions, we
designed an efficient multi-head self-attention module. It replaces the traditional multi-head self-attention
module in the Transformer block, aiming to reduce the computational load while maintaining image detail.
The specific structure of the efficient multi-head self-attention module is shown in Fig. 3.

Figure 3: Efficient multi-head self-attention module

The input of this module is the D-dimensional latent embedding space Z generated by the project
module in Fig. 1. First, q, k, and v of the ith head are obtained through linear projection. Then, the spatial
resolution of k and v is reduced by a ratio of r = 2. Next, the sub-token matrix generated by the feature splitting
operation is multiplied by the matrix representing the original perceptual region 1

s . In this way, memory
consumption can be effectively reduced.

This module reduces computational cost by reducing the feature dimension while trying to avoid the
loss of image details as much as possible. We denote the input features of the project module in Fig. 1 as
Xt = RCt×Ht×Wt , where Ct , Ht , Wt represents the channel, height and width of the feature map. First, after
performing the Reshape operation in the project module, a flattened and non-overlapping patch sequence is
obtained, resulting in Xt ∈ RN×(Ct ⋅P2), where N = Ht Wt

P2 represents the number of patches (i.e., the length of
the input sequence), and p2 denotes the size of each patch. Then, these patches are mapped into a potential D-
dimensional potential embedding space, through a learnable linear projection layer E ∈ R(P

2 ⋅Ct)×D , denoted
as Z ∈ RN×D . This process is illustrated in Eq. (2).

Z = [x 1
pE; x2

pE; . . . xN
p E] , (2)

where x i
p represents the ith image block, and E represents a learnable linear projection layer. Next, it is input

to the linear projection matrices W Q , W K and W V ∈ RD×Dh , generating the queries Q, the keys K and the
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values V in the self-attention mechanism. The detailed process is shown in Eq. (3).

Q , K , V = ZW Q , ZW K , ZW V ∈ RN×Dh , (3)

where N represents the count of patches, D denotes the embedding dimension of each patch, h represents
the count of heads in the multi-head self-attention, a parameter specified by the user, which guarantees that
the dimension of each head is d = Dh

h . Thus, after the above steps, in the ith head, the dimensions of q, k and
v are N × d. First, in the ith head, k and v will be spatially compressed with a compression factor of r (r = 2).
Then, the sub-token generated by feature splitting is matrix multiplied with a region that represents merely 1

s
of the initial perception field, where s stands for the number of feature segmentations, set to 4 in this paper.
the process is shown in Eq. (4).

(q1 , . . . , qs) , (k1 , . . . , ks) (v1 , . . . , vs) = Feature_Spl it (q, k, v) , (4)

where qi ∈ RN× d
s , ki ∈ R N

r ×
d
s , vi ∈ R N

r ×
d
s . represents the segmented spatial distribution, and

Feature_Spl it(q, k, v) represents the feature splitting operation. Through the above operations, the
matrix is split into multiple sub-matrices along a specific dimension for subsequent grouped self-attention
calculations, effectively reducing computational complexity and memory consumption after processing.
The calculation of self-attention in the nth head is shown in Eqs. (5) and (6).

oi(qi , ki , vi) = So f t max (qi(ki)T
√

d
) vi , i ∈ [1, s], (5)

headn = Concat[o1 , o2, . . . os], n ∈ [1, h], (6)

where oi represents the self-attention output of the ith sub-token matrix, So f tmax(⋅) represents applying
the softmax function to the similarity to generate attention weights, headn represents the output of the n-
th attention head, and Concat [., .] represents the concatenation operation. After the above operations, the
ultimate output from the efficient multi-head self-attention module is derived, as shown in Eq. (7).

eMHSA = Concat[head 1 , head2, . . . headh]W O , (7)

where h denotes the count of heads in the efficient multi-head self-attention and W O ∈ RDh×D is used as a
linear projection to recover the dimension. By utilizing the efficient multi-head self-attention structure, the
complexity of the network is reduced from O (N2) to O (N2

sr ).

3.4 Multi-Feature Coupling Module
As can be known from Section 3.1, our network structure is a dual-branch network that concurrently

utilizes the strengths of both CNN and Transformer. During the feature computation phase, it is necessary
to continuously couple the features of the two branches to achieve the purpose of taking into account local
and global features at the same time. Therefore, we have constructed a multi-feature coupling module to
serve as the bridge connection part of the dual-branch network. The multi-feature coupling module is shown
in Fig. 4.

The input of this module is the feature F = {F2, F3,F4} ∈ R(
HW
92 + HW

162 + HW
322 )×D , outputted by the CNN

branch and the feature X ∈ R H
16×

W
16 ×D , outputted by the Transformer branch. The feature obtained after the

addition and self-attention unified operation can be used as an additional input for each module within the
dual-branch network to make up for the original defects of the module.
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Figure 4: Multi-feature coupling module

First, the Transformer branch features X and the CNN branch feature with the same resolution F3
are added together to obtain the fused feature F′3. This fused feature set F′ = {F2, F′3, F4} combines multi-
scale features from dual-branch network. To address the disparity in modal representations, a self-attention
mechanism is applied to unify the features generated by the modules in the dual-branch network, reducing
the impact of modal differences. This process is shown in Eq. (8).

O = FFN (Attention (norm (F′))) , (8)

where F′ includes multi-scale features with resolutions of 1
8 , 1

16 and 1
32 , norm (•) denotes layer normaliza-

tion [27]. Attention (•) denotes multiscale deformable attention [28], FFN (•) denotes feedforward network,
and O represents the final feature output of this coupling module Bilinear interpolation is used to align the
feature map sizes of O3 and O5 to O4, and is fused with the outputs of the CNN module and Transformer
block at this stage as the input for the modules in the next stage.

For the ViT branch, the features of the two branches are first coupled before the phase i begins, and the
resulting of adding the coupled features to the output of the previous stage are then injected into the ViT
branch. This process is illustrated in Eq. (9).

X̂i = α ∗ Oi−1 + Xi−1 , (9)

where X̂i denotes the updated features of the ViT branch the Transformer block of the ViT branch at stage i, α
represents a learnable variable, Oi−1 represents the coupling result of the dual-branch features of the previous
stage, and Xi−1 represents the output feature of the Transformer block of the previous stage Similarly, the
feature update process for the CNN branch, the process is shown in Eq. (10).

F̂i = α ∗ Oi−1 + Fi−1 , (10)

where F̂i denotes the updated features from the CNN component, and Fi−1 represents the output feature
from the convolutional block of the previous stage.

After the above operations, a class activation map corresponding to the category in the image is obtained.
Following this, the class activation map undergoes optimization to produce high-fidelity pseudo-labels,
which are subsequently employed as the training dataset for semantic segmentation tasks.

4 Experimental Results and Discussions

4.1 Implementation Details
The experiment was conducted on a system with an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz, 64

GB of memory, and an NVIDIA Quadro RTX 6000 GPU. The software environment consisted of Windows



4640 Comput Mater Contin. 2025;82(3)

10, Python 3.7, PyTorch 1.13, and Pycharm 2022.2.1. First, the proposed network was pre-trained on ImageNet.
Then, fine-tuning was performed on the PASCAL VOC 2012 and MS COCO 2014 training sets using an
NVIDIA RTX A6000 GPU (with 48 GB of memory). The AdamW [29] was used, with a learning rate set
to 5e−5 and a weighting Decay set to 5e−4. Throughout the training process, the images underwent random
resizing within the bounds of [320, 640] and subsequently cropped to dimensions of 512 × 512. During
inference, the images were input to the model are at size of 256 × 256, 512 × 512 and 768 × 768, generating
CAMs at each scale. The CAMs are subsequently resized to match the dimensions of the initial image and
integrated together. To enhance the prediction accuracy of mIoU, a multi-scale methodology is adopted.

4.2 Dataset and Evaluation Metric
In order to assess the datasets, we used the PASCAL VOC 2012 and MS COCO 2014 datasets. The

PASCAL VOC 2012 dataset includes 21 categories, comprising 20 foreground categories and a single
background class, and offers a dataset with 1464 training images, 1449 images for validation, and 1456 images
for testing. Since the test set labels are not publicly available, model predictions must be submitted to the
official website for performance evaluation. The MS COCO 2014 dataset consists of 1 background class
and 80 foreground classes, with a total of 82,081 images designated for training and images for validation
purposes. Following the standard experimental protocol used in previous studies [11,12,30], we extracted
supplementary annotations from the semantic boundaries dataset [31], resulting in an expanded training set
comprising 10,582 images.

During training, image-level class labels were used, and the performance of the proposed network
architecture was assessed by the mean Intersection over Union (mIoU) metric. This measurement signifies
the proportion of the overlapping area between the predicted and actual classes, relative to their combined
area. A higher ratio indicates better performance. The calculation process is shown in Eq. (11).

mIoU = 1
C∑C

area (P) ∩ area (G)
area (P) ∪ area (G) , (11)

where P denotes the prediction result, G denotes the real label, area (⋅) represents the area of the
corresponding region, and C represents the count of target categories in the dataset.

4.3 Ablation Studies
In order to estimate the influence of each distinct module upon the network’s operational efficiency,

the TransCAM architecture was used as the baseline. The dual-branch structure and fusion module were
progressively replaced to assess the effectiveness of the cross-scale feature integration convolution module,
efficient multi-head self-attention module, and multi-feature coupling module. Through these replacements,
the impact of each module on the mIoU was evaluated on the PASCAL VOC 2012 training set. The results
are shown in Table 1.

The “
√

” symbol in the table indicates that the module was used, while the absence of this symbol
indicates that the module was not used. As shown in Table 1, the baseline model achieved a mIoU of 64.3%.
This relatively low value is primarily attributed to the single-scale feature maps. After replacing the traditional
multi-head self-attention in ViT with the proposed efficient multi-head self-attention module, the mIoU of
the generated class activation maps is 64.2%, indicating no significant impact on the network’s performance.
However, when the proposed cross-scale feature integration CNN module was introduced into the CNN
branch, combined with the multi-feature coupling module, the mIoU increased to 72.8%, representing a
13.2% improvement over the baseline network. The experiment clearly demonstrates that the proposed
modules can effectively enhance the network’s performance.



Comput Mater Contin. 2025;82(3) 4641

Table 1: Results of ablation experiments with different modules

Standard Cross-scale feature
integration convolution

module

Efficient multi-head
self-attention module

Multi-feature
coupling modula

mIoU/%↓

√
64.3√ √
64.2√ √ √ √
72.8

To evaluate the impact of the efficient multi-head self-attention module on network performance, we
used the ViT network as the baseline and compared the effects on segmentation accuracy and computational
complexity before and after replacing the traditional multi-head self-attention module. The results are shown
in Table 2.

Table 2: Results of our proposed structure for performance improvement

Standard Efficient multi-head self-attention module Param (K)↓ FLOPs (G)↓ mIoU/%↓
√

680.352 13.294 64.3√ √
569.937 11.581 64.2

The “
√

” symbol in the table indicates that the module was used, while the absence of this symbol
indicates that the module was not used. The Param in Table 2 represents the number of model parameters.
Fewer parameters indicate lower model complexity, meaning the model requires less memory and compu-
tational resources during training and inference. FLOPs represents the number of floating-point operations
performed per forward pass, measured in gigaflops (G). A lower FLOPs value suggests a more efficient model,
which may result in faster inference speeds. The results show that the efficient multi-head self-attention
module strikes a favorable equilibrium between performance efficiency and precision. Compared to the
baseline structure, the proposed framework reduces the number of parameters by 24% and decreases the
computational load by 13%, with only a slight 0.2% drop in mIoU. This indicates that the efficient multi-
head self-attention module significantly enhances network efficiency and accelerates inference speed with
minimal impact on performance.

4.4 Comparisons with SOTA Methods
To enhance the mIoU of pixel-level pseudo-labels, PSA [11] was first used for post-processing, followed

by dense CRF [32] to further refine the previously generated pseudo-labels. To evaluate the potency of our
method in generating class activation maps, we compared the generated CAMs with recent research results,
as shown in Fig. 5.

The generated CAMs were used as pseudo-labels to train the classic segmentation model DeepLab [33]
under full supervision, with ResNet38 [34] as the backbone network. To assess the efficacy of the proposed
method further, we compared its segmentation outcomes with those of existing algorithms on the PASCAL
VOC 2012 and MS COCO datasets, as presented in Tables 3 and 4.
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Figure 5: Results of the comparison of CAM visualizations

Table 3: Results of segmentation performance comparison on PASCAL VOC dataset

Method Publication Sup. Val Test
AuxSegNet [35] ICCV21 I + S 69.0 68.6

L2G [36] CVPR22 I + S 72.0 73.0
MECPformer [25] Arxiv23 I + S 72.0 72.0

SEAM [7] CVPR20 I 64.5 65.7
CONTA [37] NIPS20 I 66.1 66.7

CDA [38] ICCV21 I 66.1 66.8
CPN [22] ICCV21 I 67.8 68.5

AdvCAM [13] CVPR22 I 68.1 68.0
AMN [39] CVPR22 I 70.7 70.6

W-OoD [3] CVPR22 I 70.7 70.1
SIPE [40] ECCV22 I 68.2 69.5

Yoon et al. [41] CVPR23 I 70.9 71.7
OCR [42] CVPR23 I 72.7 70.7

LPCAM [43] CVPR23 I 72.6 72.4
MCTformer [23] Arxiv23 I 74.0 73.6

He et al. [26] Arxiv23 I 69.9 70.0
TransCAM [16] JVCI23 I 69.3 69.6

Ours – I 71.3 72.1

Table 4: Results of segmentation performance comparison on MS COCO dataset

Method Publication Sup. Val
AuxSegNet [35] ICCV21 I + S 33.9

L2G [36] CVPR22 I + S 44.2
MECPformer [25] Arxiv23 I + S 42.4

SEAM [7] CVPR20 I 31.9

(Continued)
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Table 4 (continued)

Method Publication Sup. Val
CONTA [37] NIPS20 I 32.8

CDA [38] ICCV21 I 33.2
AdvCAM [13] CVPR22 I 44.4

AMN [39] CVPR22 I 44.7
SIPE [40] ECCV22 I 43.6

Yoon et al. [41] CVPR23 I 44.8
OCR [42] CVPR23 I 42.5

LPCAM [43] CVPR23 I 42.8
MCTformer [23] Arxiv23 I 45.2
TransCAM [16] JVCI23 I 45.7

Ours – I 46.3

In Tables 3 and 4, the symbol I represents image-level labels, whereas S signifies significance maps.
As presented in Tables 3 and 4, the proposed approach attains mIoU scores of 71.3% and 72.1% on the
PASCAL VOC 2012 validation and test datasets, and achieves 46.3% on the MS COCO validation dataset.
The results demonstrate that the segmentation outcomes achieved by the proposed method surpass those of
alternative approaches that solely rely on image-level annotations, by a notable margin. To a more intuitive
demonstration of the suggested approach’s performance, the semantic segmentation results are visualized
in Fig. 6, where (a) depicts the initial image, (b) displays the ground truth, and (c) shows the predictions
produced by our method.

To further validate the potency of our proposed approach on specific categories, we conducted a
comparative analysis using several recent algorithms on the validation dataset from PASCAL VOC 2012. The
performance of each method was evaluated with the Intersection over Union (IoU) for each category and
the mIoU across all categories. The outcomes of the comparison are presented in Table 5.

The mIoU for all categories is shown in the last column of Table 5, with the best-performing algorithm
for each category highlighted in bold. Our proposed method exhibits superior performance in 16 out of the
21 categories, indicating the efficacy of the designed network across both specific and individual categories,
as compared to existing approaches. In terms of overall segmentation performance, the proposed method
surpasses the current state-of-the-art algorithms.
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Figure 6: Visualization of segmentation results

Table 5: Results of segmentation performance comparison on PASCAL VOC dataset

Method bkg aero bike bird boat bottle bus car cat chair cow
SEC [18] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5
PSA [11] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7

FickleNet [12] 90.3 77.0 35.2 76.0 54.2 64.3 76.6 76.1 80.2 25.7 68.6
RRM [44] 87.9 75.9 31.7 78.3 54.6 62.2 80.5 73.7 71.2 30.5 67.4

TransCAM [16] 91.3 81.9 35.4 84.7 67.6 67.9 87.5 80.5 86.5 31.4 73.9
Ours 91.6 85.3 37.5 85.1 69.0 68.2 89.2 81.7 88.9 29.4 79.2

Method table dog horse mbk person plant sheep sofa train tv mIoU
SEC [18] 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
PSA [11] 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7

FickleNet [12] 50.2 74.6 71.8 78.3 69.5 53.8 76.5 41.8 70.0 54.2 65.3
RRM [44] 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 62.7 58.4 62.6

TransCAM [16] 52.5 84.0 74.9 74.6 79.0 44.7 84.1 47.0 78.4 46.6 69.3
ours 56.7 83.1 79.8 81.9 79.4 53.2 85.4 48.1 79.1 55.6 71.8

5 Conclusions
Through this research, we propose a multi-scale semantic segmentation network based on an improved

Conformer. The proposed method can accurately capture objects of different sizes, enhance sensitivity to
image details, and reduce computational complexity of multi-head self-attention in the Transformer. We
use a dual-branch network of CNN and Transformer for local-global feature complementation to produce
a more comprehensive class activation map, and use attention features from the Transformer to further
refine the resulting class activation map. A cross-scale feature integration convolution module was designed
for the CNN branch, incorporating multi-receptive field convolution layers to bolster the model’s capacity
to grasp long-range dependencies, thus enhancing its efficacy in managing objects of diverse sizes. For
the Transformer branch, an efficient multi-head self-attention module was developed, applying spatial
compression to the keys and values to minimize the transformer blocks’ overall computational intricacy.
Finally, a multi-feature coupling module was constructed to fully leverage the strengths of both CNN and
Transformer. Extensive experimental results demonstrate that the average intersection over union (IoU)
index of the image semantic segmentation results of the method in this paper on the validation set and test set
of the PASCAL VOC 2012 dataset is 2.9% and 3.6% higher than that of the TransCAM algorithm respectively;
on the COCO 2014 dataset, the average intersection over union index (mIoU) is 1.3% higher than that of
the TransCAM algorithm. It is superior to the existing mainstream algorithms. The parameter amount index
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Param. and the number of operations index FLOPs of the improved model have decreased by 16.2% and
12.9%, respectively. Future improvements can be made based on the dual-branch architecture to address the
issue of still having suboptimal effects when dealing with complex scenes.
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