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ABSTRACT: Cardiovascular disease (CVD) remains a leading global health challenge due to its high mortality rate
and the complexity of early diagnosis, driven by risk factors such as hypertension, high cholesterol, and irregular
pulse rates. Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors, making
early detection difficult. In this research, we propose a novel artificial intelligence-enabled (AI-enabled) framework
for CVD risk prediction that integrates machine learning (ML) with eXplainable AI (XAI) to provide both high-
accuracy predictions and transparent, interpretable insights. Compared to existing studies that typically focus on
either optimizing ML performance or using XAI separately for local or global explanations, our approach uniquely
combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP). This dual integration enhances the interpretability of the model and facilitates
clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by
identifying the contribution of different risk factors, which is crucial for transparent and informed decision-making in
healthcare. The framework uses ML techniques such as K-nearest neighbors (KNN), gradient boosting, random forest,
and decision tree, trained on a cardiovascular dataset. Additionally, the integration of LIME and SHAP provides patient-
specific insights alongside global trends, ensuring that clinicians receive comprehensive and actionable information.
Our experimental results achieve 98% accuracy with the Random Forest model, with precision, recall, and F1-scores
of 97%, 98%, and 98%, respectively. The innovative combination of SHAP and LIME sets a new benchmark in CVD
prediction by integrating advanced ML accuracy with robust interpretability, fills a critical gap in existing approaches.
This framework paves the way for more explainable and transparent decision-making in healthcare, ensuring that the
model is not only accurate but also trustworthy and actionable for clinicians.
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1 Introduction
Several organs in the human body serve a distinct function [1,2]. As a single unit, the heart is responsible

for circulating blood throughout the body [3]. If it fails, it can lead to fatal consequences [4]. Furthermore,
cardiovascular diseases play a major role in the global disease burden and are strongly associated with
hypoxia, a condition of oxygen deprivation [5]. The World Health Organization (WHO) estimates that 17.9
million people die from heart disease, also known as cardiovascular disease (CVD) each year [6,7]. CVD
encompasses any irregularity in the heart’s blood vessels, including the narrowing of vessels that transport
blood to and from the heart [8,9]. CVD can hinder blood flow, potentially leading to blockages, which may
result in a stroke or a major heart attack. There are four main categories into which CVD can be divided [10].
A blockage in blood flow to the ventricular muscle is the first, known as coronary heart disease [11]. Heart
problems, ulcers, and cardiac arrest can result from elevated cardiac stress. A transient ischemia attack or
stroke falls under the second category [12], caused by a temporary disruption or restriction in blood supply
to the brain. Peripheral artery disease, the third type, is caused by an obstruction in the blood supply to the
limbs [13]. Prolonged leg pain, ankle and hip hair loss, thigh stiffness, and recurrent ulcers are some of the
symptoms of this illness. Several risk factors contribute to the development of CVD, even if its precise cause
is not entirely understood [14]. The main risk factors are blood pressure, high blood pressure, high blood
sugar, raised cholesterol levels, smoking, obesity, and family history. Early diagnosis can lessen the number
of people who die from these conditions [15].

One of the most essential parts of healthcare is figuring out who is at risk for CVD. A patient’s symptoms,
doctor’s examination notes, and medical history are the main components of the current approaches for
diagnosing and forecasting disease [15]. Checking symptoms against those of individuals who have already
received a diagnosis is frequently used to make a diagnosis [16]. Accordingly, an automated intelligent system
is necessary for the medical industry to precisely forecast diseases like diabetes, liver disease, heart disease,
and tumors [17]. Studies indicated that roughly 67% of doctors can accurately diagnose a patient with cardiac
illness [18]. With the help of machine learning (ML) techniques and the abundance of data accessible in the
healthcare industry, this disease diagnostic accuracy could be increased [19].

In recent years, research studies have been utilized to apply ML approaches for disease diagnosis and
prediction [20–22]. Large healthcare datasets are becoming more widely available, and the healthcare sector
is embracing cutting-edge computing technology rapidly, which is the source of this growing interest [23].
Databases containing patient’s electronic health records (EHRs) are currently easily accessible to the health-
care sector, and the amount of information in these databases is growing rapidly. There are many duplicates
and imbalances in this raw data. Pre-processing is required to impute missing values, extract essential
features, reduce the running time of the training algorithms, and improve classification accuracy [24]. The
ML methods predict the outcome by using the trends seen in all of the variables in the dataset and modifying
them for the new dataset. When trained on appropriate data, the supervised ML classification techniques can
efficiently diagnose and predict the stages of diseases [25]. Early diagnosis and detection of CVD is crucial
for protecting patients’ lives. several risk factors influence one’s likelihood of getting CVD. Tobacco use,
hypertension, obesity, heart failure, renal disorders, genetic predisposition, and older adulthood are among
the high-risk key factors.

In recent years, several studies, such as [26–29], used ML-based methods for the early diagnosis and
detection of AD. Despite the significant results of conventional ML methods, these methods often lack the
interpretability and explainability of the predictions due to their “black box” characteristics, which often lack
transparency [30]. However, the explainability and interpretability of the model’s predictions are essential for
crucial applications such as CVD prediction. Given the high stakes in healthcare, clinicians require accurate
predictions and insights into how those predictions are derived. Consequently, this study distinguishes itself
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by integrating eXplainable AI (XAI) techniques like SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) into the CVD risk prediction framework, offering enhanced
transparency and interpretability compared to traditional ML models. XAI approach preserves prediction
accuracy while augmenting transparency, fostering improved trust and understanding of the decision-
making process in healthcare environments. The goal of this research is to diagnose CVD at its early
stages by identifying the disease risk factors (such as age-based, cholesterol level, smoking, etc.) using the
XAI framework. This approach enables clinicians to understand better the underlying factors influencing
predictions, fostering greater trust and utility in clinical settings. In the future, XAI could be included in
intelligent healthcare systems that use IoT, cloud computing, and AI, and it is broadly used in the fields of
cancer, cardiology, and neurology. The key research objectives of this work are the following:

1. To identify age-based risk factors of CVD.
2. To evaluate the effectiveness of various ML methods for determining these risk factors.
3. To implement XAI framework on the best-fit ML method for better explainability of the results.

The rest of the paper is divided into the following sections: A review on the CVD-related literature is dis-
cussed in Section 2. The proposed CVD prediction methodology is provided in Section 3. The experimental
results of the proposed ML methods are discussed in Section 4. Finaly, the conclusion and future directions
are given in Section 5.

2 Literature Survey
In recent years, with the development of artificial intelligence (AI) in medical sciences, numerous studies

have been conducted to reduce the death rate in various medical fields, i.e., Hematoma Evacuation [31],
calcific aortic valve disease [32], flap necrosis [33]. Using various ML techniques. Sinha et al. (2024) [34]
introduced CARDPSoML, which explores cardiovascular disease prediction using a feature-fusion approach
that combines data preprocessing, feature extraction through principal component analysis (PCA), and
wavelet transformations. The research employed supervised learning classifiers, such as support vector
machines, decision trees, and neural networks, to examine medical report data customized explicitly for
patients with diabetes who were at risk of cardiovascular disease. With its high accuracy and specificity,
this approach showed potential in detecting cardiovascular disease early in diabetic patients. It suggests
that feature fusion with sophisticated machine learning algorithms can improve this process. Paudel et al.
(2023) [29] demonstrated that machine learning techniques, particularly the multilayer perceptron, hold
significant potential for accurately predicting CVD. Using a dataset of 70,000 instances, the research applied
and optimized various algorithms, including decision trees, random forests, multilayer perceptron, and
XGBoost, with accuracy rates reaching up to 87%. The findings underscore the value of machine learning in
early disease detection, which could substantially mitigate the global impact of CVD by reducing mortality
and economic costs. Future work should explore model generalizability and interpretability enhancements
to ensure broader applicability in clinical settings. Riyaz et al. (2022) [35] provided an overview of several ML
approaches and evaluated the effectiveness of the ML methods used to diagnose various cardiac disorders.
The authors examined several ML methods for forecasting the occurrence of cardiac disease, including
Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), KNN, and artificial neural networks
(ANN). The average forecast accuracy for each model was calculated to decide which method was the best
and worst. The findings indicated that the C4.5 DT approach has the lowest average prediction accuracy of
74% and that ANN has the best average prediction accuracy of 86.91%. Ayon et al. (2022) [36] compared
several computational intelligence systems for heart disease prediction. The authors compared seven ML
techniques, including SVM, Logistic Regression (LR), Deep Neural Network (DNN), NB, Random Forest
(RF), KNN, and DT. The performance of the ML methods was evaluated using Statlog and the Cleveland
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heart disease dataset acquired from the University of California Irvine (UCI) ML repository. The results
indicated that the DNN outperforms other ML methods and achieved 98.15% accuracy in predicting heart
disease. Pal et al. (2022) [37] employed different ML techniques, including Multilayer Perceptron (MLP)
and KNN, to detect cardiovascular disease using data from the UCI ML repository [38]. The study’s results
indicated that the MLP model achieved a high accuracy of 82.47% and a larger area-under-the-curve
(AUC) value of 86.41%. Sharma et al. (2020) [39] utilized different ML techniques, including Support Vector
Machine (SVM), RF, NB, and Decision Tree (DT) to predict heart disease. The authors used benchmark heart
disease data from the University of California Irvine (UCI) ML repository [40]. This dataset consisted of 14
different heart disease-related factors. The results demonstrated that RF provides better prediction accuracy
in less time than other ML approaches. Maiga et al. (2019) [41] compared ML algorithms, including Naive
Bayes (NB), K-Nearest Neighbor (KNN), Random Forest (RF), and Logistic Regression (LR) for predicting
cardiovascular disease based on the cardiovascular risk parameters of patients. The CVD dataset acquired
from Kaggle [42] was used to evaluate the performance of the ML methods. The results demonstrated that
RF achieved an accuracy of 73%, a sensitivity of 80%, and a specificity of 65%.

Since AI solutions typically need a specialist’s knowledge of ML algorithms, the demand for technologies
that make AI more approachable among healthcare practitioners is rising over time. This requirement is vital
in healthcare and medicine, where disease diagnosis demands comprehensible and transparent data [43].
Dave et al. (2020) [44] proposed different interpretability strategies to educate practitioners about the
interpretability and understandability of eXplainable AI (XAI) systems by utilizing a range of techniques that
can be highly useful in the healthcare industry. Medical diagnosis systems are essential to save human lives;
thus, we must be confident enough to treat a patient as a black-box model recommends. This study clarifies
why explainability AI strategies should be chosen when utilizing AI systems in the medical and healthcare
domain to build credibility about the results produced by AI and ML methods. Several research studies
indicated that diagnosis and prediction are made possible by XAI predictive algorithms, reducing detection
mistakes compared to relying on human expertise. Muneer et al. (2022) [38] provided a comprehensive
analytical overview of ML methods, including RF, ECNNs, VGG-16, SVM, CNN, SMOTE, NB, and XG Boost
with XAI in the context of recent developments in AI. The results demonstrated that the highest accuracy
measure of 98% was achieved using the RF method with an explainable method (SMOTE and ADASYN).
Bhatt et al. (2023) [28] examined the effectiveness of various ML algorithms, namely AdaBoost, Random
Forest, Gradient Boosting, and Light Gradient-Boosting Machine (LGBM) in heart attack prediction. By
employing the LIME explainability framework, the research identifies critical predictive features such as
“kcm” and “troponin,” which consistently contribute to prediction accuracy across all models. LGBM
achieved the highest accuracy at 99%, showcasing its potential for clinical use in diagnosing heart attacks. The
study emphasizes the importance of incorporating eXplainable AI techniques to improve transparency and
trust in AI-based healthcare predictions. An improved ensemble learning approach using XAI was proposed
by Mienye et al. (2024) [27] for heart disease prediction. XGBoost, Random Forest, and AdaBoost are just
a few of the ensemble approaches that this methodology combined with Bayesian optimization to fine-
tune the model parameters and increase prediction accuracy. With the interpretability provided by Shapley
Additive exPlanations (SHAP), clinicians could understand how particular factors affected predictions. Their
model achieved an outstanding sensitivity of 98% on the Cleveland dataset and a specificity of 92% on
the Framingham dataset, demonstrating the effectiveness of optimized ensemble approaches in producing
high accuracy and transparency in clinical applications. The comprehensive survey of the literature on CVD
prediction indicates that several studies were conducted to predict. CVD, however, the studies lack the
explainability and interpretability of the findings of the AI/ML methods, which are necessary for the better
understanding of clinicians and professionals in making decisions. Consequently, the key objective of this
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research is to predict age-based high-risk factors of CVD patients by utilizing an eXplainable AI framework
in combination with various state-of-the-art ML approaches.

3 Proposed Methodology
This section provides a detailed methodology for the proposed AI-enabled framework. The proposed

framework is comprised of two main components. Firstly, we employed ML methods for the CVD classi-
fication. Secondly, an XAI module is incorporated to provide trustworthy and explicable predictions. The
local and global explanation of the model is demonstrated by using different plots such as waterfall, bar plot,
bee swarm, and summary plot from the XAI framework, including SHAP and LIME. Fig. 1 illustrates the
schematic representation of the proposed methodology.

3.1 Dataset Description
The cardiovascular dataset acquired from Kaggle [42], comprising 70,000 records and 12 features, is

used in this work to classify cardiovascular disease. The input features are distinguished into three categories:
i) objective features, including gender, age, height, and weight, examination, and subjective ii) subjective
features, which include the information provided by the patient, such as whether an individual smoke, drink
(alco), etc., iii) examination features show the outcomes of medical reports. Subjects’ gender attributes with
values 1 and 2 indicate female or male, respectively. The influence is computed using the diastolic and systolic
blood pressure measurements. The patient’s cholesterol and glucose values are given as normal, increased,
or significantly increased. Similarly, the patient’s smoking and drinking habits are represented by the binary
values of “1” for smokers/drinkers and “0” for non-smokers/non-drinkers. Patients who participated in
consistent physical exercise were assigned a value of “1”, while those who did not were assigned a value of
“0”. Table 1 provides a detailed description of all the features in the dataset used in this study.

The age distribution by gender within the CVD dataset is illustrated in Fig. 2. The fundamental
exploratory analysis shows that males are more prevalent across most age groups, with a significant
concentration of individuals aged between 50 and 60. Fig. 3 illustrates the correlation between numerical
variables in the dataset. The correlation values range from −1 to 1, where a value close to 1 indicates a strong
positive correlation, meaning that as one variable increases, so does the other. In contrast, a value close
to −1 indicates a strong negative correlation, where one variable increases as the other decreases. Notable
correlations include a moderate positive correlation between age and cardiovascular disease, with a value
of 0.24, suggesting that older individuals are more likely to have cardiovascular issues. Likewise, there is a
positive correlation between cholesterol level and cardiovascular disease, with a value of 0.22. There is also
a notable correlation between gender and smoking, with a value of 0.34, which might suggest differences in
smoking habits across genders. These correlations can provide insights into the relationships within the data
and are helpful for further analysis or modeling.
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Figure 1: Schematic representation of the proposed AI-enabled framework
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Table 1: detailed overview of key features

Features Type Description
Age Objective The age of the individual span 29–64

Gender Objective Coded as 1 for females and 2 for males
Height Objective The height of the individual in centimeters
Weight Objective The weight of the individual in kilograms
ap_hi Examination The higher value of blood pressure measured during heartbeats as Systolic

blood pressure
ap_lo Examination The lower value of blood pressure measured between heartbeats as

Diastolic blood pressure
Cholesterol Examination Categorized as normal, increased, or significantly increased.

gluc Examination The amount of glucose is categorized as normal, increased, or significantly
increased

Smoke Subjective Smoking activity “1” indicates a smoker, and “0” indicates a non-smoker.
alco Subjective Drinking status “1” indicates a drinker, and “0” indicates a non-drinker

Active Subjective Physical activities individuals

Figure 2: Age distribution by gender
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Figure 3: Heatmap of Pearson correlation for all numeric attributes

3.2 Data Preprocessing
Preprocessing of the data is a critical phase in ML since the quality of the data and the information that

can be extracted from it directly affects how well our model can learn. Handling null and categorical variables,
as well as standardization, are the basic preprocessing techniques. In this section, we have presented the
preprocessing steps used to preprocess the dataset to use in subsequent stages of the analysis. The objective
is to predict the patient’s age-related risk factors, it may be challenging to interpret the patient’s age in
days. Therefore, we transformed the age into years so that it is easier to understand the age range affected
by cardiovascular disease. We changed the data type of attributes, such as weight and age, into integers.
Additionally, we discarded the patient “id” since it is unnecessary for predictive analysis.

3.3 Machine Learning (ML) Module
In this article, we used four ML classifiers, including K-nearest neighbor (KNN), decision tree (DT),

random forest (RF), and Gradient Boosting (GB) classifier to predict cardiovascular disease. These ML
methods are chosen for their synergistic strengths in handling non-linear and intricate interactions within
the dataset. The KNN model is a simple and interpretable model which is efficient for preliminary classi-
fication. DT model can effectively elucidate the hierarchy of features due to their intrinsic interpretability.
In contrast, GB and RF models are ensemble techniques recognized for enhancing predictive accuracy and
mitigating overfitting. Consequently, the proposed framework, comprised of a varied set of ML models,
enhances prediction performance and adaptability to diverse patient data by utilizing various algorithms.
The selected models are trained on 80% of the CVD dataset, and the remaining 20% is used to evaluate the
model’s performance. The subsequent section provides an overview of these ML classifiers and the details of
the specific parameter tunings of these models.
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3.3.1 K Nearest Neighbor (KNN)
K-Nearest Neighbors (KNN) is a versatile instance-based learning algorithm for classification and

regression tasks. It classifies or predicts the value of a query instance based on the majority vote or average
of its K-nearest neighbors, determined by a chosen distance metric. While KNN is easy to implement and
makes no assumptions about data distribution, it can be computationally intensive and sensitive to the
curse of dimensionality. Optimizations like weighted KNN and k-d trees can enhance its efficiency. Despite
these limitations, KNN remains a valuable tool in various applications, including image recognition and
text categorization. KNN classifier is initialized with the hyperparameter n_neighbors set to 20. This means
the model will consider the 20 closest data points when making predictions. The choice of the number of
neighbors in the KNN algorithm can vary depending on the dataset and problem at hand. In this specific
case, the value of 20 is selected because it resulted in improved accuracy compared to other tested values.

3.3.2 Decision Tree
Decision Trees (DT) are a widely used machine learning algorithm for classification tasks, including

CVD prediction. The DT classifier is a non-parametric method that categorizes instances by arranging them
in a tree from the root to a leaf node, which offers the classification of the instance. In this work, we used
the default “best” splitter and the Gini criterion for training the DT classifier, achieving high accuracy,
precision, recall, and F1-score. DT classifier is instantiated and trained using the following parameters:
Random_State = 42: This parameter sets the random seed for reproducibility. By setting it to 42, the same
random sequence will be generated each time the code is run, ensuring consistent results. max_depth = 30:
This parameter specifies the maximum depth of the decision tree. It limits the number of levels or splits in
the tree. In this case, the maximum depth is set to 30, meaning the tree can have up to 30 levels. Criterion =
‘gini’ determines the impurity measure used to make decisions.

3.3.3 Random Forest
The Random Forest algorithm is a supervised learning technique consisting of many decision trees

operating as an ensemble. In this approach, the model leverages multiple trees to make a collective decision by
averaging their predictions. Each tree in the Random Forest votes on the outcome and the class with the most
votes is selected as the final prediction. Random Forests reduce overfitting problems by building trees from
distinct subsets of the data. This makes them particularly effective on large datasets, even when some data
points are missing. RF classifier is instantiated using max_depth = 50, random_state = 42, and n_estimators
= 40, determining the number of decision trees (or estimators) to be created in the random forest.

3.3.4 Gradient Boosting
Gradient Boosting (GB) is an ensemble learning technique that combines several weak learning models,

typically decision trees, to produce a robust predictive model by building trees sequentially, with each new
tree correcting the errors of previous ones. This iterative approach enables GB to capture complex patterns
in the data effectively. In this study, we employed the GB classifier to predict CVD and achieved high
accuracy, precision, recall, and F1-score, demonstrating significant improvement in predictive performance.
GB classifier is initiated with some example parameter values: n_estimators = 100 indicates that we want to
train 100 weak learners, learning_rate = 0.1 sets the learning rate to 0.1, max_depth = 3 limits the depth of
each decision tree to 3, and subsample = 0.8 means that each weak learner is trained on a random 80% subset
of the training data.



5066 Comput Mater Contin. 2025;82(3)

3.4 eXplainable AI (XAI) Module
This section presents the XAI module of the proposed AI-enabled framework to demonstrate and

explain the model’s predictions. With the advancement of AI, it is easy to diagnose the disease at its early
stages. However, these models are still regarded as black-box, and their predictions and results are not
understandable to end users because of their complexity and highly layered structure. By utilizing strategies
that end users typically use to describe systems, such as visual or feature relevance explanations, post hoc
explainability techniques provide transparent information about how an implemented model makes its
predictions. Previously, several ML models were implemented to predict CVD. Still, these cannot explain
how a model can accurately anticipate a specific result and make predictions and which attributes contribute
more or less to making a decision. In addition to implementing ML classifiers, XAI is also employed, which
is concerned with creating novel techniques for interpreting and explaining ML model’s predictions. For this
purpose, LIME and SHAP are implemented to provide a local and global explanation of how the models
make their predictions.

3.4.1 Local Interpretable Model-Agnostic Explanations (LIME)
LIME stands for Local Interpretable Model Agnostic Explanation, in which LIME provides explanations

for the model’s predictions at an individual level, highlighting the influence of particular features on a case-
by-case basis, which is especially beneficial for patient-specific assessments. Several explainers in LIME
explain the impact of single instances, i.e., lime tabular, text, and image explainers. In this work, a tabular
dataset of patients is used to predict cardiovascular disease; consequently, we have used a tabular explainer
in LIME to interpret the results and predictions made by ML classifiers. It works with several parameters
necessary for the LIME explanation, such as training data, feature names, class names, and the mode of
the problem. For training data, the 2D NumPy array is passed to the LIME explainer, feature names are
the list of strings corresponding to attributes in the training data, and the class name is the list of classes
used by the explainer (such as Class 0, and Class 1). Furthermore, LIME used the “classification” mode to
predict the non-cardio class and cardio class. With the implementation of the LIME model, the input data will
be represented in a way that can be easily comprehended by the end users [45]. Due to this, LIME’s output is a
list of justifications that emphasize how each characteristic contributed to the estimation of sample data. The
Euclidean distance between the two points is calculated to show how far the modified data point is from
the initial observation. It indicates which feature(s) of the input data is beneficial for making predictions.
The key objective is to develop a trustworthy, understandable explanation of the model’s predictions, which
can be achieved by using Eq. (1).

E(z) = argmin
a∈A

L(O , A, πz) +Ω(A) (1)

where O represents the original implemented model, a represents the Interpreted model, z represents
observations of the original model, Ω(A) represents the model complexity measurement, and πz represents
the distance measurement between the original observation and all variations.

3.4.2 SHapley Additive exPlanations (SHAP)
The results produced by the ML methods need to be interpreted locally and globally for the predictions

and results produced to be better explainable. Despite the excellent explainability power at the local level,
LIME cannot explain the model at the global level. For this purpose, SHAP is used to enhance the
interpretation of the outcome [46]. It has a model-agnostic kernel Explainer, TreeExplainer, DeepExplainer,
and LinearExplainer to explain the classifications and results of the models. As discussed earlier, different
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machine learning models are implemented for cardiovascular disease prediction, i.e., Random Forest,
Decision Tree, and Gradient Boosting. In this work, we have used Tree Explainer in the SHAP approach
to interpret all these tree models. Then, the SHAP values are compared with the model’s expected values,
enhancing its interpretability. Plotting the SHAP values of a feature against its value for each sample in a
dataset can assist us in understanding how a particular feature affects the model’s output. To determine the
relative value of each input feature for a specific prediction, SHAP applies the concepts of cooperative game
theory. The players in the game have a set of strategies and some sort of reward, and SHapley values are used
to disclose the contributions of the many players in the game. Strategies are denoted as outcomes procedures,
where the player represents variables/features, and the reward means the achieved results. Here, Shapley
values show how a specific attribute affected the final prediction. The following Eq. (2) is used to find players’
contributions.

φ(Z) = ∑
C⊆N/Z

∣C∣!(∣N ∣ − ∣C∣ − 1)!
∣N ∣!

(values(C ∪ Z) − values(Z)) (2)

where N represents the number of participants/ features, C represents the subset of N, Z represents the
contribution of a random player, and values represent the total values for player C.

4 Results and Discussion

4.1 ML Model Evaluation
The results of the ML models are evaluated using different performance evaluation metrics, including

accuracy, precision, recall, and F1-score. These metrics are calculated using a confusion matrix, which
presents the true classes and model-predicted classes in a table like structure and indicates the errors and
correct classifications made by the classifier. The confusion matrix of binary class classification (0 and 1) is
shown in Fig. 4. The confusion matrix is defined using four different terminologies, including True positive
(TP), which indicates the number of actual positive classes (‘1’) predicted as positive (‘1’). False Positive (FP)
indicates the number of classes the model predicted as positive (‘1’), while these belong to the negative class
(‘0’). True Negative (TN) indicates the number of actual negative classes (‘0’) predicted as negative (‘0’). False
Negative (FN) indicates the number of classes the model predicted as negative (‘0’), while these belong to
the positive class (‘1’). The accuracy, precision, recall, and F1-score are calculated using the terms used in the
confusion matrix, and Eqs. (3)–(6) represent the accuracy, precision, recall, and F1-score, respectively.

Accurac y = TP + TN
P + N

(3)

Precision = TP
TP + FP

(4)

Recal l = TP
TP + FN

(5)

F1 − score = 2 ∗ Precision ∗ Recal l
Precision + Recal l

(6)
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Figure 4: Confusion Matrix indicating the binary class classification

The comparison of results obtained by ML classifiers used in this study is indicated in Table 2. The
results indicate that the RF classifier achieves the highest accuracy of 98%, precision of 97%, recall of 98%,
and F1-score of 98% for predicting CVD, which indicates overall significant performance in identifying true
positives and minimizing false negatives. The DT model indicates slightly less predictive performance than
RF with accuracy, precision, recall, and F1-score of 96%, 94%, 98%, and 96%, respectively. However, DT
provided the advantage of being inherently interpretable. Table 3 indicates that KNN yields an accuracy of
95%, with a precision of 92% and a recall of 93%. Likewise, GB yields an accuracy of 94%, with precision,
recall, and F1-score of 92%, 98%, and 95%, respectively. GB was particularly effective at minimizing false
negatives but required fine-tuning to balance performance and overfitting.

Table 2: Results of the proposed ML methods based on CVD dataset

Models Accuracy Precision Recall F1-score
KNN 95 92 93 92

Decision Tree 96 94 98 96
Random Forest 98 97 98 98

Gradient Boosting 94 92 98 95

Table 3: Performance comparative analysis of proposed study with the existing literature

Ref. Dataset Framework/approach Best performing
model

Classification metrics Contribution to the field

Accuracy Precision Recall F1-score
[34] Medical Report

Data
PCA, Wavelet

Transformations, SVM,
Neural Networks,

Decision Trees

Feature Fusion
(SVM)

91 92 90 91 The feature fusion technique
integrates PCA and SVM to

improve classification.

[28] Kaggle heart
disease Dataset

Decision Tree, Random
Forest, MLP, XGBoost

MLP 87 85 86 86 Optimized multiple ensemble
methods for cardiovascular

prediction.
[37] UCI

Cardiovascular
Repository

MLP and KNN MLP 82 80 81 80 Demonstrated KNN limitations
compared to neural-based

models.
[35] Multiple HD

Datasets
SVM, Decision Tree,
ANN, Naive Bayes,

KNN

Artificial Neural
Network (ANN)

87 86 85 85 Quantified ANN’s comparative
efficiency.

[27] Cleveland &
Framingham

Datasets

AdaBoost, RF, XGBoost,
SHAP, Bayesian
Optimization

XGBoost 95 94 95 95 Integrated SHAP with ensemble
learning for interpretability.

(Continued)
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Table 3 (continued)

Ref. Dataset Framework/approach Best performing
model

Classification metrics Contribution to the field

Accuracy Precision Recall F1-score
[44] Cleveland UCI

Dataset
Feature-based

techniques: LIME,
SHAP

Feature-Based
Model

85 84 83 83 Examined SHAP and LIME in a
healthcare-specific context.

our CVD Dataset KNN, Gradient
Boosting, RF, Decision
Tree with LIME, SHAP

Random Forest
(RF)

98 97 98 98 Integrates high-performance
machine learning models with

dual explainability (LIME +
SHAP), enhancing trust and

actionable insights for
clinicians.

4.2 XAI Based Explainability
This section explains the explainability of implemented models, which establishes the importance of

each feature and its impact on the decision-making process. Both local and global aspects serve as an
illustration of the explainability. The key elements of the dataset that can be used with LIME and SHAP
force diagrams are highlighted in the local explanation. The significance of the attributes to a set of data,
for instance, all test data, is shown in the global explanation. The violin distribution summary plot with all
the test data is utilized for a global explanation. The implemented models’ number of correct observations
mostly shows patients have cardio disease. The Decision Tree, Random Forest, KNN, and Gradient Boosting
are used with eXplainable AI methods to determine predictions. Experts could quickly ascertain whether
the models were performing accurately using eXplainable AI.

4.2.1 Local Explanations Using Lime
The LIME interpretability plot illustrates the contribution of various features to the model’s prediction

for a specific subject. In the LIME explainer, a single random instance is chosen and passed to the LIME
explainer with a particular model’s predictions to evaluate the influence of each attribute. The LIME
interpretability plot displays the effect of each feature on the target class, indicating whether it has a positive
or negative impact on that particular class prediction. This helps understand the contribution and effect of
individual features on the model prediction for CVD. The LIME interpretability plot for the importance
of individual features on the predictions made by the RF model is shown in Fig. 5. The features on the
right side of the vertical line, represented in orange, indicate that these features contribute positively to the
model’s prediction, which specifies that these features increase the risk of CVD. In contrast, the features
on the left side of the vertical line, represented in blue, indicate that these features contribute negatively
to the model’s predictions, which specifies that these features contribute to decreasing the risk of CVD.
Furthermore, the length of the bar (orange or blue) represents the strength of each feature on the model’s
prediction. For example, Fig. 5 illustrates that the RF model predicts Class 1 (cardio) with a high probability
of 0.88, influenced mainly by features such as systolic blood pressure (ap_hi) exceeding 120.00 and age greater
than 58.00. Other contributing factors include the patient’s non-consumption of alcohol and a cholesterol
level of 2.00. The specific feature values for this prediction are a systolic blood pressure of 140.00, age of 59,
diastolic blood pressure of 80.00, weight of 64.00, glucose level of 1.00, and cholesterol level of 2.00, with
no alcohol consumption or smoking. This is the benefit of using LIME, in contrast to the interpretability of
traditional DT or RF feature importance capability, that LIME interpretability plot indicates the significance
of critical features along with their positive/negative impact and the strength of features; influence on the
CVD disease predictions.
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Figure 5: LIME explanation of predictions made by Random Forest

Similarly, Fig. 6 illustrates the prediction probabilities of the DT model, which indicates a high
likelihood (1.00) for Class 1, signifying that the model strongly predicts the outcome as Class 1 (cardio). The
LIME interpretability plot also indicates that these predictions are influenced mainly by age features, with
“age > 58.00” contributing the most (0.12) to Class 1. Other important factors include “ap_lo ≤ 80.00” and
“weight ≤ 65.00”, which favor Class 0. The Value column in the Table of LIME interpretability plot lists the
actual values of the features used in the prediction, such as age (59), blood pressure (ap_hi 140, ap_lo 80),
and weight (64), among others. These visualizations help to explain which features contributed most to the
model’s decision, aiding interpretability.

Figure 6: LIME explanation of predictions made by Decision Tree
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4.2.2 Global Explanations Using SHAP
SHAP-based XAI provides the explainability and interpretability to model predictions at the global level

using several visualization plots, including SHAP summary plot, mean SHAP value plot, SHAP force plot,
SHAP waterfall plot, and SHAP Bee Swarm plot. The SHAP summary plot provides a visual summary of
the feature significance and respective influence on the model’s predictions at the global level. The global
explanation visualizes all the data in a single, easily readable plot. The features are listed on the y-axis, and the
importance of each feature is represented along the x-axis, with the highest feature contributing the most to
making predictions and the lowest feature contributing the least, if any, to the predictions. When the shape
value is 0, no contribution is made by that particular feature in the SHAP summary plot, but as the shape
value drops, contributions increase. Each circle in the plot represents a single data point. The color of the dot
indicates the value of the features, the blue color represents the lower value of a particular feature, and the
red color represents the high value of that specific feature. For instance, Fig. 7 illustrates the SHAP summary
plots of the RF model predictions for Class 0 (non-cardio). It can be seen from the plot that ‘ap_hi’ and ‘age’
had the most significant influence on the model predictions. Additionally, it can be noted that the broader
areas against the ap_hi feature are on the left side, which indicates the higher density of samples, suggesting
that these data points are more common for ap_hi for the non-cardio class. It can be derived from the plot
that lower cholesterol levels and younger ages have positive SHAP values, which suggests a lower risk of
CVD. In contrast, features like alcohol and smoking tend to have negative SHAP values, which indicates that
alcohol consumption and smoking could contribute to a higher risk of CVD. The SHAP summary plot for
Class 1 (cardio) is shown in Fig. 8. It can be seen from the plot that features such as ap_hi, age, ap_lo, and
cholesterol tend to have positive SHAP values, which suggests a higher level of these features is associated
with increased CVD risk. On the other hand, the features such as alcohol and smoke show a mix of SHAP
values, which indicates varying impacts on the prediction.

Figure 7: SHAP summary plot of RF model predictions for Class 0 (Non-CVD)
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Figure 8: SHAP summary plot of RF model predictions for Class 1 (CVD)

Fig. 9 illustrates the mean SHAP value plot (also known as the SHAP bar plot), which visualizes the
mean impact of each feature on the model’s predictions for Class 0 and Class 1. It can be seen from the mean
SHAP value plot that age and systolic blood pressure (ap_hi) are the most significant features driving the ML
model’s predictions, particularly in determining the likelihood of cardiovascular disease (Class 1). Age has the
most substantial impact, significantly increasing the probability of a positive prediction for cardiovascular
disease, followed by ap_hi and weight. The plot uses color to indicate how each feature contributes to the
model’s predictions, with red indicating influence towards non-cardiovascular (Class 0) and blue towards
cardiovascular disease (Class 1). This means the SHAP value plot reveals the critical features (such as age,
ap_hi, and weight) that are crucial in predicting cardiovascular outcomes.

Figure 9: Mean SHAP value plot
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The SHAP waterfall plot is illustrated in Fig. 10, which indicates the contribution of various features
to the model’s output for a specific prediction. The x-axis represents the SHAP values, which indicate the
impact of each feature on the prediction. Features with positive SHAP values push the prediction higher,
while those with negative values make it lower. The feature ap_hi has the most significant negative impact
on the prediction, reducing the predicted value by 0.32. ap_lo (diastolic blood pressure) also has a negative
impact but is smaller (−0.1). Other features like weight, age, and height have smaller negative impacts, while
features like cholesterol slightly increase the prediction. The model’s final prediction (f(x)) is 0.075, slightly
above the base value, indicating a low risk according to the model.

Figure 10: SHAP waterfall plot

Fig. 11 provides a sequential breakdown of how each feature’s contribution leads to the final prediction.
The base value starts at 0.51, the average model prediction before considering any specific feature values.
Features like ap_lo (80.0), height (156.0), active (1.0), cholesterol (1.0), and ap_hi (120.0) push the prediction
down (left, red), indicating they reduce the probability. In contrast, features like age (61.0) and gender (1.0)
push the prediction up (right, blue), increasing the likelihood. The plot visually breaks down each feature’s
positive and negative influences on the final prediction. This plot effectively shows how each feature adds or
subtracts from the base value, leading to the final model output.

Figure 11: SHAP force plot

Fig. 12 shows the impact of each feature across multiple predictions, not just a single instance. Each
dot represents a single prediction, with its position along the x-axis showing the SHAP value (impact) and
its color representing the feature value (red for high values, blue for low values). The features are sorted
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by their overall importance, with ap_hi (systolic blood pressure) having the most significant impact across
predictions. For example, higher values of ap_hi (red dots) tend to decrease the prediction, as shown by the
dots on the left, while lower values (blue dots) have a less significant impact. The plot visually demonstrates
how different values of features like age, cholesterol, and blood pressure influence the model’s predictions
across the dataset.

Figure 12: Bee swarm plot

These SHAP visualizations are crucial for understanding and interpreting the predictions of an ML
model, particularly in complex, high-stakes domains like healthcare. The proposed XAI module provides
significant insights into how different features, such as blood pressure, age, and cholesterol level, contribute
to the model’s decisions in classifying CVD individuals. The mean SHAP value plot helps identify the most
influential features for a specific prediction, the SHAP waterfall plot shows the cumulative effect of each
feature on the final prediction, and the SHAP Bee swarm plot offers a broader view of how features impact
predictions across the dataset. This work aims to ensure that the model’s decisions are transparent, justifiable,
and aligned with domain knowledge, essential for building trust in the model and making informed
decisions based on its outputs. In summary, these findings indicated that the proposed XAI framework,
comprised of SHAP and LIME integrated into the ML model, facilitates local and global interpretability of
the model’s predictions. SHAP provides a comprehensive perspective on feature importance across the entire
dataset, quantifying the contribution of each feature towards the overall model prediction. In contrast to
SHAP, LIME provides explanations at an individual prediction level, highlighting the influence of particular
features on a case-by-case basis, which is especially beneficial for patient-specific assessments. Together,
the proposed XAI framework offers a detailed explainability and interpretability of the model’s predictions,
enhancing the framework’s transparency and dependability for clinical application. Consequently, this will
help doctors and clinicians to identify high-risk patients and personalized treatment plans according to
the most critical contributing factors. For example, if high blood pressure and cholesterol are significant
risk factors, clinicians can prioritize interventions to address these risk factors. This strategy encourages
personalized treatment approaches, allowing medical professionals to attend to each patient’s health needs
and possibly enhancing patient outcomes by concentrating on the most critical risk factors. Overall, The
findings of the proposed AI-enabled framework provide substantial benefits compared to traditional ML
techniques for diagnosing CVD. Despite the significant results of traditional ML methods, these methods
often lack the interpretability and explainability of the predictions due to their “black box” characteristics,
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which often lack transparency. However, the proposed framework utilizes data-driven insights to discern
nuanced patterns and interactions among risk factors that may be overlooked. Moreover, incorporating XAI
techniques improves the transparency of the model’s predictions, enabling clinicians to comprehend and
have confidence in the decision-making process. This integration of high accuracy (by ML methods) in
predicting CVD and the explainability and interpretability of these predictions (by XAI framework) signifies
progress in personalized medicine, offering more precise, data-driven care customized to particular patient
profiles. Furthermore, the proposed eXplainable AI framework is model-agnostic, allowing for interpreting
diverse machine learning models across different domains. This adaptability enables the proposed framework
to be applied to CVD diseases and several other medical and clinical tasks where comprehending feature
contributions is essential for therapeutic decision-making.

The comparative analysis in Table 3 highlights that the proposed framework outperforms existing
methods by integrating advanced machine learning (ML) techniques with a dual-layer eXplainable AI (XAI)
framework, combining LIME for local interpretability and SHAP for global insights.

5 Conclusion
Cardiovascular disease is a severe health condition that can lead to potentially life-threatening compli-

cations. Numerous lives could be saved by identifying high-risk factors for chronic CVD, such as high blood
pressure, being overweight, cholesterol, and smoking. In our proposed work, an AI-enabled framework is
proposed to facilitate better clinicians and professionals in finding high-risk factors of CVD. The results
show that the RF model achieves the highest accuracy of 98%, with precision at 97%, recall at 98%, and
an F1-score of 98%. The LIME tool is used to explain the prediction of the individual instances, and the
SHAP framework is used for global interpretation of the results and predictions made by the ML methods.
The explainability of the findings is visualized using several LIME and SHAP plots, such as summary plot,
bar plot, force plot, and bee swarm plot, which are used for global explanation. The results of the proposed
AI-enabled framework establish a new benchmark for CVD risk prediction by integrating advanced ML
methods with robust interpretability, paving the way for more explainable and transparent decision-making
in healthcare. Furthermore, the proposed framework’s explainability and real-time predictive capabilities
indicate its suitability for integration into clinical decision support systems, enhancing diagnostic precision
and patient outcomes. Future research should focus on validating the XAI techniques integrated with
traditional ML methods in diverse medical and clinical environments to evaluate their generalizability and
robustness across diverse demographics and healthcare systems.
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