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ABSTRACT: Large amounts of labeled data are usually needed for training deep neural networks in medical image
studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis,
labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is
exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets
are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class
similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC), a
consistency-based method that leverages Canonical Correlation Analysis (CCA) to capture the intrinsic relationships
between samples. Considering that traditional consistency-based models only focus on the consistency of prediction,
we additionally explore the similarity between features by using CCA. We enforce feature relation consistency based
on traditional models, encouraging the model to learn more meaningful information from unlabeled data. Finally,
considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets
(i.e., ISIC 2017 and ISIC 2018), we improve the supervised loss to achieve better classification accuracy. Our study shows
that this model performs better than many semi-supervised methods.
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1 Introduction
Recently, image processing has made remarkable achievements, such as image segmentation [1], image

recognition [2], and especially in medical image classification [3]. Usually, good performance is closely
correlated with the quality of samples. However, clinical physicians find it challenging to collect maker
samples, as annotating medical images requires extensive expertise and work. Many academics have begun
to use unsupervised learning [4], semi-supervised learning [5], and weakly supervised learning [6] rather
than traditional supervised learning since it is easier for researchers to collect unlabeled clinical images.

Semi-supervised learning has been shown to perform better when labeled data is limited. Nowadays,
most semi-supervised medical image analyses are based on consistent regular strategies [7,8], which
regularize the outputs of networks to utilize unlabeled data fully. These methods feed the same images
under different noises into the networks and force prediction results to be as similar as possible. Given some
examples, the Temporal Ensembling (TE) model [7] applies exponential moving average (EMA) predictions
for unlabeled data as consistency targets. Mean-teacher (MT) [8] was introduced based on the TE model,
where teacher network outputs could serve as reliable consistency targets. However, both TE and MT
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primarily focus on the consistency of reliable targets. As a result, numerous features of unlabeled images are
not fully exploited.

As for skin lesion classification, many works [9] have been conducted. Earlier computer-aided diagnosis
(CAD) for skin lesion classification heavily relied on manual characteristics extraction and subsequently
put these features into networks. Obviously, this approach is very inefficient. Therefore, many scholars
are beginning to utilize convolutional neural networks (CNN) to boost the productivity of classification.
Rahmouni et al. [10] developed a novel framework based on self-attention which can overcome the
complexity of the skin dataset. Deep residual networks proposed by Yu et al. [11] could determine whether
the input data is a melanoma sample. Despite these studies having achieved promising results, all of them
ignore the imbalanced problem of the skin dataset.

In this paper, we offer a new algorithm based on a consistency-based strategy, making the most of the
limited labeled samples. We introduce a correlation loss to unsupervised loss by modeling features relation
with Canonical Correlation Analysis (CCA) [12]. Moreover, we propose to improve the supervised loss to
address the class imbalance issue so that the accuracy of medical categorization can be significantly increased.
Lastly, we evaluate our method using ISIC 2017 [13] and ISIC 2018 [14].

The contributions are summarized in three points:
1. We introduce a feature consistency paradigm, fully extracting the information of unlabeled images by

introducing a correlation loss with CCA enforcing feature relation;
2. We address the problem of uneven data distribution as much as possible by improving supervised

loss;
3. We evaluate our model on ISIC 2017 and ISIC 2018, showing that our model could perform better

compared to other state-of-the-art semi-supervised methods. Additionally, we demonstrate that our method
is more outstanding than other models by conducting extensive ablation studies.

2 Related Work

2.1 Consistency Enforcing Strategy
Consistent regular learning could leverage valuable information from massive unlabeled images. TE

model utilizes EMA to update the parameters once in every epoch, and then the purpose of improving
the quality of the consistency target is achieved to a certain extent. However, the TE model introduces
new hyperparameters, making it heavy while updating the predictions. To address the shortcomings of
the TE model, the MT model was proposed. MT model includes two networks: teacher network and
student network. The model updates hyperparameters of the teacher model using EMA from the student
model, enabling the teacher network to generate reliable consistency targets. Based on these models,
numerous researchers have begun to commit to researching how to produce reliable consistency targets.
For example, Xie et al. [15] presented the MK-SSAC model, which demonstrated that leveraging improved
image enhancement techniques can yield better classification results. A new loss called Certainty-driven
Consistency loss was put forward by Liu et al. [16] to improve the quality of the teacher targets, enabling
the student model to gain knowledge dynamically from high-reliability consistency targets. In contrast to
the studies mentioned above, we aim to enhance the performance of traditional consistency regularization
models by paying more attention to the intrinsic relationships between samples.

2.2 Canonical Correlation Analysis
CCA is a statistical method that finds linear combinations of two random variables. In medical analysis,

CCA is generally used in feature fusion and brain imaging genetics. For example, Zhou et al. [17] proposed a
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model called F-CCA, which could reduce unfairness by minimizing the correlation disparity error connected
with protected attributes. Moreover, numerous CCA extension methods are emerging. Andrew et al. [18]
proposed DCCA (Deep Canonical Correlation Analysis), which is designed to be suitable for DNN training
using mini-batches. SCCA (Sparse Canonical Correlation Analysis) has become increasingly popular in
imaging genetics [19] research due to its powerful capabilities in discovering bi-multivariate relationships
and capturing features. For instance, Zhang et al. [20] introduced the MTCDA model to study brain imaging
genetics and identify the specificity of disease. It can be seen that CCA has already been widely applied to
medical analysis. However, SCCA and DCCA both have some drawbacks. DCCA requires massive marker
samples, which are often rare, and there are certain risks of overfitting while using DCCA. SCCA typically
demands more computational resources and training time to maintain the sparsity of the correlation model.
Therefore, we think that we can also try to apply CCA to the Teacher-Student network. Here, we first extract
the student and teacher features just before the last pooling layer, and then use CCA to measure the similarity
between these features. In this way, we can focus on the features that are crucial in classification tasks.

2.3 Supervised Loss
Considering the imbalanced skin datasets, it is not a wise choice to utilize cross-entropy loss [21] as

the supervised loss in our framework. Because cross-entropy loss would lead the model to be more inclined
to learn from the class with more samples, resulting in worse performance in classes with fewer samples.
Multiple balancing methods [22] are frequently considered, where the loss weighting is set as 1/Ni , and Ni
is the category number. A novel loss called Class-Balanced Loss [23] was designed by Cui et al., where ω =
(1 − β) / (1 − βNi) and the parameter β ∈ [0 ∶ 1). These approaches can largely address the issue of rational
loss weighting allocation in cross-entropy loss. However, these methods limited the range of variation in loss
weighting (i.e., from 1 to 1/Ni). Consequently, Yao et al. proposed a new loss called Multi-Weighted New
Loss (MWNL) [9], which extended the scope of loss weighting and adapted the training epoch.

2.4 The Method of Sample Relation
In previous work, most studies focused on enhancing the quality of consistent predictions, ignoring

the intrinsic relationships between features. Taking inspiration from the recent study on graph neural
network [24], we can get more useful information if we exploit the correlation between different samples.
Liu et al. [25] proposed a relation-driven model called SRC-MT, which utilizes a Gram Matrix [26] to look
for similarities between samples. In this framework, a small batch with B samples was given, from which the
feature map of layer l was obtained. The feature graph is then reshaped into Al ∈ RB×HWC, where H and W
denote the dimensions of the feature map, and C represents the number of channels. The similarity between
samples was computed by the following formula:

Gl = (A(xi, θ , η)l ×A(xi, θ , η)l)T (1)

To normalize the Gram matrix, the final relation matrix is defined as:

Rl =
⎛
⎝

Gl
1

∥Gl
1∥

, . . . . . . , Gl
B

∥Gl
B∥
⎞
⎠

(2)

The SRC-MT model encouraged the network to learn more useful information from unlabeled inputs.
However, the Gram Matrix may lose some characteristic information because of its multiplication relation
and the reduction of dimensions. Hence, we offer to explore the similarity between sample features by
utilizing CCA.
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3 Method

3.1 The Backbone of CSRC
Fig. 1 depicts our proposed semi-supervised framework, which reflects the novelty of our paper. Our

semi-supervised framework follows the consistency principle and updates the network using three loss
components: correlation loss Lcorr, balancing loss Ls, and traditional consistency loss Lc. This approach makes
full use of the rich features carried by unlabeled data. Our framework introduces feature consistency based
on traditional consistency regularization methods and addresses the data imbalance issue by improving the
supervised loss. We describe the algorithm of our model with the following steps:

1. We defined the labeled data set as SL = {(xi , yi)}N
i=1 with N labeled samples and the unlabeled data

set as SU = {xi}N+M
i=N+1, where xi is the input skin image, and yi is the human-annotated label. We optimize

the network following Eq. (3). Where Ls indicates supervised loss for addressing imbalanced classification,
Lu denotes unsupervised loss to enforce consistency by adding different perturbations. The target of our
consistency-based framework is to train a classification network f (●) that can effectively leverage the
information from unlabeled data.

min(
i=N
∑
i=1

Ls ( f (xi , yi)) + λLu ({xi}i=N+M
i=N+1 ; f (●))) (3)

2. Our consistency-based model fully explores the extra semantic information from unlabeled data by
introducing a correlation loss to unsupervised loss. We processed the images and fed the same samples into
the teacher-student network under different noise (usually Gaussian noise). Unlike traditional consistency
models, we separately extract the features of the teacher and student networks during the feature extraction
stage and then use CCA to enforce consistency between the features after the final pooling layer. During
training, we encourage the model to explore the feature relation by minimizing the correlation loss Lcorr.

3. Most semi-supervised models use the cross-entropy loss as the supervised loss to update the student
network. However, cross-entropy loss may not be ideal for updating the network when the data distribution
is imbalanced. To address the classification challenges posed by imbalanced data distribution, we improve
the balancing loss Ls , which is computed using true labels from labeled data and the student predictions.

4. Our model would preserve the traditional consistency loss Lc , encouraging the consistency of
teacher and student network predictions. This method emphasizes the consistency of network outputs under
different noise. The consistency loss is defined as Eq. (4). Where η and η′ represent the different noises.

Lc =
i=N+M
∑
i=1

Eη′ ,η ∥ f (xi , θ′, η′) − f (xi , θ , η)∥2
2 (4)

Here, we update the teacher network weights θ′ as EMA of student model θ. The iterative equation is
defined as Eq. (5), and we set the EMA decay rate α as 0.99, as recommended in the original paper.

θ′t = αθ′t−1 + (1 − α) θt (5)
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Figure 1: Overview of our framework

3.2 Consistency of Intrinsic Features
As mentioned, traditional consistency regularization methods primarily focus on improving the con-

sistency targets, while ignoring the relationships between features. Drawing inspiration from a previous
study [24], we can gain more useful semantic information if we pay attention to the correlation between
samples. Therefore, Lcorr is used in our work, and this loss utilizes CCA to get extra useful knowledge from
the unlabeled samples.

In our framework, a small batch with B samples is input, and the activation graph of layer l is denoted
as Fl ∈ RB×H×W×C. The feature map is then reshaped as Al ∈ RB×HWC, where H and W represent the spatial
dimension of the feature graph, and C is the channel number. We standardize the feature matrix Al of the
student model and the teacher model to obtain matrices S and T, i.e., Eq. (6).

⎧⎪⎪⎨⎪⎪⎩

S = Al
s − Al

s

T = Al
t − Al

t
(6)

We utilize CCA to explore the feature relation, and the Lcorr is defined as Eq. (7). During the training
process, we will continuously optimize Lcorr so that the correlation between samples is greatest when it
achieves a minimum. In Eq. (7), Cov(S , T), Cov(S , S), and Cov(T , T) respectively represent the covariance
calculated by teacher activation and student activation, shown in Eq. (8). ui and vi respectively represent the
left and right singular vector of the matrix Cov(S , T)Cov(S , S)−1/2Cov(T , T)−1/2. Finally, we can capture
more semantic knowledge from unlabeled samples by minimizing Eq. (8).

min
ui ,vi
−∑

uT
i Cov(S , T)νi√

Cov(S , S)
√

Cov(T , T)
s.t.uT u = 1 = vTv

(7)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cov(S , T) = 1
n − 1

ST T

Cov(S , S) = 1
n − 1

ST S

Cov(T , T) = 1
n − 1

T T T

(8)

3.3 Supervised Loss of Imbalanced Data
The original paper utilized the cross-entropy loss as the supervised loss. However, it is not a wise choice

to use the cross-entropy loss, because it evenly distributes the loss weighting to each category of samples.
This is a disadvantage for unbalanced datasets, as it would influence the model to gain useful knowledge
from those with fewer samples and reduce the accuracy of model classification.

Recall from recent work [9], we could also rethink the supervised loss of our model from the aspects
of loss-weighted and prediction threshold. Traditional balancing methods usually set the loss weighting
to 1/N. However, we expand the range of loss weighting, enhancing the diversity of weighting strengths.
As Eq. (9) shows, we combine the loss weighting with Focal loss, noticing samples with wrong classification.
This approach helps reduce the sample imbalance between classes and alleviates the classification difficulty
imbalance.

Ls = −(Cy
1

Ny
)

β C
∑
i=1

Lossi (9)

In Eq. (9), Cy is the class weighting. For example, we could set Cy a value greater than 1 while keeping
the other class weighting as 1 to strengthen the training of class y. Ny represents the number of each sample.
To extend the range of loss weighting, we add the hyperparameter β. Clearly, the scope of loss weighting
is extended beyond [1, 1/Ny]. Then we make β change with training epoch E to learn the deep features
dynamically, as shown in Eq. (10). Lossi is the extension of Focal loss [27] defined by Eq. (11). As shown
in Eq. (11), pi is the prediction probability defined as Eq. (12). Notably, pi → 0, lossi →∞, Seriously affecting
the optimization of network parameters. Therefore, we introduce a thread T which can reduce the the
interference of outliers pi.

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if E ≤ E1

( E − E1

E1 − E2
)

2
β if E1 ≤ E ≤ E2

β if E ≥ E2

(10)

Lossi =
⎧⎪⎪⎨⎪⎪⎩

(1 − pi)γ log(pi) if pi > T

(1 − T)γ log(T) if pi ≤ T
(11)

pi = {
p if y = 1
1 − p otherwise

(12)

Finally, we can define the total loss as Eq. (13). The total loss is composed of the supervised loss Ls ,
consistency loss Lc , and correlation loss Lcorr . The role of λ is to balance supervised loss and unsupervised
loss, and λ is updated by λ(t) = 1 ∗ e(−5(1−t/T)2); ω is a hyperparameter that finds a balance between
consistency loss and correlation loss.

L = Ls + λ (Lc + ωLcorr) (13)
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4 Experiments
We conduct experiments on ISIC 2017 and ISIC 2018. ISI C2017 is a skin dataset that has 2750 images,

belonging to 3 categories. In our experiments, we split ISIC 2017 into training (2000), validation (150), and
testing (600). ISIC 2018 is one of the largest and most used skin image datasets. This dataset comprises
samples of 7 common skin diseases, with a total of 10,015 samples. The distribution of these two public
datasets is shown in Table 1. Both of them suffer from the problem of data imbalance, so we could use them
to conduct experiments.

Table 1: The distribution of ISIC 2017 and ISIC 2018

Dataset MEL NV BCC AK BKL DF VASC SK
ISIC 2017 531 1843 0 0 0 0 0 386
ISIC 2018 1113 6705 514 327 1099 115 142 0

4.1 Experimental Setup
During the training phase, a series of parameters have been set following the original paper [25],

including: 1) Implementation of rotation, translation, and horizontal flips in each min batch. The rotation
angle ranges from −10 to 10, pixels pan vertically and horizontally in the range of −2% to 2% of the width of
the image. Additionally, there is a half-chance that the input sample will be randomly inverted. 2) We set the
dropout rate to 0.2. Noteworthy, we only use the dropout layer in the stage of training but turn it off during
the validation and testing stage. 3) We resize all samples to 224 × 224 and normalize them using statistics
from ImageNet [28]. For fairness, we randomly split ISIC 2018 into a training set, validation set, and test set
with a ratio of 7:1:2, following SRC-MT. And we set the batch size to 48, containing 12 labeled data and 36
unlabeled data in each batch.

We improve our framework based on the SRC-MT model [25] and use the densetnet121 as the backbone
following the original model. At the time of training, the student network uses Adam optimizer [29] with
initial learning (1e–4), and it decays at a power of 0.9 in each round. All the experiments are conducted on 1
NVIDIA GeForce GTX 3090 graphics using PyTorch.

4.2 Results and Analysis
To show the advancement of our model, we conduct experiments on extensive existing outstanding

models (i.e., DermaDL [30], Self-training [31], DCGAN [32], MT [8], and SRC-MT [25]) on ISIC 2018.
Specifically, DermaDL [30] is a semi-supervised model designed for skin lesion classification. Table 2
illustrates the different metric scores of diverse classification models with 20% marker skin samples. The
upper bound performance is obtained as a baseline by training a supervised model using 100% labeled
data, whereas the baseline is trained with only 20% labeled data. In Table 2, the specificity metric of self-
training reaches 93.31%, indicating that this method can effectively identify negative samples. The SRC-MT
obtains higher scores in all metrics than MT, indicating the importance of intrinsic features from samples.
Meanwhile, our model achieves very high scores on most metrics than other methods, highlighting that our
model indeed helps to explore the dark information of unlabeled data. In addition, we also choose different
backbone networks such as Densenet161 and Resnet18 to conduct experiments. As shown in Table 2, we both
improve the classification accuracy no matter we use which network as backbone. However, we get better
achievements when we choose DenseNet as the backbone due to the introduction of dense blocks. Fig. 2
shows the AUC scores of each skin lesion of the three models (i.e., MT, SRC-MT, and our model) when using
20% labeled data. No matter what type of models we use, the AUC scores of almost all classes reach 90%, and
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the Vascular lesions even exceed 99%. However, the scores of Melanoma and Benign keratosis are relatively
lower due to the lack of inter-class features. In addition, we can see that our model maintains the best AUC
score in each category over other consistency-based methods, proving the advance of our framework.

Table 2: Comparison with SOTA models on ISIC 2018

Method Labeled AUC Accuracy Sensitivity Specificity F1
Upper bound 100% 95.43 95.10 75.20 94.94 70.13

Baseline 20% 90.15 92.17 65.50 91.83 52.03
Self-training [31] 20% 90.58 92.37 67.63 93.31 54.51

DCGAN [32] 20% 91.28 92.27 67.72 92.56 54.10
DermaDL [30] 20% 86.50 83.00 65.50 73.80 50.25

MT [8] 20% 90.38 91.91 64.98 92.33 52.37
SRC-MT [25] 20% 90.41 91.92 64.99 92.25 52.86

Ours (Resnet18) 20% 90.64 92.18 63.55 90.26 54.26
Ours 20% 92.40 92.48 68.09 91.25 55.55

Ours (Densenet161) 20% 93.60 92.91 68.04 92.72 57.25

Figure 2: AUC of each class on ISIC 2018

To examine the impact of varying amounts of labeled data, we conducted experiments with different
numbers of labeled samples. In Fig. 3, we also visualize the AUC and Accuracy, in which the AUC and
Accuracy performance of our model reaches 91% under most labeled data. From Table 3 and Fig. 3, we can
see that, regardless of the proportion of labeled data used, our model consistently achieves higher scores than
both the MT and SRC-MT models, highlighting the effectiveness of focusing on feature relations. However,
when we use less labeled data (5% labeled data), the results will be slightly worse. This may be because there is
too little labeled data to guarantee the reliability of the consistency target. In addition, in Fig. 4, we visualize
the sensitivity of each under different labeled data. We can find that our model exhibits the most gradual
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changes as the data decreases, indicating the robustness of our model. This shows the good consistency and
generalization of our CSRC algorithm.

Figure 3: The AUC and accuracy of our model with different labeled data

Table 3: Comparison of our method with several percentages of marker samples

Model Labeled AUC Accuracy Sensitivity Specificity F1
Upper bound 100% 95.43 95.10 75.20 94.94 70.13

MT [8] 80% 92.57 92.79 71.02 93.05 61.18
SRC-MT [25] 80% 92.09 92.13 71.61 92.72 57.04

Ours 80% 94.36 93.08 71.64 90.31 63.62
MT [8] 50% 87.38 90.31 70.89 92.23 47.92

SRC-MT [25] 50% 85.82 90.19 70.74 92.74 51.68
Ours 50% 92.00 92.60 71.23 91.76 59.60

MT [8] 30% 87.27 91.16 69.77 92.33 53.86
SRC-MT [25] 30% 90.48 91.77 70.05 92.39 53.89

Ours 30% 93.56 91.45 70.77 89.45 56.89
MT [8] 20% 90.38 91.91 64.98 92.33 52.37

SRC-MT [25] 20% 90.41 91.92 64.99 92.25 52.86
Ours 20% 92.40 92.48 68.09 91.25 55.55

MT [8] 15% 87.86 90.85 60.70 91.51 49.48
SRC-MT [25] 15% 88.18 91.59 60.14 91.34 50.03

Ours 15% 91.15 91.01 66.81 89.83 52.13
MT [8] 10% 83.64 88.67 60.49 90.91 45.84

SRC-MT [25] 10% 90.31 89.30 66.29 90.47 47.74
Ours 10% 90.53 90.06 59.45 87.42 48.74

(Continued)
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Table 3 (continued)

Model Labeled AUC Accuracy Sensitivity Specificity F1
MT [8] 5% 80.23 88.85 55.99 89.77 42.03

SRC-MT [25] 5% 87.61 88.98 59.81 89.71 43.96
Ours 5% 88.23 89.31 50.67 87.46 43.53

Figure 4: The sensitivity of each model with different labeled data

We also compare our model with the other two classic consistency-based methods (i.e., MT and SRC-
MT) on ISIC 2017. Table 4 shows the performance of these models under 20% (400) labeled data. As we can
see, SRC-MT obtains higher AUC, Accuracy, and specificity than the MT model, indicating that it is indeed
helpful to focus on sample relationships. Our model consistently outperforms both MT and SRC-MT across
all metrics, highlighting that our approach successfully captures more robust dark information of unlabeled
data. Notably, our model performs much better on ISIC 2018 than ISIC 2017. The reason is that the number
of ISIC 2017 is less than ISIC 2018, making it difficult for the model to guarantee reliable targets.

Table 4: Comparison with classic consistency-based models on ISIC 2017

Model Labeled AUC Accuracy Sensitivity Specificity F1
MT [8] 20% 63.49 48.89 56.67 37.41 47.01

SRC-MT [25] 20% 64.22 55.93 50.37 58.70 36.09
Ours 20% 68.38 56.42 66.67 51.30 47.61

To show the behavior of the method we proposed, we visualize relation matrices under different labeled
data and three classic methods, just shown in Figs. 5 and 6. In Fig. 5, to see the results clearly, we amplify the
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values by 3 times. The color gradually lightens from left to right, suggesting that the model is stabilizing and
becoming capable of capturing meaningful features even in the presence of disturbances. Additionally, the
relationships between samples are strengthened. From top to bottom, the color lightens further, indicating
that an increased amount of labeled data is more beneficial for training the model in semi-supervised medical
image classification. As the model converges, the absolute distance between the matrices decreases, regardless
of the amount of labeled data used. This indicates that the model is becoming more robust, reinforcing
the semantic relationships between samples even in the presence of noise. As shown in Fig. 6. The absolute
distance of the MT model is relatively higher, reflecting that the sample relationships may be affected by
the noises being added even if the model is robust. The results of the SRC-MT model have improved with
enforcing sample relation consistency compared to the MT model, indicating that the model is getting more
robust and learning semantic relations between samples is meaningful. Notably, the distance matrices turn
lighter by using CCA to capture the relation between samples (i.e., our model), which emphasizes that our
work can gain extra information that is useful for reinforcing consistency under noises.

Figure 5: Visualization of the correlation matrices with different labeled data

Figure 6: (Continued)
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Figure 6: Visualization of the correlation matrices under three models

To better understand the intrinsic relation between samples as training goes on, we visualize the absolute
difference matrices between different correlation matrices. As shown in Fig. 7, we conduct this experiment
under 5%, 10%, and 20% labeled data. When we view Fig. 7 horizontally, the color of heatmaps is becoming
lighter, i.e., the difference between the 1st correlation matrix and the 20th correlation matrix is bigger than
that between the 20th and 50th. This may be because the model is not stable enough in early training, where
perturbations can disrupt the features captured by the model. As a result, the difference in the relation matrix
tends to be larger. However, as training progresses, the model gradually stabilizes and can consistently capture
abundant information from unlabeled data. Like Fig. 7, we also visualize the absolute difference between
different correlation matrices on the above three models, as shown in Fig. 8. Whether we observe Fig. 8
horizontally or vertically, the heatmap color of our model is the lightest, while the heatmap color of MT
is relatively darker. This shows that our model is the most robust among the three models even under the
perturbations, we can still successfully capture stable representations, proving the progress of our model.

Figure 7: (Continued)
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Figure 7: The absolute distance between correlation matrices under different labeled data

Figure 8: The absolute distance between different correlation matrices on three models

We compute the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Maximum Error
(MAXE) between the student feature matrix and the teacher feature matrix. Tables 5 and 6 present the results.
In Table 5, we make experiments under 5%,10%, and 20% labeled data at different epochs. Observing the
experimental data, we can see that our experimental results also change with training progressing and the
percentages of labeled data varying. Among these, when using 20% labeled samples and at the 50th epoch,
the difference between the two matrices is minimal, illustrating that the model is learning stable information
to strengthen the relation between sample features under noises. Additionally, we also find that at the 1st
epoch, regardless of the amount of labeled data used, the difference between the two matrices is significantly
large. This may be due to the introduction of perturbations at the early training stage, which has already



4464 Comput Mater Contin. 2025;82(3)

affected the consistency of model learning. However, at this stage, the model is not yet robust enough to
capture meaningful information effectively.

Table 5: The differences between feature matrices with different labeled data

Labeled Epoch MAE MSE MAXE
1 0.486 0.360 3.381

5% 20 0.460 0.333 3.235
50 0.451 0.317 3.093
1 0.479 0.354 3.230

10% 20 0.452 0.327 3.130
50 0.445 0.312 3.128
1 0.481 0.352 3.104

20% 20 0.457 0.327 3.460
50 0.451 0.302 2.856

Table 6: The differences between model feature matrices under different methods

Method Epoch MAE MAXE
1 0.484 3.483

MT [8] 20 0.437 3.095
50 0.416 3.091
1 0.482 3.267

SRC-MT [25] 20 0.448 3.087
50 0.445 3.243
1 0.481 3.104

Ours 20 0.457 3.460
50 0.451 2.856

We first conduct experiments on our model with 20% labeled data, and to make the conclusions more
convincing, we also compute these evaluate metrics on other models, namely MT and SRC-MT. In our
experiments, we calculate MAE and MAXE between the teacher feature matrix and student feature matrix
at different epochs, the results are shown in Table 6. Both MAE and MAXE values decrease as training
progresses, indicating that the consistency between the student and teacher feature matrices strengthens over
time. This highlights that the consistency regularization model is capable of learning stable features, even in
the presence of noise.

4.3 Different Loss Combinations
The ablation study of different loss combinations is shown in the following Table 7. As shown in this

table, the significance of Ls and Lcorr in addressing the class imbalance problem and improving semi-
supervised medical image classification is clearly demonstrated. The model is equivalent to the MT model
when only using Lc and cross-entropy loss. The second row shows the performance of the SRC-MT model,
demonstrating that enforcing sample relation consistency leads to improved model performance. However,
we have already analyzed that the Gram Matrix used in this model may lose some features, so we introduce
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CCA to explore the intrinsic relationship between samples. In the third row, we only change Lsrc to Lcorr,
while keeping the traditional consistency loss unchanged and still using the cross-entropy loss as supervised
loss. Finally, we replace the cross-entropy loss with a new loss Ls based on the third experiment to address
the issue of category imbalance, which is equivalent to our model, indicating that only when combining all
unsupervised loss and supervised loss, the framework can work better.

Table 7: Different loss combinations on ISIC 2018

Cross-entropy Lc Lsrc Lcorr Ls AUC Accuracy Sensitivity
✓ ✓ 90.38 91.91 64.98
✓ ✓ ✓ 90.41 91.92 64.99
✓ ✓ ✓ 91.48 92.16 66.91

✓ ✓ ✓ 92.40 92.48 68.09

Moreover, to compare the classification accuracy of MT, SRC-MT, and our model intuitively, we extract
the logits layer features of the three models in the same period and visualize them by t-SNE method, as shown
in Fig. 9. We can easily observe that each cluster becomes more clustered from MT to SRC-MT, especially
NV cluster and AK cluster, but NV samples are still incorrectly predicted as MEL or BKL. In our model,
the inter-class distance becomes larger, while the intra-class distance in the cluster space is smaller, and our
model misjudgment probability becomes smaller, proving that our method is effective.

Figure 9: Visualization of model predictions

4.4 The Study of Loss Weighting
We investigate the effect of different ω on the model. The experiment is made under different loss

weighting from 0 to 5, and the results are shown in the following Table 8. Obviously, the overall performance
of our model is significantly improved when ω rises from 0 to 1. However, when ω increases from 1 to 5, the
performance of the network is even worse, indicating that the classification ability does not increase with the
increase of loss weighting, i.e., the loss weighting is not suitable for our framework to be set too large or too
small. Therefore, we do all experiments with the setting ω as 1.
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Table 8: The model performance under different loss weighting

ω AUC Accuracy Sensitivity Specificity
0 92.07 92.21 63.48 90.41

0.01 92.31 92.00 64.97 90.70
0.1 92.43 92.23 65.74 90.83
1 92.40 92.48 68.09 91.25
5 92.19 91.71 63.82 90.14

5 Discussion
We have conducted extensive experiments on the ISIC 2017 and ISIC 2018 datasets, comparing our

approach with other state-of-the-art semi-supervised methods, particularly two classic consistency-based
models (i.e., MT and SRC-MT). From the experimental results, our model has improved AUC, Accuracy,
Sensitivity, and F1 score on the ISIC 2018 dataset, proving that focusing on feature relation indeed improves
the consistency of our model and makes the most of unlabeled data.

Automated medical image classification could highly improve the productivity of medical researchers.
However, obtaining high-quality labeled data is laborious and tedious work for doctors. Therefore, semi-
supervised learning is a good choice for studying medical image classification. In this paper, we introduce a
novel method that enforces the sample relation based on traditional consistency regular methods, exploring
the semantic information of unlabeled data. Recently, we are focusing on how to address the scarcity of
labeled data. In the future, we may make better use of this technology for segmentation or detection tasks. It
is also an interesting work for us to explore how to utilize automatic data transformations and data generation
to create better perturbation and data availability. In addition, we explore the feature relation by CCA, we
could also try other methods to enforce the consistency of features.

6 Conclusions
In this paper, we present an effective method that maximizes the use of unlabeled data and addresses the

issue of dataset imbalance. To prove the effectiveness of the proposed model, we conducted extensive experi-
ments on ISIC 2017 and ISIC 2018 datasets. The results demonstrate strong performance, particularly in terms
of AUC and Accuracy. In the future, we could also try to apply our CSRC model to medical segmentation.
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