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ABSTRACT: Cyclic-system-based optimization (CSBO) is an innovative metaheuristic algorithm (MHA) that draws
inspiration from the workings of the human blood circulatory system. However, CSBO still faces challenges in
solving complex optimization problems, including limited convergence speed and a propensity to get trapped in local
optima. To improve the performance of CSBO further, this paper proposes improved cyclic-system-based optimization
(ICSBO). First, in venous blood circulation, an adaptive parameter that changes with evolution is introduced to improve
the balance between convergence and diversity in this stage and enhance the exploration of search space. Second, the
simplex method strategy is incorporated into the systemic and pulmonary circulations, which improves the update
formulas. A learning strategy aimed at the optimal individual, combined with a straightforward opposition-based
learning approach, is employed to enhance population convergence while preserving diversity. Finally, a novel external
archive utilizing a diversity supplementation mechanism is introduced to enhance population diversity, maximize the
use of superior genes, and lower the risk of the population being trapped in local optima. Testing on the CEC2017
benchmark set shows that compared with the original CSBO and eight other outstanding MHAs, ICSBO demonstrates
remarkable advantages in convergence speed, convergence precision, and stability.

KEYWORDS: Circulatory system-based optimization (CSBO) algorithm; meta-heuristic algorithm; external archives;
adaptive learning; individual renewal strategy

1 Introduction

Optimization problems widely exist in production and life, such as optimizing the transportation path
to reduce logistics and distribution costs and allocating funds to different investment projects in the financial
field to maximize the return under the premise of controllable risk. Traditional optimization methods such
as least squares and most rapid descent, generally for structured problems, have a clearer description of the
problem and conditions, whereas the meta heuristic algorithms (MHAs) for a more universal description
of the problem generally lack structural information. Moreover, MHAs have the characteristics of flexible
structure, high stability, and satisfactory robustness, which make them the most effective methods for solving
optimization problems.

As optimization problems become more complex, traditional MHAs, including genetic algorithms
and differential algorithms, often exhibit limitations in convergence speed and accuracy. To address these
challenges and enhance the solution quality for complex optimization tasks, many novel MHAs have been
developed. In 2022, Ghasemi et al. proposed a new MHA, namely, circulatory-system-based optimization
(CSBO), by modeling the human circulatory system [1]. Extensive experiments have demonstrated that
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CSBO outperforms biogeographic optimization algorithms [2], particle swarm optimization (PSO) algo-
rithms, artificial bee colony algorithms [3], and other MHAs in both convergence speed and accuracy.
Nevertheless, CSBO continues to face challenges, such as reduced convergence speed and susceptibility to

local optima, when addressing high-dimensional, multi-peak complex optimization problems.

To address these challenges, this paper proposes an improved circulatory-system-based optimization
(ICSBO) algorithm, with the following motivations and contributions:

(1) In the venous blood circulation mechanism of CSBO, individuals not only learn from themselves and
other individuals but are also influenced by perturbations from other individuals. To ensure the evolutionary
direction of the entire population, mutual learning should play a guiding role in the evolution of individuals,
and the degree of learning through mutual interaction should be higher than that of perturbation-based
learning. On this basis, a new venous blood circulation mechanism by adjusting the learning degree of
perturbation-based learning is proposed.

(2) Given the advantage of the simplex method in fast convergence, it is incorporated into the updating
mechanism of systemic circulation, which accelerates the convergence speed and accuracy of the population
in the systemic circulation phase.

(3) Random perturbation in the pulmonary circulation can exhibit randomness, so it is prone to
ineffective searches that fail to supplement diversity effectively. Because different search mechanisms can
enhance the algorithm’s ability to handle various optimization problems, and the simplex method offers
fast convergence while opposition-based learning can introduce more population diversity, both search
mechanisms are incorporated into the pulmonary circulation strategy. This approach ensures the population’s
convergence speed while providing greater diversity.

(4) MHAs are generally very susceptible to the situation where the overall diversity of a population is
still good but distinct individuals remain unchanged for many consecutive generations during population
evolution. Although the regeneration approach helps replenish diversity, it completely abandons the previous
evolution of the individual. Individuals that outperform the previous generation in the evolution are stored
in an archive. When an individual falls into local stagnation of updating, a historical individual is randomly
selected from the archive to replace it, and a mechanism to replenish the diversity of population based on
the external archive is proposed.

Experimental results on the CEC2017 test set demonstrate that the proposed ICSBO outperforms eight
representative optimization algorithms, showcasing notable advantages in convergence speed, accuracy,
and stability.

2 Related Work

MHA is a class of computational intelligence-based mechanism for solving complex optimization
problems with optimal or satisfactory solutions, also known as intelligent optimization algorithms. MHA
designs an intelligent iterative search by simulating relevant behaviors, functions, and mechanisms in
biological, physical, chemical, and other systems or domains. MHA is widely used in many practical
engineering fields because it has good global search capability and flexibility, and it does not require the
optimization problem to have a functional form such as differentiable and derivable.

Metaheuristic algorithms are generally classified into four main groups according to their foundational
principles: (1) Evolution-inspired algorithms, such as Genetic Algorithm (GA) [4], Differential Evolution
(DE) [5], and Co-evolutionary Algorithms [6]; (2) Population-based methods, including Ant Colony
Optimization (ACO) [7], Grey Wolf Optimizer (GWO) [8], Butterfly Optimization Algorithm (BOA) [9],
and Great White Shark Algorithm [10]. (3) Algorithms based on physical phenomena, such as Simulated
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Annealing (SA) and Archimedes Optimization Algorithm [11]; (4) Algorithms based on human activities,
such as Teaching-Learning-Based Optimization (TLBO) [12], Knowledge Sharing Algorithm (KSA) [13] and
Information acquisition optimizer (IAO) [14].

However, MHAss still face challenges, such as slow convergence speed and a tendency to get trapped in
local optima, when applied to high-dimensional, multi-peak complex optimization problems. To obtain the
optimal solution of this kind of optimization problem, scholars have studied MHAs from two aspects.

On one hand, improving existing traditional heuristic algorithms to further enhance their optimization
performance has been a focus of research. In 2023, Yao et al. developed an Enhanced Serpent Optimizer
(ESO) [15] by integrating a new dynamic mechanism and an opposition-based learning strategy, aiming
to enhance the Serpent Optimizer for solving practical engineering problems. In the same year, Wang
et al. introduced an Improved Archimedes Optimization Algorithm (IAOA) [16], which employs the
simplex method to adjust individuals with low fitness, enhancing the algorithm’s convergence speed and
accuracy. Hu et al. (2023) introduced the Improved Orca Predation Algorithm (IOPA) [17], which enhances
population diversity and helps the algorithm escape local minima by integrating a dimension-learning
strategy with an opposition-based learning method. In 2024, Ye et al. proposed a multi-strategy enhanced
dung beetle optimization algorithm (MDBO) [18], incorporating Latin hypercube sampling, lens imaging-
based opposition learning, and dimension-wise optimization strategies to address issues such as poor
diversity and unsatisfactory convergence speed. Furthermore, Nadimi-Shahraki et al. proposed the MTV-
SCA (Multiple Trial Vectors Sine Cosine Algorithm) [19], which integrates multiple trial vectors along with
four different search strategies to address the Sine Cosine Algorithm’s propensity for becoming stuck in local
optima and to better balance exploration and exploitation.

On the other hand, new metaheuristic algorithms have been proposed and their performance improved.
Alzoubi et al. introduced the Synergistic Swarm Optimization Algorithm (SSOA) [20], which combines
swarm intelligence and cooperative collaboration to effectively search for optimal solutions. In 2021,
Abualigah et al. introduced the Aquila Optimizer (AO), inspired by the natural hunting behavior of eagles. In
2022, Abdollahzadeh et al. developed the Mountain Gazelle Optimization Algorithm (MGO) [21], drawing
inspiration from the social behavior and hierarchy of wild mountain gazelles. In 2023, Venkata et al. simulated
the hunting behavior of the Tyrannosaurus Rex to propose the Tyrannosaurus Rex Optimization Algorithm
(TROA). In the same year, Mojtaba et al. combined the Circulatory System-Based Optimization (CSBO)
algorithm with the Levy flight mechanism, proposing the Gaussian Bare-Bones Levy Circulatory System
Optimization Algorithm, which enhanced its ability to solve complex OPF (Optimal Power Flow) problems.
In 2024, Yang et al. introduced adaptive inertia weights, golden sine operators, and chaotic strategies into
the CSBO algorithm, creating the Multi-Strategy Enhanced CSBO (MECSBO) [22], which minimized the
risk of the CSBO algorithm becoming trapped in local optima. Additionally, Wang et al. merged the CSBO
algorithm with other optimization methods to develop a hybrid algorithm, which was used to create an
improved prediction model for PM2.5 (Particulate Matter) concentration. In 2024, Ji et al. drew inspiration
from neuroscience and proposed the Neural Population Dynamics Optimization Algorithm (NPDOA) [23].

In addition, numerous scholars have tried to apply MHAs in the following practical engineering
applications. In the field of engineering, cloud heuristic algorithms can be applied to design optimization,
production optimization, and logistic optimization. In the field of biological sciences, MHAs can be applied
to gene analysis, protein recombination, and other problems. In the field of manufacturing, MHAs can be
applied to production planning, quality control, and supply chain management. The common feature of these
practical application problems is that their mathematical nature is optimization problems.



4712 Comput Mater Contin. 2025;82(3)

3 Cyclic System-Based Optimization (CSBO) Algorithm

The human circulatory system delivers oxygen and other nutrients to various tissues through the blood
in the blood vessels, while also removing carbon dioxide and other waste products generated by metabolism,
effectively ensuring the body’s health. Blood flows through the combined action of the pulmonary and
systemic circulation loops. The systemic circulation loop transports oxygen-rich arterial blood throughout
the body via arteries and facilitates the exchange of oxygen, nutrients, and metabolic waste through
capillaries, converting it into venous blood, which is then returned to the right atrium through the veins. The
pulmonary circulation describes the movement of deoxygenated blood from the right ventricle through the
pulmonary arteries to the lungs, where it exchanges carbon dioxide for oxygen, before returning oxygenated
blood to the left ventricle through the pulmonary veins.

Simulating the above circulatory system, Mojtaba Ghasemi et al. proposed a new heuristic algorithm:
CSBO. In the CSBO algorithm, the process includes venous circulation, systemic circulation, and pul-
monary circulation. In this algorithm, the better-performing individuals in the population after venous
circulation undergo systemic circulation, while the poorer-performing individuals undergo pulmonary
circulation. Algorithm 1 displays the pseudocode for the CSBO algorithm, with a summary of the key steps
outlined below:

Algorithm 1: CSBO

Input: popsize: Np; Dimensionality of the Problem: dim; Maximum Number of Iterations: maxit;
Maximum Number of Evaluations: maxFE; Range of the Search Space: U, L

output: Optimal Solution and Its Fitness Value

0l. pop<Initialize the Population

02. Calculate the Fitness of Each Individual

03. While FE < maxFE

04. Update Individuals in pop According to the Venous Blood Circulation in Section 3.1
05. Sort the pop Population by Fitness Values in Ascending Order

06. pop_nl«<The NI Individuals with Better Fitness in pop

07. pop_nr<The Np-NI Individuals with Worse Fitness in pop

08. Update individuals in pop_nl using the body circulation from Section 3.2.

09. Update individuals in pop_nr using the pulmonary circulation from Section 3.3.
10. pop<pop_nl U pop_nr

1. end While
12. Output the Global Best Individual and Its Corresponding Global Optimal Solution

3.1 Venous Circulation

In the venous circulation phase, the CSBO algorithm designs a new individual generation method as
shownin Eq. (1). Itis crucial to highlight that the generated individual will only replace the original if it shows
superior performance; otherwise, the original individual directly participates in the subsequent evolution.

Xpop: = Xpop: + Kit x pix (Xpop, = Xpop) + Kz 2 % pi x (Xpops = Xpop,) @

Here, Xp0p,5 Xpop,» and X, are three individuals randomly chosen from X,p; K, represents
the movement direction between individuals X,,,, and X,,,,, as shown in Eq. (2). The parameter p; is
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randomly generated between [0, 1] in the initial iteration, and its calculation method in subsequent iterations
is shown in Eq. (3).
fit, — fity,

Ku.= 2
T fity — fita] + e @

Here, ¢ is a very small value, typically set to 107%; fit,, and fit, correspond to the fitness of individuals
Xpop,, and X, ,,, respectively.

fiti _fitworst .
i€ pop_nl
pi= fitbest _fitworst pop- (3)

rand i € pop_nr

In this case, rand denotes a randomly generated value within the range [0, 1], while fit, .. and fit,orst
correspond to the highest and lowest fitness values in the current population, respectively.

3.2 Systemic Circulation

In the venous circulation phase, the nl most excellent individuals in the population form an elite
group pop_nl. Each individual in this group undergoes systemic circulation as follows: First, intermediate
individuals X77% , are generated according to Eq. (4). Then, X)°F , -and Xy, ,, undergo crossover opera-
tions dimension by dimension. rand is generated between [0, 1]; and if rand is greater than the crossover
probability cr (cr = 0.9), the gene information from X;jw .. is retained; otherwise, the gene information
from Xy, is retained, resulting in a new individual X7° , . Finally, individuals with superior fitness values

from both the new and previous generations are selected to proceed to the next stage of evolution.

new

pop_nl; = XP0P1 +Ppi X (XP0P2 N XPUPS) (4)

Here, Xpop,» Xpop,» and X, ,, are three individuals randomly chosen from pop; the parameter p; is
calculated according to Eq. (3).

3.3 Pulmonary Circulation

During the venous circulation phase, the nr (nr = np — nl) poorer individuals in the population enter
the pulmonary circulation, generating new individuals based on Eq. (5). If the newly generated individuals
outperform the original ones, they replace them and continue in the subsequent iterations.

randn

X1 = Xpop, +

bop_nr; x randc (1, dim) (5)

In this context, dim refers to the problem’s dimension; randn represents a random value sampled from
a normal distribution within the interval [-0.5, 0.5]; it indicates the current iteration number.

4 Improved CSBO Algorithm

To enhance the convergence rate and precision of the CSBO algorithm, several enhancements were
made, resulting in the development of an improved CSBO algorithm. The flowchart is presented in Fig. 1.



4714 Comput Mater Contin. 2025;82(3)

Start

Initialize parameters

Initialize the
population.

While No
FE<maxFE
Yes

N . tput
Perform the improved outpu
venous circulation as

per section 4.1
| end

Order the population

Systemic and divide the Pulmonary

population circulation

circulation

1
Pulmonary circulation
population NR

Systemic
population NL

Perform the

Perform the

simplex method simplex method

Perform improved pulmonary circulation as

Perform the improved body circulation .
per section 4.3

as described in section 4.2

Figure 1: Flowchart of ICSBO algorithm

4.1 Improved Venous Circulation

As shown in Eq. (1) of Section 3.1, in the venous circulation phase of CSBO, the update of individuals
relies on “self-learning of the individual + mutual learning between the individual and other individuals +
perturbation learning between two random individuals.” Mutual learning and perturbation learning allow
the gene information of the three random individuals to flow into the current individual, which helps
maintain population diversity. However, the step size before mutual learning and perturbation learning is
determined by K, , x p;. According to Eq. (2), when individual X,,,, performs better than X, , Kyn,» =
+1; conversely, when individual X,,,, performs worse than X, , Ky, = —1. Thus, K, ,, only determines
the direction of mutual learning and perturbation learning, whereas p; determines the degree of learning
from mutual learning and perturbation learning.

According to literature [24], learning in the direction of superior individuals enhances the likelihood of
individuals moving toward better positions, which can partially improve the algorithm’s convergence speed.
The parameter K,, , can effectively achieve this purpose. To ensure the overall evolutionary direction of the
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population, mutual learning should play a dominant guiding role in individual evolution. The learning degree
of mutual learning and perturbation learning cannot be exactly the same. Therefore, the direction guidance
parameter K, ,, is retained before mutual learning and perturbation learning, and different learning degrees
are assigned to mutual learning and perturbation learning. A new venous circulation operation is proposed,
as defined in Eq. (6).

Xpop: = Xpops + Ki % pi % (Xpop: = Xpopy) + Ka3 % fi X (Xpops = Xpop. ) (6)

The generation method for f; follows LSHADE (Improving the Search Performance of SHADE (Success-
History based Adaptive Differential Evolution) Using Linear Population Size Reduction), and it is produced
according to Eq. (7). If the generated f; value is not within the boundary [0, H;], it needs to be revised
according to Eq. (8).

fi=randc(uf (h),R) 7)
B randc (uf (h),R) if fi<0
fl_{H1 if fi>H ®)

Here, H; and R have different values at different evolutionary stages. When it <0.4 x max it, H; = 0.9
and R = 0.1; otherwise, H; = 1.2 and R = 1. randc represents the Cauchy distribution, and uf(h) denotes a value
randomly selected from a D-dimensional array u f. In general, setting D = 5 produces satisfactory results, and
this value can be adjusted based on the specific problem at hand. Initially, all elements in uf are set to 0.5.
As iterations proceed, the elements in u f are updated as follows: First, the individuals that are successfully
retained after updating according to Eq. (6) are saved to the set sg, and the corresponding f; values of these
individuals are saved to the set sf. Because each individual has a different f; value, sf can contain up to Np
elements or be an empty set. Then, the weights corresponding to the successfully retained individuals are
calculated using Eq. (9), and the Lemher mean value for all successfully retained individuals is computed
using Eq. (10). Finally, the elements of u f are updated algebraically according to Eq. (11)

dim dim 2
\J > (Ncig_(z NC,-g/dim)) / dim
j=1

j=1
wgfi = —— 2 ©)
dim dim
iesf \ j=1 j=1
Here, NC; represents the i-th individual in the set sg.
Is/]
> wg fixsf}
mean;s = ]:;l— (10)
Z:l wg fi x sf;

mean); if sf#Q

uf (1_f) = { (1)

0.5 otherwise

Here, t_f = (it —1) %5 + 1.

In summary, compared with the original venous circulation operation shown in Eq. (1), the novel venous
circulation operation proposed in this section uses the Cauchy distribution to determine the learning degree
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of perturbation learning. The mathematical formulation of the Cauchy distribution suggests that during the
initial phases of evolution, the learning intensity of perturbation learning varies within the range [0, 0.9],
and smaller scale parameters result in values clustered around 0.5. During the final phases of evolution, the
learning degree of perturbation learning ranges from [0, 1.2], and larger scale parameters make values around
0.5 slightly more probable than other values. According to the generation method of Pi in Section 3.1, for
better individuals, Pi is a normalized fitness value, whereas for poorer individuals, Pi is randomly generated
within [0, 1]. Thus, better individuals are more likely to have Pi values greater than 0.5, whereas poorer
individuals are more likely to have Pi values less than 0.5. Consequently, in the early stages of evolution, better
individuals are more likely to have a learning degree of mutual learning greater than that of perturbation
learning, which speeds up the convergence of better individuals. Conversely, for poorer individuals, the
learning degree of mutual learning is more likely to be less than that of perturbation learning, which
accelerates their shift toward other individuals and thus enhances the evolutionary speed while maintaining
population diversity. During the final phases of evolution, the learning degree of perturbation learning is
further increased compared with mutual learning, which better maintains the diversity of the population.

4.2 Improved Body Circulation Strategy

A thorough analysis of the systemic circulation strategy proposed by CSBO reveals that its convergence
speed is slow, primarily due to the following reasons: First, intermediate individuals are generated through
mutual learning among three randomly selected individuals from the venous blood population. While
this random selection method helps maintain population diversity, the inherent randomness inevitably
slows down the algorithm’s convergence speed. Second, when generating new individuals through crossover
operations between intermediate individuals and original individuals, a high crossover probability results
in the incorporation of only a small amount of gene information from the intermediate individuals into the
original individuals. While this approach effectively maintains the existing diversity within the population,
it considerably slows down the pace of population evolution.

To achieve an effective balance between convergence speed and population diversity, this section
presents an improvement strategy for updating individuals in the elite population. Specifically, when the
condition rand < 0.05&0.2 x maxit < it < 0.6 x maxit is satisfied, a new individual is created using the
simplex method described in Section 4.2.1; otherwise, the approach outlined in Section 4.2.2 is used to
generate a new individual. As with the systemic circulation strategy in CSBO, the top-performing individuals,
whether newly generated or from the previous population, are selected for further evolution.

4.2.1 Simplex Method

The method for generating new individuals using the simplex method is as follows: Calculate the
reflection point X, of individual X,,,, using Eq. (12). If the fitness value at the reflection point f it, is greater
than that of the current best individual Xgp.;, generate a new individual using the expansion operation
shown in Eq. (13). If the fitness value fit, is worse than that of individual X,,,,, generate a new individual
using the contraction operation shown in Eq. (14). If X, is worse than that of the current best individual
Xgbest but better than X,,,,, generate a new individual using the shrinking operation shown in Eq. (15).

X best T Xcibest X best T Xcihest
X, = sgbest* Aeibest (g—

2 2 ~Xoor ) 1)
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Here, b is the reflection coefficient, typically set to I; Xgpest and Xcjp.s; denote the best and second-best
values within the current population, respectively.

Xpow = Xe+Ax (X, - X,) 13)
Xpop, = X + 1% (Xpop, = Xc) (14)
Xpor = Xe = x (Xpop, - Xc) (15)

Here, A is the expansion coefficient, typically set to 2; # is the compression coefficient, generally set to
gbest+X£ibest

0.5; and y is the shrinking coefficient, generally set to 0.5. X, = X >

4.2.2 Novel Update Mechanism

The new individual update mechanism is as follows: First, similar to the generation method of f;
in Section 4.1, use the crossover probability cr as shown in Eq. (16). Then, generate intermediate individuals
according to Eq. (17). Finally, perform crossover operations between intermediate individuals and original
individuals dimension by dimension with the probability cr to generate new individuals.

cr =randc (ucr (h),R) (16)

The setting for R is exactly the same as in Section 3.1, and the update method for ucr(h) is similar to that
in Section 4.1. It is important to note that when it < 0.4 x max it, if the generated cr is less than 0.5, a new
cr is generated according to Eq. (16); if the generated cr is greater than 0.9, cr is directly set to 0.9. When it
>0.4 maxit, if the generated cr is less than 0, a new cr is generated according to Eq. (16); if the generated cr is
greater than 0.8, cr is directly set to 0.9.

(17)

vew {Xpop_nl,- + i % (Xpop . = Xpop,) +2x rand (1, dim) x (Xpop, = Xpop,) if rand < tf
pop_nl; -

pbest + p; x (gbest—Xpopl) else

Here, X;0p,> Xpop, and X,,,, denote three randomly selected individuals from the population X,,,;
pbest represents one individual randomly chosen from the top 3 best-performing individuals; gbest
represents the optimal individual in the current population, ¢ f is as shown in Eq. (18).

it—max it

tf = @ maxit (18)

In conclusion, the novel systemic circulation strategy introduced in this section offers several advan-
tages. First, compared to the update mechanism in Section 3.2, the proposed strategy incorporates an
exploration method based on the simplex approach, applied near the global optimal individual to generate
new candidates. This method significantly improves the algorithm’s convergence speed. Moreover, the
low frequency of simplex method execution helps preserve population diversity without causing excessive
disruption. Additionally, the simplex method is only employed during the mid-evolution phase, ensuring
global search during the early stages and reducing the risk of the algorithm getting trapped in local optima
due to insufficient diversity in later stages. Second, as shown in Eq. (17), besides the simplex method, this
section introduces two other search strategies: one executed when rand < tf, which maintains population
diversity through sufficient interaction among individuals, and another improves convergence speed through
learning from better and optimal individuals. In Eq. (18), tf gradually increases to 1 during the evolution. In
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the early evolution stage, this enhances convergence speed, whereas in the later stage, this better maintains
population diversity. Third, the cr generation method proposed in this section varies with the evolution
stage. In the early evolution stage, cr ranges from [0.5, 0.9], whereas in the later stage, it ranges from [0,
0.8]. Compared with the originally fixed higher cr values in CSBO, the cr values generated in this section are
smaller in the early and later stages of evolution. This approach allows more gene flow into new individuals,
which overall benefits the rapid convergence of the population. Additionally, the larger cr value range in
the early evolution stage, combined with the crossover and search strategies, ensures improved convergence
speed while maintaining a certain level of global search.

4.3 Improvements in the Pulmonary Circulation Stage

In Eq. (5), the update of individuals in the pulmonary circulation involves making slight perturbations
to the original individuals to provide more diversity to the population. However, due to the randomness of
the perturbations, the probability that the new individual is better than the original is extremely low. New
individuals are rarely preserved for subsequent evolution, which leads to ineffective search, which not only
hinders providing more population diversity but also reduces the algorithm’s convergence speed.

This section introduces an enhanced pulmonary circulation strategy to balance the convergence
rate and population diversity: For each individual participating in the pulmonary circulation, if rand <
0.05&0.2 x maxit < it < 0.6 x maxit, a new individual is generated using the simplex method as described
in Section 4.2.1; otherwise, a new individual is generated according to Eq. (19). As with the systemic
circulation strategy in CSBO, the individual with the higher fitness, regardless of whether it is new or old, is
selected to proceed to the next stage of evolution.

(19)

qnew | _ {Xpopa2 + rand x (Xpopb2 — Xpopcz) + f2 (Xpopa2 — Xpop_m,.) if rand > crl
pop_nr; —

Xauili otherwise

Here, X;p,, and X,,,., denote one individual randomly chosen from the top 10 best-performing
and the 10 worst-performing individuals, respectively; X,,,,, is an individual randomly chosen from the
remaining individuals; f, is a number generated using Lévy flight; cr1 is typically set to 1/3 for better results,
but it can be manually adjusted based on the specific problem; X,;;; represents the individual generated
according to Eq. (20).

maxwei; + minwei; — Xpop nr,; if rand > cr2
Xduiliy; (20)

pop_nri; otherwise

Here, maxwei; and minwei i denote the highest and lowest values of each dimension in the current

’

population, respectively; X,
the current individual in dimension j; cr2 is a parameter, typically set to 0.1 for better results, but it can be

= maxwei; + minwei; — X pop_nr;; Tepresents the opposition position of

manually adjusted based on the specific problem.

In summary, the newly proposed pulmonary circulation strategy in this section offers the following
advantages: First, Eq. (20) provides two types of search modes. Mode one facilitates interaction among
individuals from different regions. Mode two introduces opposition positions in certain dimensions. These
two modes explore more of the search space in diverse ways and provide greater diversity to the population.
Second, similar to Section 4.2, the combination of Eq. (20) with the simplex method improves the algorithm’s
convergence speed while maintaining population diversity. Additionally, the three methods for generating
individuals further enhance the algorithm’s success rate in solving different optimization problems.
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4.4 Diversity Supplementation Mechanism Based on External Archives

Similar to other MHAs, CSBO can encounter situations where although the overall population diversity
is acceptable, distinct individuals do not change across multiple generations during the solving of complex
optimization problems. In such cases, these individuals contribute almost nothing to the evolution of the
current population. To improve the optimization results and avoid wasting computational resources, this sec-
tion establishes an external archive for each individual and designs the following diversity supplementation
mechanism based on external archives:

Initially, individuals are directly stored in their respective archives. In subsequent iterations, If the newly
generated individual outperforms the original one and its fitness is different from all individuals in the
external archive, this new individual is added to the external archive. To prevent the archive from becoming
extremely large, every k iteration, checks if the number of individuals exceeds a threshold gd, if it does, gd
individuals are randomly chosen from the archive to create a new one. Generally, gd =5 and K =10 can
yield satisfactory results, and they can also be modified according to the specific optimization problem. If an
individual has not been updated for kt generations, it is replaced with a randomly selected individual from
its corresponding archive to participate in subsequent evolution. Typically, kt = 40 can achieve satisfactory
results, but it can also be set according to specific needs.

4.5 Complexity Analysis

Assume that the population size of the ICSBO algorithm is N; the individuals in the part of body
circulation and the part of pulmonary circulation are nl and nr, respectively, and the problem dimension is
D. The problem dimension of the ICSBO algorithm is D.

The CSBO algorithm consists of the following three strategies: venous blood circulation, body circu-
lation and pulmonary circulation. The maximum time complexity for a single run of the algorithm is as
follows: 6N multiplications and 6N additions for venous circulation, 2xnl multiplications and 4nl additions
for somatic circulation, and 2xnr multiplications and »nr additions for pulmonary circulation. The worst time
complexity of the CSBO algorithm is about 8 x O(N x D) + 8 x O(N).

The ICSBO algorithm consists of the following four main strategies: venous blood circulation, body
circulation, pulmonary circulation, and external file. In the ICSBO algorithm running generation, the worst
time complexity of the above links is as follows: The maximum time complexity for a single run of the
algorithm is as follows: venous blood circulation needs to calculate a total of 6N multiplications and 6N
additions; the body circulation needs to calculate a total of 4nl multiplications and 5nl additions; the lung
circulation needs to calculate a total of 3nr multiplications and 5nr additions, and the external archive needs
to calculate a total of 4N additions in a single iteration. additions. The worst time complexity of ICSBO is
about 10 x O(N x D) + 14 x O(N).

5 Experimental Results and Analysis

The performance of the ICSBO algorithm will be assessed through the following experiments: (1)
analyzing the sensitivity of the ICSBO algorithm’s parameters; (2) evaluating the impact of the four proposed
enhancement strategies; (3) comparing the ICSBO algorithm’s performance with that of the original CSBO
algorithm and eight other representative high-performance evolutionary algorithms in both 30-dimensional
and 100-dimensional spaces; (4) conducting comparative experiments between the ICSBO algorithm and
the top three algorithms from the comparison set on cooperative beam optimization problems to verify the
proposed algorithm’s reliability.
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For the experiments, the CEC2017 test suite which includes 30 benchmark functions, will be used.
Functions F1 to F3 are unimodal, with F2 excluded due to its non-applicability for testing. Functions F4 to
F10 are multimodal with local minima, F11 to F20 are mixed functions created by combining three or more
CEC2017 benchmark functions via rotation or translation, and F20 to F29 are composite functions formed
by combining at least three mixed functions or CEC2017 benchmark functions with rotation and translation.
For further details on the CEC2017 test suite, refer to the provided documentation.

To maintain fairness in the comparison of algorithms, all experiments are conducted on a computer
equipped with Windows 11, an Intel(R) Core(TM) i5-11400H @ 2.70 GHz CPU, and MATLAB R2021a
for programming.

5.1 Parameter Sensitivity Testing

The ICSBO algorithm enhances the CSBO algorithm by introducing the following additional parame-
ters: fl, cr, crl, cr2, K, kt, and gd. Among these, f1 and cr use an adaptive update mechanism with restricted
value ranges, while the remaining parameters are directly assigned values for participation in the algorithm’s
iterative process. An experiment was conducted to examine how these parameters affect the performance
of the ICSBO algorithm: in each trial, only one parameter’s value or range is modified, ensuring that other
parameters of the algorithm remain unchanged. Each algorithm’s population size is set to N = 50, with a test
function dimensionality of D = 30 and a maximum function evaluation count of MaxFEs = 300,000. Other
parameters are set as follows: maxit = 3000, kt = 40, gd = 5, K = 10. To avoid the randomness of single-run
operations, each algorithm is executed 30 times independently on each test function, with the mean and
variance recorded; specific data are shown in Tables 1 to 4. The parameter settings for each trial are as follows:

(1) To assess the impact of the parameter f1 on the algorithm’s performance, two sets of experiments
were conducted. In the first set, when it <0.4 x maxit, the parameter values are chosen from the following
three groups, [0, 0.3] [0.3, 0.6] [0.6, 0.9]; it >0.4 x maxit, the range of values of f1 is dimensioned as [0, 1.2],
and the second group: for it >0.4 x maxit, the range of values is taken as [0, 0.4] [0.4, 0.8] [0.8, 1.2], and the
second group: when it >0.4 x maxit, the range of values is taken as [0, 0.4] [0.4, 0.8] [0.8, 1.2]. The second
group: when it >0.4 x maxit, the range of values is [0, 0.4] [0.4, 0.8] [0.8,1.2]; when it 0.4 x maxit, the range
of values of f11is [0, 0.8]. The rest of the parameters of the two experiments are the same, and the values of
each parameter are as follows: cr is [0.5, 0.9] for it <0.4 x maxit, [0, 0.8] for it >0.4 x maxit, 0.3 for cr1, 0.1 for
cr2,10 for k, 40 for kt, and 5 for gd;

(2) To investigate the impact of the parameter cr on the algorithm’s performance, two sets of experiments
are conducted. When it <0.4 x maxit, the values of cr are selected from the following three ranges: [0.3,
0.5] [0.5, 0.7] [0.7, 0.9], and when it >0.4 x maxit, the range of cr is taken as [0, 0.8]; the second group of
experiments: when it >0.4 x maxit, the range of cr is taken as [0, 0.3] [0.3, 0.6] [0.6, 0.8]; and the second
group of experiments: when it >0.4 x maxit, the range of cr is taken as [0, 0.3] [0.3, 0.6] [0.6, 0.8]. The second
set of experiments: when it >0.4 x maxit, the value range of cr is [0, 0.3] [0.3, 0.6] [0.6, 0.8]; when it <0.4 x
maxit, the value range of f1 is [0.5, 0.9]. The rest of the parameters of the two experiments are the same, and
the values of each parameter are as follows: f1is [0, 0.8] for it <0.4 x maxit, [0, 1.2] for it >0.4 x maxit, 0.3 for
crl, 0.1 for cr2, 10 for k, 40 for kt, and 5 for gd;

(3) To examine the impact of the parameters crl and ¢r2 on the algorithm’s performance, the following
two sets of parameter values were used: 0.1, 0.6, and 0.9; 0.4, 0.7, and 1. Other than that, the other parameters
were set as follows: f1 in the range of [0, 0.8] for it <0.4 x maxit, [0, 1.2] for it >0.4 x maxit, [0.5, 0.9] for it
<0.4 x maxit, and [0, 0.5, 0.9] for it >0.4 x maxit, and [0, 0.5, 0.5] for it >0.4 x maxit, and [0, 0.5, 0.9] for it
>0.4 x maxit. maxit and [0.5, 0.9] for it <0.4 x maxit, [0, 0.8] for it >0.4 x maxit, 10 for K, 40 for kt and 5
for gd;
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(4) In examining the effect of the parameter K, kt, and gd on the performance of the algorithm, the
following three sets of parameters are: 5, 20 and 30; 20, 60 and 80; and 10, 20 and 30. Other than that, the
other parameters were set as follows: f1 in the range of [0, 0.8] for it <0.4 x maxit, [0, 1.2] for it >0.4 x maxit,
cr in the range of [0.5, 0.9] for it <0.4 x maxit, and [0.5, 0.9] for it >0.4 x maxit, and [0.5, 0.9] for it >0.4 x
maxit, and [0.5, 0.9] for it >0.4 x maxit. 0.5, 0.9] for it <0.4 x maxit, [0, 0.8] for it >0.4 x maxit, 0.3 for crl
and 0.1 for cr2.

As presented in Tables 1 to 4, the last row shows how many times the algorithm achieved the global
optimum across all functions. From the Tables, it is evident that, unless specified otherwise, f1 takes the value
range of [0, 0.8] for it <0.4 x maxit, [0.1.2] for it >0.4 x maxit, cr takes the value range of [0.5, 0.9] for it <0.4 x
maxit, [0, 0.8] for it >0.4 x maxit, and cr1 takes the value of 0.5, 0.9, 0.8, and cr1 takes the value of 0.5, 0.9 for
it >0.4 x maxit, and cr1 takes the value of 0.0, 0.8. The algorithm achieves better optimization performance
when crl is taken as 0.3, cr2 is taken as 0.1, K is taken as 10, kt is taken as 40 and gd is taken as 5.

5.2 Effectiveness Experiments of Various Improvement Strategies

According to Section 4, the ICSBO algorithm introduces four improvements to the CSBO algorithm.
To verify the effectiveness of these four improvement strategies, we created four new modified algorithms by
removing each corresponding improvement strategy from ICSBO and replacing it with the corresponding
strategy from the basic CSBO algorithm. These include: (1) removing the improved venous blood circulation
strategy from Section 4.1, (2) removing the improved body circulation strategy from Section 4.2, (3) remov-
ing the improved lung circulation strategy from Section 4.3, and (4) removing the external archive-based
diversity supplementation mechanism from Section 4.4. For simplicity, these four new modified algorithms
are named ICSBOI, ICSBO2, ICSBO3, and ICSBO4, and are compared with the ICSBO algorithm on the
CEC2017 test suite.

To ensure a fair comparison, each algorithm is tested with a population size of N = 50, a dimension of
D = 30, and a maximum of MaxFEs = 300,000 function evaluations. The additional parameters are set as
follows: maxit = 3000 kt = 5, gd = 5, and K = 10. To mitigate the effects of randomness from a single run, each
algorithm is run independently 30 times on each test function.

Table 5 displays the results of the algorithms over 29 test functions, with the “+” symbol representing
the mean and standard deviation of the optimal values from 30 independent runs. To further compare the
performance of the ICSBO algorithm with other improved algorithms, Wilcoxon rank-sum and Friedman
tests were performed at a 5% significance level, as shown in Tables 6 and 7. In Table 6, a p-value greater than
0.05 indicates no significant difference between the ICSBO algorithm and the respective improved algorithm,
marked by the symbol “=”. A p-value less than 0.05, with the improved algorithm showing a better average
optimal value from 30 runs, indicates that the improved algorithm significantly outperforms the ICSBO,
represented by the symbol “+”. Conversely, if the performance is significantly worse, it is indicated by the
symbol “~” In Table 7, a lower rank mean for an algorithm signifies better overall performance.

Table 5: Running results of each improvement strategy in a 30-dimensional CEC2017 test

ICSBO

ICSBO1

ICSBO2

ICSBO3

ICSBO4

F1
F3

4.74E — 16 £ 2.59E - 15
1.89E — 14 £ 2.73E - 14

9.47E — 16 + 3.61E — 15
2.65E — 14 + 2.88E - 14

1.89E — 15 £ 4.91E - 15
4.55E — 14 + 2.31E - 14

1.71E — 14 £ 2.95E - 14
7.20E — 14 + 2.56E — 14

2.23E — 14 + 2.44E - 14
8.34E — 14 + 4.15E - 14

F4 1.65E + 01 + 2.64E + 01 1.62E + 01 + 2.70E + 01 2.04E + 01 £ 2.71E + 01 1.85E + 01 + 2.72E + 01 1.83E + 01 + 2.68E + 01
F5 3.97E + 01 £ 2.21E + 01 5.78E + 01 £ 4.21E + 01 9.84E + 01 + 8.03E + 00 4.97E + 01 + 3.55E + 01 4.87E + 01 + 1.43E + 01
F6 1.46E — 05 + 3.18E - 05 6.16E — 05 + 3.20E - 04 5.14E — 06 + 2.77E - 05 3.44E - 05 + 1.04E - 04 3.89E — 04 + 2.10E - 03
F7 6.51E + 01 £ 1.20E + 01 8.03E + 01 + 4.50E + 01 1.33E + 02 + 7.19E + 00 7.87E + 01 + 3.44E + 01 7.54E + 01 £ 1.33E + 01
F8 4.87E + 01 + 3.40E + 01 6.67E + 01 + 4.53E + 01 9.84E + 01 & 9.55E + 00 6.52E + 01 + 4.24E + 01 4.59E + 01 + L.13E + 01

(Continued)
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Table 5 (continued)

ICSBO

ICSBO1

ICSBO2

ICSBO3

ICSBO4

F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30

5.20E — 01 + 1.01E + 00
2.64E + 03 + 6.06E + 02
6.87E + 00 + 4.34E + 00
7.30E + 03 + 6.65E + 03
2.57E + 01 £ 1.35E + 01
1.74E + 01 + 1.06E + 01
6.75E + 00 + 2.84E + 00
4.45E + 02 + 2.24E + 02
5.02E + 01 + 3.61E + 01
3.25E + 01 + 1.55E + 01
8.40E + 00 + 2.81E + 00
5.80E + 01 + 5.83E + 01
2.86E + 02 + 5.68E + 01
1.00E + 02 + 0.00E + 00
3.83E + 02 + 3.30E + 01
4.39E + 02 + 8.62E + 00
3.87E + 02 + 1.11E + 00
1.11E + 03 + 2.97E + 02
4.98E + 02 + 9.68E + 00
3.31E + 02 + 4.87E + 01
4.69E + 02 + 3.73E + 01
2.16E + 03 + 1.12E + 02

9.36E — 02 + 2.13E - 01
2.86E + 03 + 8.69E + 02
9.14E + 00 = 9.17E + 00
9.67E + 03 + 9.72E + 03
3.18E + 01 + 1.26E + 01
2.32E + 01 + 1.07E + 01
8.16E + 00 + 6.68E + 00
4.71E + 02 + 1.47E + 02
5.74E + 01 + 2.58E + 01
1.04E + 02 + 1.05E + 02
8.80E + 00 + 2.53E + 00
7.43E + 01 + 6.16E + 01
3.07E + 02 £ 4.71E + 01
1.00E + 02 + 4.49E — 01
4.26E + 02 + 5.28E + 01
4.44F + 02 + 2.56E + 01
3.87E + 02 + 2.05E + 00
1.15E + 03 + 2.16E + 02
4.95E + 02 + 1.23E + 01
3.26E + 02 + 4.78E + 01
4.87E + 02 £ 6.19E + 01
2.28E + 03 + 3.77E + 02

2.66E — 01 + 1.01E + 00
4.92E + 03 £+ 2.68E + 02
4.65E + 01 + 5.52E + 01
9.11E + 03 + 5.59E + 03
1.54E + 02 + 6.17E + 02
2.32E + 01 £ 1.39E + 01
1.33E + 01 £ 1.49E + 01
6.82E + 02 + 1.32E + 02
1.22E + 02 + 2.58E + 01
1.02E + 02 + 3.04E + 02
1.28E + 01 + 4.92E + 00
1.47E + 02 + 6.10E + 01
2.95E + 02 £ 1.01E + 01
1.00E + 02 + 0.00E + 00
4.31E + 02 + 2.30E + 01
4.43E + 02 £ 2.56E + 01
3.87E + 02 £ 9.27E - 01
1.28E + 03 + 4.89E + 02
5.04E + 02 + 1.13E + 01
3.39E + 02 + 5.21E + 01
5.54E + 02 + 4.80E + 01
2.29E + 03 + 3.73E + 02

8.02E — 01 + 9.66E — 01
2.67E + 03 £ 6.54E + 02
8.58E + 00 + 7.50E + 00
7.34E + 03 + 6.30E + 03
4.67E + 01 £ 5.02E + 01
1.84E + 01 + 1.21E + 01
1.14E + 01 £+ 8.57E + 00
4.93E + 02 + 2.19E + 02
5.98E + 01 + 3.50E + 01
3.52E + 01 &+ 2.21E + 01
9.88E + 00 + 2.31E + 00
7.69E + 01 + 6.42E + 01
3.06E + 02 + 4.73E + 01
1.00E + 02 + 4.48E - 01
4.08E + 02 + 4.87E + 01
4.45E + 02 + 2.28E + 01
3.89E + 02 £ 1.00E + 01
1.16E + 03 & 2.29E + 02
4.98E + 02 £ 1.05E + 01
3.43E + 02 + 5.38E + 01
4.75E + 02 £ 3.55E + 01
2.20E + 03 £ 1.88E + 02

4.17E — 01 £ 7.26E - 01
2.52E + 03 £ 5.21E + 02
1.18E + 01 + 4.99E + 00
7.84E + 03 + 6.91E + 03
3.70E + 01 + 2.11E + 01
3.00E + 01 + 8.06E + 00
1.24E + 01 £ 5.37E + 00
4.65E + 02 + 1.94E + 02
6.38E + 01 + 3.19E + 01
4.77E + 01 + 3.05E + 01
1.09E + 01 + 4.73E + 00
1.06E + 02 + 7.01E + 01
2.44E + 02 + 9.41E + 00
1.00E + 02 + 6.23E - 01
3.93E + 02 £ 1.29E + 01
4.54E + 02 £ 1.36E + 01
3.89E + 02 £ 7.02E + 00
1.29E + 03 + 3.31E + 02
5.02E + 02 £ 5.97E + 00
3.38E + 02 £ 5.52E + 01
5.00E + 02 + 5.47E + 01
2.22E + 03 £ 1.83E + 02

Table 6: Wilcoxon rank sum test results of each improved algorithm and ICSBO algorithm

p-value (vs. ICSBO)

ICSBO1 ICSBO2 ICSBO3 ICSBO4
F1 0.570 (=) 0.169 (=) 0.000 (-) 0.000 (-)
F3 0.300 (=) 0.000 (-) 0.000 (-) 0.000 (-)
F4 0.205 (=) 0.613 (-) 0.832 (=) 0.512 (=)
F5 0.249 (=) 0.000 (-) 0.446 (=) 0.003 (-)
F6 0.158 (=) 0.000 (+) 0.424 (=) 0.283 (=)
F7 0.982 (=) 0.000 (-) 0.181 (=) 0.003 (-)
F8 0.261 (=) 0.000 (-) 0.068 (=) 0.075 (=)
F9 0.005 (-) 0.016 (+) 0.042 (-) 0.586 (=)
F10 0.297 (=) 0.000 (-) 0.877 (=) 0.717 (=)
Fll 0.115 (=) 0.000 (-) 0.255 (=) 0.000 (-)
FI12 0.540 (=) 0.109 (=) 0.853 (=) 0.947 (=)
F13 0.018 (-) 0.008 (-) 0.002 (-) 0.022 (=)
Fl4 0.085 (=) 0.096 (=) 0.819 (=) 0.000 (-)
F15 0.739 (=) 0.050 (-) 0.019 (-) 0.000 (-)
F16 0.935 (=) 0.000 (-) 0.579 (=) 0.853 (=)
F17 0.042 (-) 0.000 (-) 0.052 (=) 0.007 (-)
FI18 0.000 (-) 0.695 (=) 0.684 (=) 0.072 (=)
F19 0.652 (=) 0.001 (-) 0.027 (-) 0.018 (-)
F20 0.212 (=) 0.000 (-) 0.420 (=) 0.001 (-)
F21 0.130 (=) 0.464 (=) 0.068 (=) 0.158 (=)
F22 0.334 (=) NaN(=) 0.334 (=) 0.161 (=)
F23 0.016 (-) 0.000 (-) 0.056 (=) 0.000 (-)
F24 0.842 (=) 0.304 (=) 0.112 (=) 0.000 (-)

(Continued)
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Table 6 (continued)

p-value (vs. ICSBO)

ICSBO1 ICSBO2 ICSBO3 ICSBO4
F25 0.090 (=) 0.773 (=) 0.363 (=) 0.070 (=)
F26 0.559 (=) 0.007 (-) 0.824 (=) 0.004 (-)
F27 0.284 (=) 0.068 (=) 0.620 (=) 0.258 (=)
F28 0.841 (=) 0.503 (=) 0.284 (=) 0.505 (=)
F29 0.133 (=) 0.000 (-) 0.304 (=) 0.018 (-)
F30 0.663 (=) 0.149 (=) 0.610 (=) 0.404 (=)

Table 7: Friedman test results of each improved algorithm

ICSBO ICSBO1 ICSBO2 ICSBO3 ICSBO4

Avg.rank 136 2.93 4.05 3.21 3.45
sort 1 2 5 3 4

Table 5 shows that, compared to the ICSBO algorithm, the performance of the four improved algorithms
is worse than that of ICSBO in 25, 26, 26, and 25 test functions, respectively. According to the Wilcoxon
rank-sum test results in Table 6, ICSBO1 performs worse than ICSBO in 5 test functions, marked by a “ -7,
while in the remaining 24 functions, the performance is comparable, indicated by “=". ICSBO2 outperforms
ICSBO in 2 test functions, has similar performance in 11, and underperforms in 16. ICSBO3 shows similar
performance to ICSBO in 23 test functions and worse performance in 6. ICSBO4 performs similarly to
ICSBO in 14 functions and worse in 15. Table 7 shows that excluding any of the improvement strategies from
ICSBO results in a decline in the rankings of the modified algorithms, indicating that the four proposed

strategies have a significant impact on the overall performance of ICSBO.

In conclusion, the four improvement strategies introduced in this paper show varying degrees of effec-
tiveness. The strategies outlined in Sections 4.2 and 4.4 have a more significant impact on the performance
of ICSBO, while the performance improvements from the other two strategies are similar to that of the
original ICSBO.

5.3 Comparison of ICSBO Algorithm Performance with Other Algorithms

To evaluate whether the ICSBO algorithm outperforms others in convergence accuracy and speed, this
section compares its performance with eight representative evolutionary algorithms using the CEC2017 test
suite. These algorithms include the Enhanced Serpent Optimizer (ESO), which introduces a new dynamic
mechanism and an opposition-based learning strategy; the Improved Orca Predation Algorithm (IOPA);
the Improved Archimedes Algorithm (IAOA); the Multi-Strategy Enhanced CSBO (MECSBO) algorithm;
the Strategy-Enhanced MDBO algorithm; the Multi-Trial Vector Sine Cosine Algorithm (MTV-SCA); the
newly proposed Synergistic Swarm Optimization Algorithm (SSOA); and the Information Acquisition
Optimization Algorithm. To ensure fairness in comparison, all algorithms will use a population size of N = 50
and a maximum function evaluation count of MaxFEs = 300,000. Table 8 presents the parameter settings for
each algorithm, with the values for the comparison algorithms matching those used in the original studies.
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Table 8: Initialization settings for each algorithm parameter

Algorithm Initial parameters
ICSBO Popnumber = 50, dim = 30, maxFEs = 300,000, maxit = 3000, D = 5, limit = [-100,
100]
ESO Threshold = 0.25, Thresold2 = 0.6, T = 3000, vec_flag = [1, —1]
TAOA C2=6,C3=2,C4=05
MECSBO Popnumber = 50, dim = 30, maxFEs = 300,000, maxit = 3000, D = 5, limit = [-100,
100]
IOPA pl=q=0.9,p2=0.005F =2
SSOA maxFE = 300,000, w=0.7,c1=2,c2=2,k=0.5
MDBO yz =1e — 5, RDBN_np = 0.2*np, YDBN_np = 0.2*np, DDBN_np = round(0.25*np),
TDBN_np = np-RDBN_np-YDBN_np-DDBN_np
IAO Popnumber = 50, dim = 30, maxFEs = 300,000, maxit = 3000;D = 5, limit = [-100,
100]
MTV-SCA lambda = 0.25, MaxlIter = 3100, MaxFES = 300,000

5.3.1 Comparison of Convergence Accuracy between the ICSBO Algorithm and Other Algorithms

To assess the convergence accuracy of the ICSBO algorithm relative to other algorithms, experiments
were conducted using the CEC2017 test suite with D = 30. Table 9 displays the average values and standard
deviations for each algorithm, based on 30 independent runs in 30 dimensions of the CEC2017 dataset, with
the best optimization results highlighted in bold. The table also presents the outcomes of the Wilcoxon rank-
sum test, comparing the ICSBO algorithm with the other algorithms. For a more thorough evaluation of the
overall performance, Table 10 provides the results from the Friedman test.

Table 9 shows that in 30-dimensional optimization problem, ICSBO achieves global optimality in 18
test functions, including F1, F3, F7, F10, F11, F13, F14, F15, F17, F18, F19, F20, F22, F23, F24, F27, F29, F30;
CSBO attains global optimality in 2 functions, including F6, F22; MECSBO obtains global optimum in 6
functions including F4, F9, F22, F25, F27, F28; IAOA achieves global optimum in 6 functions, including
F5, F8, F13, F16, F18, F21; IOPA attains global optimum in F12, and MDBO achieves global optimum in
F25. The optimization results in Table 10 show that compared with ICSBO, CSBO performs similarly in
7 functions, worse in 21 functions, and better in 1 function; MECSBO performs similarly in 7 functions,
worse in 21 functions, and better in 1 function; JAOA has only 2 functions, and the 4 remaining functions
have the same performance. Performance is equal, the 4 remaining functions have better performance,
and 23 functions have worse performance. MTV-SCA has worse performance in 26 functions, a slightly
different performance in 2 functions, and better performance in 1 function. IOPA has equal performance
in 3 functions and worse performance in the 26 remaining functions. MDBO has equal performance in 5
functions and worse performance on 24 functions compared with ICSBO. ESO and IAO have 28 functions
with worse performance and only 1 function with flat performance. SSOA performs worse than ICSBO in
29 functions. Table 10 illustrates that, for the 30-dimensional test functions, the ranking order is ICSBO >
CSBO > MECSBO > MDBO > MTV-SCA > IAOA > IOPA > IAO > ESO > SSOA. In conclusion, the ICSBO
algorithm demonstrated a significant enhancement in convergence accuracy compared to other algorithms
on the 30-dimensional CEC2017 test suite.
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Table 10: Friedman test of each algorithm

ICSBO CSBO IAOA MECSBO IOPA ESO SSAO MDBO MTVSCA IAO

Avg.rank 1.79 3.16 5.66 3.98 569 8.7 10 4.31 4.59 7.69
sort 1 2 6 3 7 9 10 4 5 8

Table 11 presents the mean and standard deviation of the algorithms from 30 independent experiments
conducted on the 100-dimensional CEC2017 dataset, along with the results of the Wilcoxon rank-sum test.
The function that achieves the best optimization result for each case is highlighted in bold.

Table 11 shows that ICSBO can take the global optimum in 17 functions such as F1, F5, F7, F9, Fl11, F12,
F14 F16, F17, F21, F23, F24, F26, F28, F29, F30, CSBO can take the global optimum in 3 functions such as F3,
F4, F18, MECSBO can take the global optimum in F6, F13, F15, F18, F26, MTVSCA can take the function
optimum in F20, F22, JAOA can take the global optimum in F25, and IOPA can take the global optimum
in F10. Compared with ICSBO, IAOA performs better in 2 functions, worse in 26 functions, and equally
in 1 function. MECSBO outperforms ICSBO in 3 functions, worse in 21 functions, and performs equally in
five functions. IOPA outperforms ICSBO in 2 functions, worse in 20 functions, and performs equally in 7
functions. ESO and SSOA are worse than ICSBO. IAO is worse than ICSBO in 28 functions and performs
equally in only 1 function. MDBO outperforms ICSBO on 3 functions, worse in 19 functions, and performs
equally on 5 functions. The MDBO algorithm outperforms the ICSBO algorithm in 3 functions, worse in 19
functions, and is equal in 7 functions. MTVSCA outperforms ICSBO in 5 functions, worse in 22 functions,
and performs equally in 2 functions.

Tables 9 and 11 show that as the dimensionality increases, the algorithm’s performance changes, with
the impact on single-peak functions being particularly pronounced. The ICSBO algorithm proposed in
this paper performs well in 100 dimensions, achieving the global optimum for nearly 17 functions. When
compared to the results from the 30-dimensional tests on multi-peak, composite, and combined functions,
ICSBO’s performance remains stable. This consistency further demonstrates that ICSBO maintains good
convergence accuracy and faster convergence speed.
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5.3.2 Comparison of Convergence Speed between the ICSBO Algorithm and Other Algorithms

Fig. 2 provides a visual comparison of the convergence speeds for each algorithm, displaying the
convergence curves across the 29 test functions in the 30-dimensional CEC2017 test suite. The x-axis
represents the number of evaluations, while the y-axis displays the logarithmic values of the fitness scores.
(The subscripts of each picture in Fig. 2 indicate the tested function, and because the F2 function is not tested,
it is not shown).

Fig. 2 reveals that in unimodal functions (F1 and F3), ICSBO achieves the optimal value and the fastest
convergence speed. Specifically, in F1, ICSBO substantially accelerates during the middle stages of evolution
compared with the other algorithms and stabilizes in the later stages until reaching the optimal value. In
F3, ICSBO exhibits a clear advantage during the early and middle stages of evolution, and is second only
to JAOA. In multimodal functions (F4-F10), as shown in Fig. 2, ICSBO exhibits a noticeable advantage in
convergence speed in F6 and F9. In F4, the convergence speed of ICSBO is comparable with that of other
algorithms in the early stages, but its performance is inferior to that of IOPA, MDBO, CSBO, and MECSBO
in the later stages. In F5 and F8, ICSBO accelerates during the middle stages, with smooth convergence in
the early and later stages. In F5, the performance of ICSBO is close to that of MDBO but inferior to that
of TAOA. In F8, the performance of ICSBO is similar to that of MDBO and MECSBO but behind that of
MECSBO. In F7, ICSBO speeds up during the middle stages and stabilizes later on; it performs similarly
to JOPA and MDBO and outperforms other algorithms. In F10, the performance of ICSBO is comparable
with that of other algorithms in the early and middle stages but accelerates in the later stages, although its
overall performance is still inferior to that of MDBO. In hybrid functions (F11-F20), as shown in Fig. 2,
ICSBO achieves the global optimum and demonstrates satisfactory convergence speed in functions F11, F12,
F14-F17, and F19. In F13, F18, the convergence speed of ICSBO is similar to that of MECSBO and CSBO.
In F20, ICSBO accelerates its convergence speed in the early and middle stages, and levels off its speed in
the later stages; it performs similarly to MTVSCA but is overall slightly inferior to MTVSCA. In composite
functions (F21-F30), ICSBO achieves the global optimum in functions F24, F28, and F29. In functions F22,
F23, F25, F27, and F30, the convergence speed and accuracy of ICSBO are comparable with those of CSBO,
MECSBO, IAOA, and MDBO. However, in F21, ICSBO performs poorly; only outperforms SSOA, ESO, and
IAO; and performs worse than the five other algorithms. In F26, ICSBO performs worse than MDBO but
better than the other algorithms. In summary, compared with the eight other algorithms, ICSBO shows a
certain advantage in convergence speed.



4736

Comput Mater Contin. 2025;82(3)

F1
30 F3 F4 F5
s 10 65
20 9 6
8
10 55
H _ 57 .
2, H 8 g
3 H ER ]
g 3 3 3
2 E 2 Sas —
g -10 2 g5 [ L 2\
g H £ NS— £
-20 4
. 35
30
2 3
-40 E 1 25
0 0204 0608 1.0 12 14 16 1.8 20 22 24 26 28 30 0 02 04 06 08 10 1.2 14 16 18 20 22 24 26 28 30 0 02 04 0608 10 12 14 16 1.8 20 22 24 26 28 30 0 02 04 06 08 10 12 14 16 1.8 20 22 24 26 28 30
FEs(x10°) FEs(x10%) FEs(x10%) FEs(x10%)
6 F7 8 o
5 7 85 15
) 6 10
65
AN
s 55
- 5 6 5 50
g g ES g
g0 3 R R
Ed Sss Ed s
e s
T s [ £ s
20 4
20
25 4 35
25
30 4 3 30
0 02 0.4 0608 10 12 14 16 16 20 22 24 26 28 30 0 02 04 05 08 10 12 14 16 18 20 22 24 26 28 30 0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30
FEs(x10%) FEs(x10%) FEs(x10°) FEs(x10%)
F10 F13
F12
15 Fit 24 25
9 2
2
88 2
i 510 1 3
§ss 3 E g
g H T g
Se4 s 5 s
2 2 21 ]
ez H N : g
g 25 E1 £\
i
10 5
78 8
6 0 6 0
0 02 0.4 06 08 10 12 14 1.6 18 20 22 24 26 28 30 0 02 04 06 0.8 10 12 14 16 18 20 22 24 26 28 30 0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 0 02 0.4 0608 10 12 14 16 18 20 22 24 26 28 30
FEs(x10%) FEs(x10%) FEs(x10°%) FEs(x10%)
F17
F15 F16 8
Fa 2 9
18
75
W 85
20 7
s
14 565
_ = El g
Br s s g, }
E 3 3 s
S0 H 27 255
A é 8 £
8 210 < F:
£ g ze . ————
ge & g°° Y 5
s 6 45
5
N E 55 4
2 ° s 350 02 04 06 08 10 12 14 16 1.8 20 22 24 26 28 3.0
0 02 04 06 08 10 12 1.4 16 16 20 22 24 25 28 30 0 02 04 0608 10 12 14 16 18 20 22 24 26 28 30 0 0204 0608 10 12 14 16 18 20 22 24 26 28 30 .
FES(x10%) FEs(x10%) FEs(x10%) FEs(x10°)
F21
F20
F18 F19 75 68
2 2
18 20 ’ 6.4
s
16 65
1 . . \ 562
" 3 i kS
g M H E
12 g 2 ]
H 3 ] s 6
E S e %
210 [ $ g
2 210 E 5 £
£ £ &
E, £ & 58
s 45
3 6 56
. N
4 4 A

2
0 0204 0608 10 12 14 16 18 20 22 2.4 26 28 30
FEs(x10°)

(F18)

2
0 02040608 10 12 1.4 16 18 20 22 24 26 28 30

FEs(x10°)

(F19)

3s
0 02 04 05 08 10 12 14 15 18 20 22 24 26 28 30
FEs(x10°)

(F20)

Figure 2: (Continued)

.
0 02 04 0608 1.0 12 14 16 18 20 22 24 26 28 30
FEs(x10%)

(F21)



Comput Mater Contin. 2025;82(3)

08 10 12 14 16 18 20 22 24 26 28 30
FEs(x10°)

(F22)

F26

45 —
0 02 04 06

F23

Fitness Value(log)

——

\
o e

Fitness Value(log)

a4 —

\
62 |

58

FEs(x10%)

(F23)

F27

0 02 04 0608 10 12 1.4 16 18 20 22 2.4 26 28 30
FEs(x10%)

(F26)

(log)

Fitness Valu

oL Ll N |
0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30
FEs(x10%)

(F27)

70 02 04 0608 10 12 14 16 18 20 22 24 26 28 30

6l - . . . ]
0 0204 0608 10 12 1.4 16 18 20 22 24 26 28 30

FES(x10°)

(F24)

F28

Fitness Value(log)

X _\

Py a—— L L . )
0 02 04 06 08 10 12 14 16 18 20 22 2.4 26 28 3.0

FEs(x10°%)

(F28)

4737

P S N I |
0 02 04 06 08 10 12 1.4 16 18 20 22 24 26 28 30
FEs(x10%)

(F25)

6L - - - N
0 02 04 06 08 10 12 14 15 18 20 22 24 26 28 30
FEs(x10%)

(F29)

F30

ICSBO
25 1 MECSBO
1 IAOA
ESO
IOPA
CsBO
1AO
SSOA
MTVSCA
MDBO

3
0 0204 06 08 10 12 1.4 16 18 20 22 24 26 28 30
FEs(x10°)

(F30)

(F31)

Figure 2: Convergence curves of 29 functions on CEC2017 test set between ICSBO algorithm and other 8 comparison
algorithms (The different algorithms represented by the different color curves are shown in the final figure F31)

5.4 Comparison of Engineering Application Effects

To further evaluate the effectiveness of ICSBO in engineering applications, this section investigates its
performance on the cooperative beamforming optimization problem. This problem, commonly encountered
in antenna arrays, involves optimizing the amplitude (¢ € [0,1]) and phase (« € [-7, 7]) of the transmit
signal weights at each cooperative node. These parameters are considered as decision variables during the
optimization process, with the goal of minimizing the PSL (peak sidelobe level), as specified in Eq. (21).

max |AF (0sp,w)|
AF (9, w)

PSL = 20log,, (21)

In this context, AF (0, w) represents the array factor, as given in Eq. (22). The value ¢ corresponds to the
direction of the main beam, while 05; indicates the direction of the side lobes in the array factor, excluding
the main beam peaks, within the range of 6 € [-7, ¢) U (¢, 7]. The denominator, AF (¢, w), refers to the
power of the main beam, while the numerator, max |AF (05, w)|, represents the maximum power of the side
lobes.
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k .
AF (9) W) — ZwkeJ(ZH/A)Tk[COS(G—W)] (22)
k=1

In this study, the ICSBO algorithm is compared with MECSBO, MDBO, and MTVSCA algorithms on
the cooperative beam optimization problem to assess its effec-tiveness. To ensure a fair comparison, the
problem size (N) in this experiment is set to 20, with a maximum of 50 function evaluations (maxit = 50), 4
nodes (k = 4), a pole radius of 1 (r = 1), and a dimension of 2 k (dim = 2 k). Additional parameter settings for
each algorithm are provided in Table 5. Fig. 3 presents the beam pattern of the ICSBO algorithm alongside
the comparison algorithms in the Cartesian coordinate system, with the corresponding PSL values for each
algorithm annotated within the figure.

0 T T T T

ICSBO
2 MDBO |7
MECSBO
-4 MTVSCA |-

-6.5643dB

_

Power[dB]
>
T

-15.1850dB

-150 -100 -50 0
Angle

Figure 3: Beamplot of ICSBO vs. other algorithms in the Cartesian coordinate system

As shown in Fig. 3, the ICSBO algorithm achieves an optimal PSL value of —15.1850 dB, while the
MECSBO, MDBO, and MTVSCA algorithms yield values of —12.3975, —6.5643, and —13.0285 dB, respec-
tively. Among these, ICSBO delivers the lowest PSL, demonstrating the best performance in cooperative
beam optimization. Overall, the ICSBO algorithm exhibits outstanding effectiveness in engineering applica-
tions.

6 Conclusion

This paper proposes ICSBO, which further enhances the convergence speed and local optima escape
capability of CSBO. Initially, corresponding improvement strategies are introduced for the three components
of CSBO: venous blood circulation, body circulation, and pulmonary circulation. These improvements
enrich population diversity and reduce the likelihood of becoming trapped in local optima during evolution.
By dividing the evolutionary process and improving the parameters and updating methods, the convergence
speed of the population is accelerated in the early stages of evolution. Additionally, the introduction
of the simplex method in the body and pulmonary circulation further speeds up convergence. Finally,
to increase population diversity and reduce gene loss, an archive updating mechanism is designed to
enhance the utilization probability of high-quality genes. The simulation results across multiple experiments
on the CEC2017 benchmark set indicate that the proposed improvements significantly boost the overall
performance of ICSBO, demonstrating significant improvements in both convergence rate and solution
precision compared to other algorithms.
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While the ICSBO algorithm presented in this paper offers significant benefits in convergence accuracy,
its time complexity tends to rise. Future studies will aim to minimize the time complexity of ICSBO.
Furthermore, the application of ICSBO in practical engineering problems will be explored in greater depth.
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