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ABSTRACT: Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds
of objects in images. Obtaining class-specific precise representations at different scales is a key aspect of feature
representation. However, existing methods often rely on the single-scale deep feature, neglecting shallow and deeper
layer features, which poses challenges when predicting objects of varying scales within the same image. Although some
studies have explored multi-scale features, they rarely address the flow of information between scales or efficiently
obtain class-specific precise representations for features at different scales. To address these issues, we propose a two-
stage, three-branch Transformer-based framework. The first stage incorporates multi-scale image feature extraction and
hierarchical scale attention. This design enables the model to consider objects at various scales while enhancing the flow
of information across different feature scales, improving the model’s generalization to diverse object scales. The second
stage includes a global feature enhancement module and a region selection module. The global feature enhancement
module strengthens interconnections between different image regions, mitigating the issue of incomplete represen-
tations, while the region selection module models the cross-modal relationships between image features and labels.
Together, these components enable the efficient acquisition of class-specific precise feature representations. Extensive
experiments on public datasets, including COCO2014, VOC2007, and VOC2012, demonstrate the effectiveness of our
proposed method. Our approach achieves consistent performance gains of 0.3%, 0.4%, and 0.2% over state-of-the-art
methods on the three datasets, respectively. These results validate the reliability and superiority of our approach for
multi-label image classification.
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1 Introduction
In a single-label image classification task, each image is assigned only one most relevant label, such as cat,

dog, or airplane. However, in the real world, an image often contains multiple objects. This makes multi-label
image classification not only more challenging but also more relevant to practical scenarios. In particular,
addressing multi-label classification is crucial for complex real-world applications where multiple objects or
attributes co-exist within a single image. Such tasks require models to capture richer contextual information
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and manage intricate relationships among labels. Currently, multi-label image classification has been widely
applied in various fields such as medical diagnosis recognition [1,2], object detection [3], image retrieval [4,5],
and image processing [6]. For instance, in medical diagnosis, identifying multiple co-existing diseases from
an X-ray image is critical for comprehensive treatment, while in autonomous driving, detecting multiple
objects such as vehicles, pedestrians, and traffic signs is crucial for decision-making. These applications
highlight the far-reaching implications of effective multi-label image classification. At the same time, multi-
label image classification presents significant challenges. Currently, there are three major challenges in this
field: (i) efficiently establishing the relationship between image features and labels, particularly in capturing
high-level feature representations across different scales; (ii) effectively leveraging label correlations to
enhance classification performance through contextual information; (iii) an overemphasis on the single deep
feature, with limited attention to multi-scale features, which are vital for recognizing objects of varying sizes
within an image.

The early work on multi-label image classification transformed the problem into a single-label image
classification task, primarily employing region-based approaches [7,8]. For example, they leveraged the
convolutional layers of convolutional neural networks (CNNs) to extract features from input images,
generating corresponding feature maps. These feature maps were then used to predict and determine the
presence of target categories within the images.

With the introduction of attention mechanisms, researchers attempted to integrate CNNs with attention
mechanisms. For example, the following works [9,10] capitalized the robust feature extraction capabilities
of CNNs, while they simultaneously utilized the attention mechanism’s capacity to select information focus.
This way, the model performance is improved significantly. These methods address the challenge of feature
representation to a certain extent and are capable of establishing associations between local features and
labels. However, by relying solely on traditional CNNs and attention mechanisms, they struggle to capture
global image information. As a result, it becomes difficult to capture the correlations between different
regions of the same image, and the contextual information of the image remains elusive. Consequently, the
obtained feature representations are incomplete. To address this issue, this paper introduces a Global Feature
Enhancement Module, designed through the integration of encoders, to compensate for the lack of global
features and the incomplete feature representations found in these approaches.

On the other hand, with the development of graph convolutional networks (GCNs), some other
researchers focused on leveraging GCNs for multi-label image classification [11–13]. GCNs typically use the
graph structures to model the relationships between different labels in the image. Most of these methods
explicitly model label correlations using graph structures, which can help leverage label dependencies to
some extent. However, there are two key challenges with this approach: (1) Label co-occurrence can lead to
biased graph structures, especially in small or imbalanced datasets, affecting the model’s generalization. (2)
Some label relationships are complex and nonlinear, making them difficult to represent with simple graph
structures. To address the challenge of effectively leveraging label correlations, this paper does not use graph
structures for label correlation modeling. Instead, we learn label embeddings and use the Transformer’s cross-
attention mechanism to implicitly capture complex label relationships, avoiding the biases and limitations of
graph structures.

In addition, we observe that many mainstream methods highly rely on a single deep feature, particularly
those extracted before the max pooling layer in ResNet-101. However, objects within an image vary in scale,
necessitating the use of multi-scale feature maps to capture both small and large objects effectively. This is
particularly critical in real-world applications, such as traffic monitoring, where vehicles and pedestrians
differ greatly in size, or in satellite imagery, where both expansive landscapes and small buildings are present
in the same frame. Therefore, relying on a single deep feature for all objects is inadequate. Existing studies,
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such as FL-Tran [14] and DATran [15], have addressed critical issues in multi-scale feature handling for
multi-label image classification by incorporating multi-scale feature fusion and attention mechanisms. These
approaches effectively address challenges like identifying small objects in images and extracting useful
features that may be obscured by more dominant ones. However, these approaches still face limitations, such
as how to enhance the flow of information across different scales and how to maintain spatial correlations.
To address these challenges, our work introduces a multi-branch Transformer model with the following
contributions: We incorporate a hierarchical scale attention module to strengthen the information flow
between features of different scales. Additionally, by integrating encoders, the model establishes correlations
between different regions of the image, significantly improving its ability to capture spatial dependencies.
Furthermore, we propose a novel three-branch structure, specifically designed for different scale features,
which employs lightweight cross-attention mechanisms to accurately capture feature representations of
objects at varying scales, which is an aspect not covered in the aforementioned literature.

To this end, this paper presents a novel multi-scale feature fusion model for multi-label image
classification. The model leverages a three-branch structure to capture relationships between objects of
varying scales and correlations between features across different image regions. Initially, we incorporate
hierarchical scale attention to facilitate information exchange between features of different scales, effectively
combining high-level semantic information with low-level details. A global feature enhancement module
is then introduced, utilizing Transformer encoders for robust global feature extraction, thereby uncovering
intrinsic connections across image regions. Finally, a lightweight cross-attention mechanism is employed
to refine feature representations for specific object categories at different scales, leveraging the rich features
obtained from the global enhancement module. Simply speaking, in this work we primarily address three
key issues to enhance the capabilities of our model: (i) We conducted multi-scale image feature extraction
and designed a three-branch structure tailored to different feature scales, addressing the common limitation
of relying solely on a single deep feature in most existing methods. Additionally, we introduced a hierarchical
scale attention module to enhance the flow of information across scales, enabling more effective cross-
scale feature integration. (ii) By learning label embeddings and employing the cross-attention mechanism
of Transformers, we implicitly captured complex label relationships. This approach not only mitigates the
biases and constraints of graph-based structures but also enables the model to acquire precise class-specific
feature representations. (iii) We incorporated multiple encoders and developed a global feature enhancement
module, significantly improving the connectivity of information across different image regions. This design
enhances the model’s global feature extraction capability, addressing the incomplete feature representations
inherent in traditional convolutional and attention-based methods.

To summarize, the main contributions of this work are as follows:

• We propose a novel three-branch multi-scale Transformer model for multi-label image classification.
Specifically, we introduce a hierarchical scale attention to facilitate the flow of feature information
across different scales and integrate it into the Transformer architecture. This design enables the model
to capture class-specific feature representations at various scales, significantly improving classification
performance.

• We revisit the Transformer architecture and design a global feature enhancement module via integrated
encoders, which establishes correlations between features across different regions of the image. Addi-
tionally, we simplify the decoder structure by employing the lightweight cross-attention mechanism
to efficiently capture cross-modal relationships between image features at different scales and textual
label information.
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• We conducted extensive experiments on several widely used benchmarks including COCO 2014,
VOC 2007, and VOC 2012. The results demonstrate that our proposed model can achieve competitive
performance, compared against a set of state-of-the-art models.

2 Related Work

2.1 Multi-Label Classification
In recent years, the challenge of multi-label image classification has garnered significant attention.

Proposed methods generally fall into three main categories: (1) Locating regions of interest, (2) Label
correlation, and (3) Multi-scale feature fusion.

2.1.1 Locating Regions of Interest
Early works [7,8] leveraged the powerful feature extraction capabilities of convolutional neural networks

(CNNs) to obtain regions of interest (ROI) corresponding to specific categories from input image. With the
advent of attention mechanisms, some studies [9,16–19] began to integrate CNNs with attention mechanisms
to emphasize and focus on important local features. For example, Guo et al. [9] proposed a dual-branch
network and attention consistency loss to precisely locate ROI regions through attention consistency. You
et al. [16] introduced cross-modal attention and semantic graph embedding for multi-label classification. Liu
et al. [17] employed Transformer decoders to adaptively find ROI regions within images. Ridnik et al. [19]
redesigned the decoder architecture and introduced a novel grouped decoding method. However, existing
methods typically rely on CNNs for feature extraction and use attention mechanisms to focus on local
features. These approaches may fail to fully leverage global features and the relationships between different
regions, resulting in incomplete feature representations.

2.1.2 Label Correlation
With the rise of GCNs [20], some studies [11–13] have begun to utilize graph structures to establish corre-

lations between labels, providing additional semantic information and demonstrating strong generalization
capabilities. For instance, Chen et al. [13] constructed a directed graph over object labels using GCNs and
proposed a novel re-weighting scheme to create an effective label correlation matrix. Ye et al. [11] proposed
an attention-based dynamic GCN that decomposes input features into category-specific representations and
models their interactions. However, label co-occurrence can introduce bias into graph structures, particularly
in small or imbalanced datasets, which in turn affects the model’s ability to generalize. Furthermore, certain
label relationships are complex and nonlinear, making it challenging to accurately represent them with
simplistic graph-based approaches.

2.1.3 Multi-Scale Feature Fusion
Multi-label image classification typically involves the classification of multiple objects, which may exist

at different scales. Consequently, some studies [15,21] have focused on using multi-scale feature fusion
methods to address multi-label image classification tasks. Zhou et al. [15] proposed an innovative Dual
Attention Transformer model, which effectively captures both high-level semantics and low-level details in
images through multi-scale feature fusion and a dual-stream architecture. Ye et al. [21] proposed a model
on multi-scale fusion and adaptive label correlations. This model enhances the feature information of small
targets by fusing multi-scale feature maps. Beisdes, it utilizes a graph attention network to adaptively explore
category correlations within the image. Current approaches often prioritize feature fusion but fail to address
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the flow of information between features of different scales and the accurate class-specific representation for
each particular scale.

2.2 Application of Transformers in Visual Tasks
Early Transformer models were predominantly utilized in the domain of natural language process-

ing [22–24]. Recently, the Transformer architecture has gained widespread application in the field of
computer vision [25–28]. For example, Alexey [25] introduced the Transformer architecture into the field
of computer vision, proposing the Vision Transformer. Liu et al. [26] proposed the Swin Transformer,
which employs hierarchical window attention by applying attention mechanisms within local patches
and progressively enlarging the window size at each layer. These models have demonstrated substantial
improvements in accuracy and efficiency for image classification tasks.

Recently, some studies [17,19] have begun to employ Transformers for multi-label image classification.
However, these methods have some issues: (1) They focused on leveraging Transformer decoders to establish
correlations between image features and labels. However, the decoder does not effectively distinguish
between objects of different scales when querying the ROI regions. (2) The encoder, as a powerful global
feature extractor, is often overlooked in its role. Compared to these methods, our model employs multi-scale
feature fusion and hierarchical scale attention to differentiate objects of varying sizes. This approach aids
the feature-label interaction module in accurately locating category-specific regions of interest for different
scales. Additionally, we utilize a global feature enhancement module to enrich the model with valuable
global information.

3 Proposed Model
In this section, we introduce a novel approach for multi-label image classification, which addresses

key challenges such as multi-scale feature learning, label correlation, and class-specific precise feature
representations. Our model consists of two stages, as illustrated in Fig. 1.

Figure 1: Overview of our framework. ResNet101 and Hierarchical Scale Attention first perform multi-scale feature
extraction and cross-scale information flow. Feature reshaping is then applied to incorporate positional encoding. The
subsequent global feature enhancement module and region selection module efficiently extract global information and
generate class-specific feature representations for each branch. Finally, a linear projection layer and sigmoid function
produce the final prediction. “US” represents the upsampling operation, and “DS” represents the downsampling
operation
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The first phase, as shown on the left side of Fig. 1, comprises two components: (i) Multi-scale Feature
Extraction and (ii) Hierarchical Scale Attention. We begin by employing the ResNet101 network [29] for
multi-scale feature extraction, generating feature maps at large, medium, and small scales. This enables the
model to handle objects of varying sizes more effectively-larger feature maps capture fine-grained details of
small objects, while smaller maps are better suited for larger objects. To overcome the common limitation
in existing methods that neglect the information flow between features of different scales, our approach
integrates multi-scale feature maps using a hierarchical scale attention module, thereby enhancing the flow
of information across scales. This design ensures more effective cross-scale feature fusion, improving the
model’s overall performance in multi-scale object recognition.

The second stage includes three components: (i) Feature Reshaping, (ii) Global Feature Enhancement
Module, and (iii) Region Selection Module. Feature reshaping aligns the dimensions and shapes of the
extracted features with the requirements of subsequent modules. The Global Feature Enhancement Mod-
ule improves the model’s ability to establish global connections across different image regions, thereby
addressing the incomplete feature representations often seen in traditional convolutional and attention-
based methods. In the Region Selection Module, we employ multiple cross-attention mechanisms to
capture class-specific features based on learnable label embeddings, which implicitly model complex label
relationships. This approach not only mitigates biases present in graph-based methods but also allows
for more precise class-specific feature representation, significantly enhancing the model’s ability to handle
complex multi-label classification tasks.

Finally, the outputs from the region selection module are concatenated along the channel dimension
and passed through a linear projection layer, producing the final prediction scores. The model’s efficiency
is further enhanced by using weight-sharing across the three branches, reducing the number of parameters
while maintaining high accuracy.

3.1 Multi-Scale Feature Extraction
We first employ ResNet101 for initial feature extraction. Specifically, we obtain the output features from

Layer3 and Layer4, which are denoted as F1 ∈ R
dmodel

2 ×2H×2W and F2 ∈ Rdmodel×H×W , respectively. Here, dmodel
represents the number of channels, while H and W denote the height and width of the feature maps.

Existing approaches often rely solely on a single deep feature (e.g., features from F2). To effectively
capture multi-scale features, we aim to construct feature maps larger than F2 for detecting small objects and
smaller than F2 for detecting large objects. To this end, we propose utilizing features from F1 (which provides
a larger feature map than F2) and applying convolutional operations to F2 (to generate a smaller feature map)
to extract features at different scales. Subsequently, the following operations are applied to F1 and F2:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = Conv1×1(F1), x1 ∈ R
dmodel

4 ×2H×2W ,
x2 = Conv1×1(F2), x2 ∈ R

dmodel
4 ×H×W ,

x3 = Conv3×3, stride=2(F2), x3 ∈ R
dmodel

4 ×
H
2 ×

W
2 .

(1)

where 1 × 1 convolution serves to adjust the number of channels, while the 3 × 3 convolution not only
modifies the channel dimensions but also further extracts smaller feature maps, enabling the prediction of
larger objects.

These convolutional operations produce three feature maps x1, x2, and x3 at different scales. The channel
dimensions are unified to dmodel

4 , which aligns with the hidden dimension required by subsequent transformer
encoders. These multi-scale feature maps facilitate the prediction of objects of varying sizes, with each scale
corresponding to a distinct branch in the model.
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3.2 Hierarchical Scale Attention
To address the challenge of effectively integrating features at different scales and enhancing the flow

of information between features at various scales, we introduce a hierarchical scale attention module. This
module aims to dynamically enhance the representation of multi-scale features by leveraging interpolation-
based transformations and element-wise feature interactions. Through this design, features from different
scales are enriched with complementary information, enabling the model to better capture both local and
global image contexts.

3.2.1 Multi-Scale Feature Alignment
After extracting multi-scale features using ResNet101, we denote the feature maps at three scales as x1,

x2, and x3. Here, x1 corresponds to the largest scale feature map with spatial dimensions hmax × hmax. To
align feature maps spatially, bilinear interpolation is applied to upsample x2 and x3 to match the resolution
of x1:

x′2 = Interpolate (x2, (hmax, hmax)),
x′3 = Interpolate (x3, (hmax, hmax)).

(2)

where Interpolate (x , (h, w)) indicates that the tensor x is interpolated to a target size of h ×w. This
operation ensures that features from different scales are spatially consistent, facilitating cross-scale informa-
tion interaction.

3.2.2 Cross-Scale Feature Fusion
To capture common patterns across scales, element-wise multiplication is performed on the aligned

feature maps x1, x′2, and x′3:

m = x1 ⊙ x′2 ⊙ x′3, (3)

where ⊙ represents element-wise multiplication. The resulting tensor m highlights regions with strong
responses across all three scales, serving as a shared representation.

Subsequently, m is added back to each scale’s feature map to integrate the shared information while
preserving scale-specific characteristics:

xupdated
1 = x1 +m,

xupdated
2 = x′2 +m,

xupdated
3 = x′3 +m.

(4)

3.2.3 Scale Restoration
Since xupdated

2 and xupdated
3 are obtained through upsampling, they are downsampled back to their

original resolutions using bilinear interpolation:

xfinal
2 = Interpolate (xupdated

2 , (h2, h2)),

xfinal
3 = Interpolate (xupdated

3 , (h3, h3)).
(5)

here, xfinal
1 = xupdated

1 , as no scale transformation is applied to x1.
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This hierarchical fusion process not only preserves the original scale-specific feature but also effectively
integrates complementary information from other scales. By dynamically combining multi-scale feature
representations, the model enhances its capacity to perceive diverse objects across different scales in complex
scenes. The enriched feature map captures both local and global contexts, improving the robustness and
generalization of the model while strengthening the relationships between multi-scale features.

3.3 Feature Reshaping
To incorporate positional information into the image features and meet the input requirements of the

global feature enhancement module, feature reshaping is essential. The feature reshaping process primarily
consists of two steps: (i) adding learnable positional encodings and (ii) flattening the image features into
sequential features, as illustrated in Fig. 2.

Figure 2: The process of feature reshaping. The input feature x f inal
i is transformed from a three-dimensional tensor

dmod e l ×H ×W to a two-dimensional tensor dmod e l × L, where L = H ×W

Learnable positional encoding is a technique for modeling positional information in deep learning
models. Unlike traditional absolute positional encodings based on sinusoidal functions, learnable positional
encoding does not rely on a predefined mapping from positions to vectors. Instead, it learns vector
representations for each position during the training process, providing the model with more flexible and
adaptive positional information.

For a given position pos, the corresponding positional encoding PEpos is a trainable parameter. The
integration of the positional encoding with the image feature vector x f inal

i is performed through a simple
vector addition:

Fcombined = x f inal
i + PEpos (6)

where Fcombined represents the image feature vector that has been augmented with positional information.
The flattening process is primarily used to reshape the image features from a three-dimensional tensor

dmod e l ×H ×W to a two-dimensional tensor dmod e l × L, where L = H ×W . The reshaped features Y can be
obtained using Eq. (7):

Y = Reshape (Fcombined) (7)

where Y ∈ Rdmod e l×L denotes the reshaped sequential features, Reshape denotes the process of the flatten-
ing process.
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3.4 Global Feature Enhancement Module
To provide the model with stronger global context, we introduces a Global Feature Enhancement

Module to establish relationships between different regions in the image. The Global Feature Enhancement
Module consists of two transformer encoders, which leverage self-attention mechanisms to enhance the
model’s ability to establish the relationships between different regions within the image. The key component
of this module is the multi-head self-attention mechanism. Fig. 3 illustrates the workflow of the global feature
enhancement module and the multi-head self-attention module.

Figure 3: Global feature enhancement module and self attention module

Multi-head self-attention is the result of concatenating the outputs of multiple self-attention mecha-
nisms. Specifically, multi-head self-attention is defined as follows:

MultiHead (Q , K , V) = Concat (head1, . . . , headh)W O (8)

where headi = Attention (QW Q
i , KW K

i , V W V
i ), Q, K, V respectively denote the linear transformation

matrices corresponding to Q, K and V. W O is the linear transformation matrix corresponding to the con-
catenated long vector, which is used to map the concatenated vector back to the model’s dimensional space.

The multi-head self-attention layer, as the first sub-layer of the Transformer encoder, is primarily used
for learning global image feature information. The second sub-layer is a feedforward fully connected layer,
which enhances the model’s expressive power and ability to handle complex features through non-linear
transformations. The feedforward fully connected layer is defined as:

FFN(x) =max(0, xW1 + b1)W2 + b2 (9)

where W1, W2, b1, b2 are the trainable weights and biases. Each sublayer is followed by a normalization
layer and a residual connection, which are used to adjust the distribution of the output, thereby obtaining
enhanced image feature information for each branch.

3.5 Region Selection Module
To obtain class-specific feature representation, establishing the relationship between image regions and

label information is essential. Cross-attention, as a key component of the Transformer decoder, has a strong
capability to establish the relationship between label information and image regions. For this purpose, we
introduce a Region Selection Module, which consists of three simplified transformer decoders (as shown
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in Fig. 4). Its function is to utilize cross attention to establish the relationship between the ROI regions and
the labels, which improved model’s representation ability.

Figure 4: Region selection module. The region selection module consists of three simplified Transformer decoders,
where the learnable label embeddings serve as the query, and the enhanced image features are used as the key and value

The input to the region selection module consists of two parts: learnable label embeddings (Query)
and image features (Key and Value). The image features are derived from the output of the global feature
enhancement module. The computation of cross-attention is essentially the same as that of multi-head self-
attention, with the primary difference being the source of the input. Specifically, Eq. (10) represents the
update process of the query in the region selection module:

Q j =MultiHead (Q j−1 , Ft , Ft) (10)

where Q j denotes the query input, when j = 1, Q0 denotes the original label embedding, Ft represents the
global image feature obtained through the global feature enhancement module.

Similar to the encoder part, after computing the cross attention, the output distribution is adjusted
through a normalization layer and a feed forward neural network, resulting in the final output Zi for each
branch. Zi ∈ RK×d denotes the final output for the ith branch.

It is important to note that a standard transformer decoder typically includes a self-attention mecha-
nism. However, before computing cross-attention, the input features undergo a linear transformation, which
allows the input to adaptively fit the expected output of the model. Therefore, the decoder in this paper does
not include a self-attention module.

3.6 Final Classification and Loss Function
Final Classification: To fuse multi-scale feature information and enable the model to better distinguish

objects of different sizes in the images, the final feature information from the three branches is concatenated:

Z′ = Concat (Z1 , Z2, Z3) (11)
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where Z′ ∈ RK×3d represents the result of concatenating the outputs of each branch along the channel
dimension. d represents the channel dimension of each branch. K denotes the number of classes. Finally, a
linear projection layer followed by a sigmoid function is used to obtain the prediction scores corresponding
to each class.

Loss Function: The traditional binary cross-entropy loss function can be applied to this framework.
To address the issue of positive-negative sample imbalance, the Asymmetric Loss function is adopted. The
Asymmetric Loss function is defined as:

Loss = 1
C

C
∑
c=1

⎧⎪⎪⎨⎪⎪⎩

(1 − pc)α+ log (pc) , yc = 1,
(pc)α− log (1 − pc) , yc = 0,

(12)

where yc represents the true label of the ith sample, pc represents the predicted probability of the ith sample
being in the positive class, α+ and α− are the hyperparameters. The default settings are α+ = 0 and α− = 4.

4 Experiment

4.1 Dataset and Competitors
4.1.1 Dataset

To validate the effectiveness of the proposed model, experiments were conducted on the multi-label
image classification public datasets: MS-COCO and PASCAL-VOC.

MS-COCO is a large-scale dataset that has been widely used in recent years for evaluating multi-label
image classification. This paper uses the COCO 2014 version of the dataset, which contains 82,783 training
images and 40,775 test images, with a total of 80 label categories. On average, each image has 2.9 labels.

PASCAL VOC is a large-scale image dataset. This paper conducts experiments primarily on two
versions: VOC2007 and VOC2012.

(1) The VOC2007 dataset comprises 5011 training images and 4952 test images, covering 20 common
object categories. The average number of labels per image is 1.6.

(2) The VOC2012 dataset includes 11,540 training images and 10,991 test images, covering 20 common
object categories. Each image has an average of 1.4 labels.

4.1.2 Competitors
To examine the competitiveness of our proposed method, we compared it with state-of-the-art methods

(e.g., MSFA (2024) [30], DRGN (2024) [31], C-TMS (2024) [32], ML-AGCN (2024) [33], FL-Tran (2023) [14],
DATran (2023) [15], IDA (2023) [34], DA-GAT (2023) [35], MulCon (2023) [36], etc.) These competitors can
be categorized into three classes:

• Region of Interest based methods: ResNet101 [29], SRN [37], KSSNet [38], Q2L [17], SRDL [39],
IDA [34], HCP [7], RNN-Att [18], RARL [40], VeryDeep [41], Fev+Lv [8], MCAR [42], and C-TMS [32].

• Label Correlation methods: CADM [43], ML-GCN [13], MS-CMA [16], CCD [10], MulCon [36],
SSGRL [44], ADD-GCN [11], C-Trans [45], TDRG [46], DA-GAT [35], CNN-RNN [47], KGGR [48],
P-GCN [49], LDR [50], CPCL [51], FL-Net [52], DSDL [53], and ML-AGCN [33].

• Multi-scale feature fushion: FL-Tran [14], DRGN [31], DATran [15], MSFA [30], and MS-SGA [54].

https://cocodataset.org
http://host.robots.ox.ac.uk/pascal/VOC/
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4.2 Evaluation Metrics
In terms of evaluation metrics, this paper utilizes Average Precision (AP) for each individual class and

Mean Average Precision (mAP) for the evaluation across all classes:

mAP = ∑
K
k=1 APk

K
(13)

where k denotes the current specific class and K represents the total number of classes. In addition, in multi-
label image classification, metrics such as Class Precision (CP), Class Recall (CR), and Class F1 Score (CF1),
as well as Overall Precision (OP), Overall Recall (OR), and Overall F1 Score (OF1) are commonly used as
supplementary evaluation metrics. The definitions of these supplementary metrics are as follows:

CP = 1
K ∑l

Ml
k

Ml
p

(14)

CR = 1
K ∑l

Ml
k

Ml
g

(15)

CF1 = 2 ×CP ×CR
CP +CR

(16)

OP = ∑l Ml
k

∑l Ml
p

(17)

OR = ∑l Ml
k

∑l Ml
g

(18)

OF1 = 2 ×OP ×OR
OP + OR

(19)

4.3 Implement Details
The experiments in this paper were conducted on a platform running Ubuntu 18.04 with an Intel Xeon

Gold 6330 @ 2.0 GHz processor (60 cores), 240 GB of RAM, and six Nvidia GeForce RTX 3090 GPUs.
The network model was built using the Pytorch [55] deep learning framework, and the AdamW [56]

optimizer was used for optimization with an initial learning rate of 1 × 10−4 and a weight decay rate of 1 × 10−2.
Data augmentation techniques including Randaugment [57] and Cutout [58] were applied. The model was
trained for a total of 80 epochs.

Our method employs a multi-branch Transformer architecture with multi-scale feature fusion, resulting
in a model with 69.5 million parameters. This complexity enables rich feature representation but may
challenge deployment on resource-constrained devices. Training requires significant resources; on the
COCO2014 dataset, the model was trained for 80 epochs on 6 × RTX3090 GPUs, completing in 7.5 h (adjust
for your setup). For larger datasets, training time scales with dataset size and model complexity. To mitigate
computational demands, we utilized data parallelism and distributed training for acceleration.

To provide a clearer understanding of the model’s training process and feature extraction workflow,
we present a detailed explanation of the procedure as follows: Using ResNet-101 with a resolution of
448 for COCO2014 (80 labels) as an example, the resulting output features of backbone are denoted as
F1 ∈ 1024 × 28 × 28 and F2 ∈ 2048 × 14 × 14. Subsequently, a 1 × 1 convolution is applied to F1, while F2
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undergoes both a 1 × 1 convolution and a 3 × 3 convolution. This process generates the desired feature maps
at three different scales: x1 ∈ 512 × 28 × 28, x2 ∈ 512 × 14 × 14 and x3 ∈ 512 × 7 × 7. After obtaining feature
maps at three different scales, they are processed through the hierarchical scale attention mechanism.
The input and output feature dimensions remain consistent throughout this process. Then, three class-
specific representations, Zi ∈ 80 × 512 are obtained through an encoder-decoder structure. To integrate the
information from the three feature representations for the final classification stage, the feature maps are
concatenated along the channel dimensions, resulting in a composite feature representation Z′ ∈ 80 × 1532.
Finally, a linear layer is applied to generate the prediction scores corresponding to 80 categories.

4.4 Comparison with State-of-the-Art Methods
To validate the effectiveness of the proposed model, mainstream models in the multi-label image

classification task were selected for comparison. To ensure fairness, the proposed model and the selected
comparison methods used the same backbone, and the image crop resolution sizes were clearly noted.

4.4.1 COCO2014
In the COCO2014 dataset, the proposed model was compared with several mainstream models,

including DRGN (TMM 2024), C-TMS (TMM 2024), IDA (ICLR 2023), FL-Tran (PR 2023), etc. Table 1
reports the experimental results of the proposed model on the COCO2014 dataset at resolutions of 448 and
576. Since there is a trade-off between precision and recall, the F1 score provides a more comprehensive
evaluation. Therefore, this paper focuses on three key metrics: mAP, CF1, and OF1. It is evident that the
proposed model consistently outperforms other comparison methods in terms of mAP, CF1, and OF1.

Table 1: Comparison results on the MS-COCO dataset

Method Resolutions mAP CP CR CF1 OP OR OF1
ResNet101 [29] 224 × 224 78.3 80.2 66.7 72.8 83.9 70.8 76.8

SRN [37] 224 × 224 77.1 81.6 65.4 71.2 82.7 69.9 75.8
KSSNet [38] 448 × 448 83.7 84.6 73.2 77.2 87.8 76.2 81.5
CADM [43] 448 × 448 82.3 82.5 72.2 77.0 84.0 75.6 79.6

ML-GCN [13] 448 × 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3
MS-CMA [16] 448 × 448 83.8 82.9 74.4 78.4 84.4 77.9 81.0

MCAR [42] 448 × 448 83.8 85.0 72.1 78.0 88.0 73.9 80.3
Q2L [17] 448 × 448 84.9 84.8 74.5 79.3 86.6 76.9 81.5
CCD [10] 448 × 448 84.0 87.2 70.9 77.3 88.8 74.6 81.1
SRDL [39] 448 × 448 82.9 85.4 70.8 77.4 87.1 74.8 80.5

FL-Tran [14] 448 × 448 84.0 84.9 73.5 78.8 86.0 76.3 80.9
IDA [34] 448 × 448 84.8 – – 78.7 – – 80.9

MulCon [36] 448 × 448 84.9 84.0 74.8 79.2 85.6 78.0 81.6
DRGN [31] 448 × 448 84.9 86.3 73.8 79.6 87.4 76.6 81.6
DATran [15] 448 × 448 84.9 84.8 74.9 79.6 86.0 77.6 81.6
MSFA [30] 448 × 448 83.0 87.0 70.2 77.7 89.7 72.7 80.3

Ours 448 × 448 85.1 84.8 75.3 79.8 85.8 78.1 81.8

SSGRL [44] 576 × 576 83.8 89.9 68.5 76.8 91.3 70.8 79.7
ADD-GCN [11] 576 × 576 85.2 84.7 75.9 80.1 84.9 79.4 82.0

C-Trans [45] 576 × 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7
TDRG [46] 576 × 576 86.0 87.0 74.7 80.4 87.5 77.9 82.4

DA-GAT [35] 576 × 576 84.8 87.0 74.2 80.1 87.3 77.5 82.1
FL-Tran [14] 576 × 576 85.4 84.5 76.3 80.2 85.7 78.9 82.2
MulCon [36] 576 × 576 86.3 84.7 77.3 80.8 85.9 79.9 82.8

Ours 576 × 576 86.6 86.6 76.2 81.0 87.7 78.7 83.0

Note: Bold numbers indicate the optimal values of the mAP, CF1 and OF1.
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Compared to Region-based methods, such as C-TMS, IDA, ResNet101, SRN, etc., our model incor-
porates a Transformer encoder to perform self-attention computations. This significantly enhances the
ability to model relationships between different regions in an image, effectively addressing the limitations of
traditional convolution- and attention-based models in feature representation and global feature extraction.
Compared to graph-based methods for modeling label dependencies, such as DA-GAT, ADD-GCN, TDRG,
etc., our approach employs cross-attention mechanisms to directly query class-specific representations,
focusing on identifying regions of interest across multiple scales. Without relying on graph networks,
our method effectively captures implicit label relationships while mitigating the issue of learning spurious
label correlations that can arise from insufficient label statistical data. Compared to other multi-scale
feature-based models, such as DATran, DRGN, FL-Tran, MSFA, etc., our approach utilizes a three-branch
Transformer structure to perform precise feature selection and region refinement across three different
scales. Through a hierarchical scale attention mechanism, it facilitates effective information flow between
features of different scales. Our method emphasizes hierarchical multi-scale feature fusion and cross-modal
relationship modeling, which distinguishes it from the aforementioned methods. Furthermore, experimental
results demonstrate that our method outperforms these approaches, showcasing superior robustness and
generalization capabilities.

Notably, by utilizing multi-scale feature fusion, the proposed model demonstrates stronger robustness
and generalization ability compared to the Q2L model, which also leverages the cross attention mechanism
to establish relationships between image regions and labels. The proposed model achieves improvements of
0.2%, 0.5%, and 0.3% on mAP, CF1, and OF1, respectively.

4.4.2 VOC2007
Table 2 presents the experimental results of the proposed model on the VOC2007 dataset at a resolution

of 448, comparing its performance with state-of-the-art methods, including DRGN (TMM 2024) and FLNet
(CC 2023). The table reports the average precision (AP) for each of the 20 categories and the mean average
precision (mAP).

Table 2: Comparison results on the VOC2007 dataset

Class HCP
[7]

CNN-
RNN
[47]

RNN-
Att
[18]

RARL
[40]

SSGRL
[44]

ML-
GCN
[13]

KGGR
[48]

P-GCN
[49]

LDR
[50]

MS-
SGA [54]

CPCL
[51]

FLNet
[52]

DRGN
[31]

ML-
AGCN

[33]

Ours

Aero 98.6 96.7 98.6 98.6 99.5 99.5 99.3 99.6 99.6 99.6 99.6 99.6 99.8 99.9 100.0
Bike 97.1 83.1 97.4 97.1 97.1 98.5 98.6 98.6 98.3 98.3 98.6 98.7 98.6 98.0 99.2
Bird 98.0 94.2 96.3 97.1 97.6 98.6 97.9 98.4 98.0 98.0 98.5 98.9 98.3 98.5 98.9
Boat 95.6 92.8 96.2 95.5 97.8 98.1 98.4 98.7 98.2 97.5 98.8 97.9 98.6 98.0 98.6

Bottle 75.3 61.2 75.2 75.6 82.6 80.8 86.2 81.5 78.2 81.0 81.9 84.6 81.8 81.6 85.1
Bus 94.7 82.1 92.4 92.8 94.8 94.6 97.0 94.8 94.2 93.1 95.1 95.3 95.5 96.8 97.8
Car 95.8 89.1 96.5 96.8 96.7 97.2 98.0 97.6 97.0 97.5 97.8 96.2 97.6 96.6 98.3
Cat 97.3 94.2 97.1 97.3 98.1 98.2 99.2 98.2 97.8 98.5 98.2 96.5 98.0 98.2 99.0

Chair 73.1 64.2 76.5 78.3 78.0 82.3 82.6 83.1 80.8 86.3 83.0 85.6 83.9 85.6 82.2
Cow 90.2 83.6 92.0 92.2 97.0 95.7 98.3 96.0 94.9 88.3 95.5 96.1 94.9 99.4 98.6
Table 80.0 70.0 87.7 87.6 85.6 86.4 87.5 87.1 84.9 89.2 85.5 87.2 87.5 88.2 88.2
Dog 97.3 92.4 96.8 96.9 97.8 98.2 99.0 98.3 97.7 95.5 98.4 97.7 98.4 99.2 98.7

Horse 96.1 91.7 97.5 96.5 98.3 98.4 98.9 98.5 97.5 98.0 98.5 98.6 97.8 99.0 98.9
Motor 94.9 84.2 93.8 93.6 96.4 96.7 97.4 96.3 96.6 96.1 97.0 97.0 97.4 96.5 97.5
Person 96.3 93.7 98.5 98.5 98.1 99.0 99.1 99.1 98.7 98.3 99.0 98.1 98.8 98.8 99.2
Plant 78.3 59.8 81.6 81.6 84.9 84.7 86.9 87.3 85.0 89.0 86.6 86.5 86.6 84.8 88.4
Sheep 94.7 93.2 93.7 93.1 96.5 96.7 98.2 95.5 96.2 96.7 97.0 97.4 96.2 99.5 99.1
Sofa 76.2 75.3 82.8 83.2 79.8 84.3 84.1 85.4 83.2 91.6 84.9 86.5 85.6 88.1 86.3

Train 97.9 99.7 98.6 98.5 98.4 98.9 99.0 98.9 98.5 97.9 99.1 98.8 99.4 98.9 99.6

(Continued)
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Table 2 (continued)

Class HCP
[7]

CNN-
RNN
[47]

RNN-
Att
[18]

RARL
[40]

SSGRL
[44]

ML-
GCN
[13]

KGGR
[48]

P-GCN
[49]

LDR
[50]

MS-
SGA [54]

CPCL
[51]

FLNet
[52]

DRGN
[31]

ML-
AGCN

[33]

Ours

Tv 91.5 78.6 89.3 89.3 92.8 93.7 95.0 93.6 92.6 92.3 94.3 90.8 94.9 94.5 94.0
mAP 90.9 84.0 91.9 92.0 93.4 94.0 95.0 94.3 93.4 94.2 94.4 94.4 94.5 95.0 95.4

Note: Bold numbers indicate the optimal values in each row, while underlined numbers represent the second-
best values.

The proposed model achieves superior average precision in 7 categories and ranks as the second-best in
8 other categories. Notably, for small and challenging objects, such as birds and plants, the proposed model
achieves significant improvements. Besides, our method achieves an mAP increase of 0.9% over DRGN and
1.0% over FLNet. This demonstrates the model’s ability to effectively handle objects of varying scales, where
existing SOTA methods encounter limitations.

Compared to DRGN, which focuses on cross-image semantic learning and intra-image spatial relations,
our approach excels in accurately distinguishing features at different scales. DRGN struggles with small
objects due to its limited emphasis on fine-grained details within images. In contrast, the hierarchical scale
attention mechanism in our model enhances the information flow and sharing between features at different
scales, effectively bridging the gap between global context and local details. This synergy enables precise
recognition of small and intricate objects.

Similarly, FLNet integrates semantic embeddings with visual features using a CNN-GCN framework,
but it heavily relies on the association between labels and image regions without sufficiently addressing
feature-level scale variations. Our model surpasses FLNet by leveraging multi-scale feature fusion and
cross-attention mechanisms to refine category-specific features at multiple scales, thereby achieving better
performance for objects with significant size differences.

These results highlight the strengths of the proposed multi-scale feature fusion framework, particularly
in leveraging hierarchical scale attention to effectively balance local detail preservation and global context
extraction. This allows the model to robustly locate and classify objects of varying sizes, outperforming SOTA
methods in challenging scenarios such as recognizing small or overlapping objects.

4.4.3 VOC2012
In the VOC2012 dataset, the proposed model was compared with several other models, including

VeryDeep [41], Fev+Lv [8], HCP [7], MCAR [42], SSGRL [44], ADD-GCN [11], KGGR [48], DSDL [53],
C-TMS [32].

Table 3 reports the experimental results of our model on the VOC2012 dataset, showing the average
precision (AP) for 20 categories as well as the mean average precision (mAP). Except for SSGRL (576),
ADD-GCN (512), and KGGR (576), all other models used an input resolution of 448. We applied the same
experimental settings as on the VOC2007 dataset. As seen from the results, our model achieved the highest
AP in 11 categories, while 2 of the remaining 9 categories yielded second-best results. Notably, even though
SSGRL, ADD-GCN, and KGGR used higher resolutions, our model still attained the highest mAP.

Table 3: Comparison results on the VOC2012 dataset

Class VeryDeep
[41]

Fev+Lv [8] HCP [7] MCAR [42] SSGRL [44] ADD-GCN [11] KGGR [48] DSDL [53] C-TMS
[32]

Ours

Aero 99.1 98.4 99.1 99.6 99.7 99.5 99.8 99.8 99.4 99.8

(Continued)
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Table 3 (continued)

Class VeryDeep
[41]

Fev+Lv [8] HCP [7] MCAR [42] SSGRL [44] ADD-GCN [11] KGGR [48] DSDL [53] C-TMS
[32]

Ours

Bike 88.7 92.8 92.8 97.1 96.1 97.1 97.3 95.3 96.2 97.7
Bird 95.7 93.4 97.4 98.3 97.7 98.6 98.4 97.6 97.6 98.3
Boat 93.9 90.7 94.4 96.6 96.5 96.8 97.1 95.7 96.5 97.6
Bottle 73.1 74.9 79.9 87.0 86.9 89.4 87.9 83.5 86.4 87.4
Bus 92.1 93.2 93.6 95.5 95.8 97.1 97.3 94.8 95.8 96.8
Car 84.8 90.2 89.8 94.4 95.0 96.5 96.5 93.9 95.2 96.8
Cat 97.7 96.1 98.2 98.8 98.9 99.3 99.3 98.5 98.9 99.0

Chair 79.1 78.2 78.2 87.0 88.3 89.0 89.4 85.7 88.7 90.2
Cow 90.7 89.8 94.9 96.9 97.6 97.7 97.8 94.5 97.5 98.1
Table 83.2 80.6 79.8 85.0 87.4 87.5 88.7 83.8 87.6 89.0
Dog 97.3 95.7 97.8 98.7 99.1 99.2 99.4 98.4 99.2 99.1
Horse 96.2 96.1 97.0 98.3 99.2 99.1 99.4 97.7 99.2 99.0
Motor 94.3 95.3 93.8 97.3 97.3 97.7 97.9 95.9 97.3 97.5
Person 96.9 97.5 96.4 99.0 99.0 99.1 99.2 98.5 99.0 99.2
Plant 63.4 73.1 74.3 83.8 84.8 86.3 86.3 80.6 85.0 87.5
Sheep 93.2 91.2 94.7 96.8 98.3 98.8 98.8 95.7 98.1 98.1
Sofa 74.6 75.4 71.9 83.7 85.8 87.0 86.3 82.3 86.1 89.1
Train 97.3 97.0 96.7 98.3 99.2 99.3 99.7 98.2 99.1 99.5

Tv 87.9 88.2 88.6 93.5 94.1 95.4 95.2 93.2 94.2 95.9
mAP 89.0 89.4 90.5 94.3 94.8 95.5 95.6 93.2 94.8 95.8

Note: Bold numbers indicate the optimal values in each row, while underlined numbers represent the second-
best values.

Since the official test set annotations were not fully available, all results were evaluated on the official
VOC2012 evaluation server. We have shared the link for anonymously viewing the results.

4.5 Ablation Study
In this section, we present a series of ablation experiments conducted on the COCO 2014 dataset

to evaluate the effectiveness of key model components. Specifically, we analyze: (1) the contribution of
individual modules to performance, (2) the impact of different multi-scale feature fusion strategies, (3) the
choice of interpolation methods, (4) the role of self-attention in the decoder, and (5) the effect of varying
encoder and decoder layer numbers. These experiments help validate the design choices and optimize
model performance.

4.5.1 Comparison of Different Module in the Model
This analysis evaluates the contribution of individual modules within the model, aiming to quantify

their respective impact on overall performance and validate their necessity.
Table 4 reports the detailed results of these ablation experiments. It can be observed that each module

in the proposed model contributes to the improvement of the model’s performance.

Table 4: Ablation analysis of the validity of the three modules in our model

Hierarchical scale attention Global feature enhancement module Region selection module mAP
✓ ✓ 84.57

✓ ✓ 84.89
✓ ✓ 84.03
✓ ✓ ✓ 85.14

http://host.robots.ox.ac.uk:8080/anonymous/QHZ6YN.html
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The hierarchical scale attention module integrates features from different scales and establishes con-
nections between them, enabling the model to better handle objects of varying sizes. When the hierarchical
scale attention module is removed, there is a 0.57% drop in the mAP score, demonstrating the module’s
importance in improving the model’s ability to detect objects of different sizes.

The global feature enhancement module improves the model’s ability to extract global image features.
This demonstrates the necessity of further global feature extraction after the image passes through the
convolutional neural network. Without the global feature enhancement module, the mAP score decreases
by 0.25%, underscoring its significance.

The region selection module in this model utilizes the built-in cross-attention mechanism of the decoder
to get the precise feature representation. This enables the model to quickly and adaptively locate the class-
specific ROI regions. Without the region selection module, the mAP score drops by 1.11%.

4.5.2 Analysis of Feature Fusion Methods
In the first phase, this paper considers three modes for feature fusion. To select the optimal fusion

method, a comparative experimental analysis was conducted on the three modes. The results of these three
fusion methods are reported in Table 5.

Table 5: Analysis of the number of encoder and decoder layers

Mode 1 Mode 2 Mode 3
Layer 2 / 3 × 3 /
Layer 3 1 × 1 3 × 3 3 × 3 1 × 1
Layer 4 3 × 3 3 × 3 1 × 1 3 × 3
mAP 84.37 84.76 85.14

It can be observed that the feature fusion method in Mode 3 performs the best, with improvements of
0.77% and 0.38% compared to Mode 1 and Mode 2. Additionally, compared to the traditional method (which
only extracts results from the 1 × 1 convolution in Layer 4), the feature fusion method in Mode 3 not only
leverages 3 × 3 convolutions to obtain smaller feature maps for better handling of large object targets but
also utilizes the output from Layer 3 to capture relatively larger feature maps for better handling of small
object targets.

4.5.3 Analysis of Interpolation Strategies for Feature Processing
Interpolation techniques play a critical role in feature processing tasks such as image resizing and

transformation. In the design of the Hierarchical Scale Attention, as discussed in Section 3.2, interpolation
techniques are employed. The choice of interpolation strategy can significantly impact both the quality
of feature extraction and model performance. Due to its importance, we have conducted experiments on
different interpolation methods suitable for 4D features.

Based on the results presented in Table 6, it can be observed that Bilinear interpolation outperforms
the other methods in terms of mAP, achieving a value of 85.15%. This is slightly higher than the Bicubic
(85.12%), Area (85.11%), and Nearest (85.08%) interpolation methods. Given this marginal but consistent
improvement, it is evident that Bilinear interpolation is the most effective interpolation strategy for this task.

It is worth noting that during the experiments, we found that the Bicubic interpolation method, while
providing competitive performance, incurs a significant computational overhead. Compared to the other
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interpolation methods, Bicubic requires approximately 4–5 times more processing time. This additional com-
putational cost may be a limiting factor in scenarios where efficiency is critical, making Bilinear interpolation
a more balanced choice, as it offers the best performance with relatively lower computational demand.

Table 6: Ablation study on interpolation strategies

Interpolation method mAP
Nearest 85.08
Bilinear 85.15
Bicubic 85.12

Area 85.11

4.5.4 Analysis of the Necessity of Self-Attention in the Decoder
The self-attention layer in the Transformer decoder is often believed to enhance the embedding

representations of labels, and previous works that use the standard decoder typically incorporate this layer.
However, in Section 3.5, we argue that the self-attention layer in the decoder may not be as beneficial as
commonly assumed. To validate this, we conducted experiments on the MS-COCO dataset, and the results
are shown in Table 7. In our experiments, we further analyzed four settings: using self-attention in the first
decoder layer, using self-attention in other layers, and using self-attention in all or none of the decoder layers.
By comparing these settings, we aimed to assess the role of self-attention at different layers and its impact on
model performance. From the table, we observe that removing self-attention layers from the decoder reduces
the parameter count with little to no impact on model performance.

Table 7: Ablation study on the usage of self-attention layers in different decoders. “✓” denotes the use of self-attention
in the corresponding decoder layer, while the absence of “✓” means self-attention is not used. The “Parameters” column
shows the model parameter count for each setting

Decoder Layer 1 Decoder Layer 2 Decoder Layer 3 mAP Parameters
✓ ✓ ✓ 85.08 72.7 M

✓ ✓ 85.01 71.7 M
✓ 85.14 70.6 M

85.15 69.5 M

One of possible reasons is that, applying self-attention to these learnable label embeddings forces
the labels to learn inter-relationships, which may result in spurious label correlations. Another possible
reason is that, before computing cross-attention (recall Fig. 1), the input label embeddings undergo a linear
transformation, which enables the input to adaptively fit the cross-attention module’s expected input, as
mentioned in Section 3.5; in other words, removing self-attention layer in decoders makes less or even no
negative impact.

4.5.5 Analysis of the Number of Encoder and Decoder Layers
To explore the sensitivity of the encoder-decoder layers in the global feature enhancement and region

selection modules, and to identify the optimal model parameters, we conducted experiments with varying
layer numbers in these modules. Due to the substantial computational cost associated with a large number
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of encoder-decoder layers, only configurations with up to 3 layers were considered. Fig. 5 presents the
experimental results for the analysis of encoder and decoder layer counts.

Figure 5: Analysis of the Number of Encoder and Decoder layers. m denotes the number of encoder layers in the global
feature enhancement module and n represents the number of simplified decoder layers in the region selection module

It is clear that the mAP value does not increase proportionally with the number of encoder-decoder
layers. Among the nine different combinations, the highest mAP value, indicating the most optimal
classification performance, was achieved when the number of encoder layers was set to 2 and the number of
decoder layers was set to 3.

5 Conclusion
This paper presents a novel multi-label image classification framework that integrates multi-scale feature

fusion with cross-modal representation learning. By incorporating a three-branch Transformer model with
hierarchical scale attention and a lightweight cross-attention mechanism, the proposed model efficiently
captures class-specific features at different scales and establishes strong correlations between image regions
and textual label information. Extensive experimental results on benchmark datasets such as MS-COCO
and PASCAL VOC demonstrate that the proposed approach achieves competitive performance, surpassing
existing state-of-the-art methods.

Despite its effectiveness, the model introduces certain computational complexities due to the multi-
branch structure and attention mechanisms. While shared weights across branches help reduce parameters,
this design slightly compromises the ability to capture scale-specific features. Future work will address these
limitations by exploring lightweight architectures, such as pruning or knowledge distillation, and enhancing
branch-specific designs to achieve better trade-offs between efficiency and performance.
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