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ABSTRACT: Globally, diabetic retinopathy (DR) is the primary cause of blindness, affecting millions of people
worldwide. This widespread impact underscores the critical need for reliable and precise diagnostic techniques to
ensure prompt diagnosis and effective treatment. Deep learning-based automated diagnosis for diabetic retinopathy
can facilitate early detection and treatment. However, traditional deep learning models that focus on local views often
learn feature representations that are less discriminative at the semantic level. On the other hand, models that focus on
global semantic-level information might overlook critical, subtle local pathological features. To address this issue, we
propose an adaptive multi-scale feature fusion network called (AMSFuse), which can adaptively combine multi-scale
global and local features without compromising their individual representation. Specifically, our model incorporates
global features for extracting high-level contextual information from retinal images. Concurrently, local features capture
fine-grained details, such as microaneurysms, hemorrhages, and exudates, which are critical for DR diagnosis. These
global and local features are adaptively fused using a fusion block, followed by an Integrated Attention Mechanism
(IAM) that refines the fused features by emphasizing relevant regions, thereby enhancing classification accuracy for
DR classification. Our model achieves 86.3% accuracy on the APTOS dataset and 96.6% RFMiD, both of which are
comparable to state-of-the-art methods.

KEYWORDS: Diabetic retinopathy; multi-scale feature fusion; global features; local features; integrated attention
mechanism; retinal images

1 Introduction
Diabetic retinopathy (DR) is a condition that affects the retina as a result of diabetes complications,

resulting in permanent eye damage and, in some cases, vision loss. If left untreated, this form of issue
among patients has a high priority of people going blind. DR is a leading cause of vision impairment and
blindness among working-age adults globally. Early detection and management are crucial in preventing
irreversible damage.
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According to recent statistics, around 537 million adults globally have diabetes as of 2023, with the
number expected to increase to 783 million by 2045 and potentially 1.3 billion by 2050. This increase
emphasizes the rising worldwide impact of diabetes [1]. As shown in Fig. 1, DR is classified into five stages,
reflecting the progression of the disease:

1. Normal: where there are no retinopathy symptoms.
2. Mild Non-Proliferative Retinopathy: characterized by the presence of microaneurysms. At this stage,

patients may not experience symptoms, but microaneurysms indicate the onset of retinal damage.
Regular monitoring is essential to prevent progression.

3. Moderate Non-Proliferative Retinopathy: where some blood vessels become distorted and swollen.
Blockages in retinal vessels begin to occur, potentially leading to noticeable visual changes. Early
intervention can help manage the condition.

4. Severe Non-Proliferative Retinopathy: involving significant blockage of blood vessels. A larger number
of vessels are blocked, signaling the retina to grow new vessels, which can lead to more severe
complications if not addressed promptly.

5. Proliferative Retinopathy: an advanced stage marked by the growth of new blood vessels. These fragile
new vessels can bleed into the vitreous, causing vision loss or blindness. Immediate treatment is critical
at this stage to prevent severe outcomes.

No DR Mild Moderate Severe Proliferative

Figure 1: Retinal fundus images with various stages of DR

Each stage of DR has distinct characteristics and features that doctors may dismiss, potentially resulting
in misdiagnosis. Accurate classification of these stages is vital for determining appropriate treatment
strategies, such as laser therapy or surgical interventions, to prevent vision deterioration. This difficulty
emphasizes the necessity for an automated approach to assist in the correct detection and classification of
DR. It is estimated that timely and appropriate treatment and regular screening of the eyes can reduce the
incidence of new cases of this disease by at least 56% [2]. With the goal of early detection, regular screening is
advised by the International Council of Ophthalmology, and the American Academy of Ophthalmology [3].
These organizations recommend screening intervals of 12 to 24 months for patients without or with mild
DR. While regular screening is vital for preventing blindness, the anticipated rise in diabetes patients poses a
significant challenge for the screening and follow-up processes. To address this growing demand, automated
DR detection systems leveraging artificial intelligence offer a scalable and efficient solution. Unlike traditional
manual screening methods, AI approaches can analyze large volumes of retinal images rapidly, ensuring
timely diagnosis and reducing the burden on healthcare professionals.

The diagnosis of DR has advanced significantly in the last ten years in the field of deep learning [4].
Convolutional Neural Networks (CNNs) have been proposed in a number of different forms to automate the
grading of DR [5]. Recently, Vision Transformers (ViTs) have become a powerful tool that enhances deep
learning models’ capabilities [6]. ViTs have demonstrated their effectiveness with DR classification, such
as [7] and computed tomography [8].
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However, in these models, images are represented as one-dimensional token sequences, which leads
to ignoring either their actual local or global structures. Combining multi-scale global and local features
which are necessary for tasks like segmentation and image classification is the first step toward solving
this problem [9]. Although significant progress has been made by recent works, including ViTAE [10],
StoHisNet [11], Transfuse [12], CMT [13], and Comformer [14], which integrated features derived from
convolutional and self-attention processes [15], challenges remain in adaptively fusing multi-scale features
without compromising their individual strengths.

To address this issue, we introduced AMSFuse, which integrates global and local blocks to concurrently
extract and adapt global and local features. These are followed by fusion blocks that merge these features at
various semantic scales and then comes an Integrated Attention Mechanism (IAM) that refines and weights
fused features to enhance representation. This approach enhances our model’s performance compared to
earlier classification techniques that primarily depend on either transformer or convolutional models. Results
show that our approach achieves better results on common DR datasets. Our contributions can be listed as
follows:

1. We proposed an AMSFuse network that integrates global and local features at multiple scales. This
network adaptively captures both semantic information and local spatial features through global and
local feature blocks.

2. We introduced an integrated attention mechanism to refine the fused global and local features,
highlighting critical pathological regions for enhanced diagnostic precision.

3. The proposed model achieves state-of-the-art performance with 86.3% accuracy on the APTOS dataset
and 96.6% on the RFMiD dataset, demonstrating competitive or superior performance compared to
existing methods.

2 Related Work

2.1 DR Classification Based on CNN
Due to the complexity of eye fundus images, traditional approaches for classifying diabetic retinopathy

have faced difficulties, which have limited early-stage identification. Convolutional neural networks (CNNs),
one deep learning technique, has demonstrated potential in tackling these issues by leveraging artificial
intelligence for classification [3]. Deep learning methods have shown great potential for diagnosing and
categorizing DR, which is a leading cause of blindness in patients with diabetes. These techniques are
particularly beneficial for the early detection and classification of DR, several studies have suggested using
deep learning models, including MobileNetV2 [4], VGG16 [5], DenseNet121 [16], and ResNet50 [16]. These
models have shown to be useful in automating the diagnosis process, showing good results when identifying
DR based on the retinal fundus.

2.2 DR Classification Based on ViT
ViT has shown promising results in medical image classification tasks [6], including DR classification.

With new findings, researchers have investigated the application of transformer-based models such as
BEiT [7], DeiT [8], CaiT [17], TransMIL [18], and MIL-ViT [19] for automated comprehension of DR severity
from fundus images. Transformer models have achieved significant success in the field of computer vision
applications, despite their superior performance in natural language processing [20]. Recent models such as
Mvitv2 [21], ViT-CoMer [22], and EfficientViT [22] have enhanced the performance of the ViT architecture,
facilitating the extraction of global features. Furthermore, compared to conventional convolution-based
techniques, the use of pre-trained transformers that have been optimized for use on DR datasets.
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2.3 Multi-Scale Feature Fusion
Multi-scale feature fusion is vital for accurately classifying medical images. To tackle the limitation

of insufficient local features, DeiT [8] introduced a distillation token to combine CNN features with ViT.
Additionally, T2TViT [23] proposed a designed method to improve the Vision Transformer’s ability to
capture local features. Methods such as CMT [13], Conformer [14], VitAE [10], and StoHis [11] demonstrate
that integrating local features with global representations significantly improves the Transformer’s ability
to notice small local features. Furthermore, models such as MFFM [24] and SegR-Net [25] Although
these models perform exceptionally well on common datasets like ImageNet and various downstream
tasks, they do not achieve the same success in the medical imaging domain. This shortfall is due to the
insufficient datasets of medical images, where pathological features are more scattered and challenging to
detect compared to ordinary images.

In order to improve DR lesion classification, [26] offers multi-scale feature fusion. However, it primarily
focuses on local features, limiting its ability to capture the global feature context, which is necessary for
accurate DR classification.

Therefore, we decided to leverage adaptive features along with multi-scale global-local characteristics.
Our novel approach, AMSFuse, presents an adaptive parallel fusion network that is developed to maintain a
parallel structure and prevent interference between local and global features. Convolutional layers specialize
in detecting and extracting local patterns and features within images, such as edges and textures. On the
other hand, ViT utilizes a transformer architecture, enabling it to analyze the entire image at once, capturing
global context at different parts of the image simultaneously without the need for sequential processing. These
features are efficiently integrated within this network by an adaptive feature fusion block, which maintains
the integrity of both global and local blocks. Furthermore, we incorporate IAM to refine the fused features,
emphasizing relevant regions and enhancing the overall classification accuracy for DR.

3 Proposed Method

3.1 Architecture Overview
As shown in Fig. 2, the AMSFuse network, introduced as a new method for DR classification, aims to

adaptively capture both local spatial details and global semantic representations of fundus images at varying
scales. This is achieved by employing a parallel structure that extracts global and local information through
distinct feature blocks. The features are then adaptively fused using the AMSFuse block, and a downsampling
step is performed. This process is repeated across four stages. Finally, the output from the last AMSFuse
Block is processed through an integrated attention mechanism, followed by a Global Average Pooling layer,
a Layer Norm layer, and a Linear layer to produce the classification result. This network facilitates a com-
prehensive integration of multi-scale global and local features, significantly enhancing the accuracy of DR
classification.
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Figure 2: Proposed AMSFuse network

3.2 Local Feature Block
Local spatial features in fundus images are crucial. The local feature block, depicted in (1), utilizes a 3 × 3

depthwise convolution, a specific type of grouped convolution where each group contains a single channel.
This depthwise convolution significantly reduces the FLOPs of the network. Following this, cross-channel
information is integrated through linear layers [9]. The extracted local features are then fed into the AMSFuse
block, as shown in (1). The output features, denoted by Ci , where i = 1, 2, . . . , N and N represents the number
of blocks, are computed through a combination of two operations:

• Depthwise Convolution: A 3 × 3 depthwise convolution operation f depth3×3 is applied to the previous
layer’s output features Ci−1. This operation extracts spatial features from Ci−1 while preserving the
number of channels.

• Linear Transformation and Addition: The result of the depthwise convolution is passed through a
linear transformation (f_1 × 1) with a 1 × 1 kernel. Finally, this transformed output is added element-wise
to the previous layer’s features Ci−1.

Ci = f 1×1(LN( f depth3×3(Ci−1))) + Ci−1 (1)

f depth3×3 is the depthwise convolution function, while LN is the layer normalization applied to the
convolved features. The linear transformation f 1×1 integrates cross-channel information to provide efficient
extraction and aggregation of local features before input into the AMSFuse block.



5158 Comput Mater Contin. 2025;82(3)

3.3 Global Feature Block
The global feature block denoted by Vi for i = 1, 2, . . . , N , where N is the number of blocks utilizes a

pre-trained ViT model [6]. This model processes the image by first dividing it into patches and embedding
them into a higher-dimensional space. These embeddings are then fed into transformer encoder blocks,
which consist of multi-head self-attention layers and feed-forward networks. The self-attention layers allow
the model to focus on informative parts of the image by learning relationships between different patches.
The feed-forward networks introduce non-linearity, the output from the last encoder block, which captures
high-level semantic information about the image content. The final feature representation is passed as input
to the AMSFuse block for further processing.

3.4 AMSFuse Block
The AMSFuse block, indicated by Ai for i = 1, 2, . . . , N , where N represents the number of blocks, is

designed to effectively integrate local and global features extracted from various layers. This integration
encompasses different representations and semantic information, enabling a more comprehensive feature
fusion. It is designed to enhance fusion features by adaptively focusing on important feature channels.
AMSFuse block receives two sets of input features: global features extracted by the global Feature Block
(denoted as Vi) and local features extracted by the local Feature Block (denoted as Ci). These features are
obtained at different semantic scales and carry complementary information about the retinal image. To
ensure that the features from both sources are compatible for fusion, the adaptive feature pooling step is
employed. This step adjusts the spatial dimensions of the global features to match those of the local features.
It achieves this by applying adaptive average pooling, which ensures that the global features are downsampled
or upsampled appropriately without losing crucial semantic information. V ′i denotes the global feature map
after it has been resized using adaptive average pooling the process is depicted in (2):

V ′i = AdaptiveAvgPool(Vi , size = Ci .shape[−2 ∶]), (2)

after matching the spatial dimensions, the global and local features are combined through element-wise
addition. This operation effectively merges the high-level semantic information from the global features
with the fine-grained details from the local features, providing a richer and more comprehensive feature
representation the process is depicted in (3):

Ai = V ′i + Ci , (3)

where (Ai) the combined features are then passed through the fusion block, which consists of several stages,
each incorporating a 3 × 3 depthwise convolution followed by a 1 × 1 convolution. The depthwise convolution
extracts spatial information, while the 1 × 1 convolution integrates cross-channel information. This dual-
convolution approach ensures that the fused features retain both spatial and channel-wise information from
the original global and local features the process is depicted in (4):

A′i = f depthwise 3×3(Ai), (4)

A′i represents the feature map after applying the 3 × 3 depthwise convolution to Ai . as depicted in (5),
A′′i represents the feature map after applying the 1 × 1 convolution to A′i .

A′′i = f 1×1(A′i). (5)
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3.5 Integrated Attention Mechanism (IAM)
To further refine the fused features, we propose an Integrated Attention Mechanism. This mechanism

integrates features from various stages of the model, including the global features block, local features block,
and adaptively fused features from the AMSFuse block, depicted in (6), the reduced feature map, indicated
as R, is created by concatenating the global features (Vi), local features (Ci), and adaptively fused features
(Ai) from the AMSFuse block, followed by a 1 × 1 convolution to reduce the number of channels.

R = Conv2d(cat(Vi , Ci , Ai)). (6)

After reducing the feature map, it is passed through the IAM. The query, key, and value tensors are
obtained from the input feature map R using 1 × 1 convolutions with adaptable weight matrices WQ , WK , and
WV . These tensors are then reshaped and permuted to facilitate the dot product operation. The dot product
of Q and K is scaled by

√
dk and passed through the softmax function to obtain attention weights. These

weights are used to compute a weighted sum of the value tensor V, resulting in the final attention-weighted
output. The query, key, and value are calculated as follows (7):

Q =WQ × R, K =WK × R, V =WV × R. (7)

The attention mechanism calculates the output by taking the dot product of queries Q and keys K, scaling
it by the square root of the key dimension dk using the softmax function and then multiplying the result by
the values V depicted in (8).

Attention(Q , K , V) = softmax(Q × KT
√

dk
) × V , (8)

the final output from the IAM, after applying the attention mechanism is computed as (9).

Oi = σ(Conv2(ReLU(Conv1(Ai)))), (9)

where Oi is the final output of the Integrated Attention Mechanism (IAM) after applying a set of transfor-
mations to the fused feature map Ai . To obtain Oi , first apply a convolutional layer (Conv1) to the input Ai ,
followed by a ReLU activation function, another convolutional layer (Conv2), and finally a sigmoid activation
function (σ). The transformations produce a refined representation of the input feature map, which is then
passed into the classifier to generate the final classification result.

The Integrated Attention Mechanism (IAM) effectively leverages the combined feature map, by dynam-
ically focusing on different parts of the input feature map, (IAM) enhances the model’s ability to capture
complex dependencies and relationships within the data, leading to improved performance. The final output
fed to the classifier to obtain the classification.

3.6 Algorithm Summary
Algorithm 1 provides a comprehensive overview of the AMSFuse network. The methodology begin

with the extraction of local and global features through dedicated feature extraction blocks. These features
are subsequently fused within the AMSFuse block using an adaptive fusion strategy, ensuring a seamless
integration of multi-scale information. The Integrated IAM further refines the fused features by prioritizing
critical regions and suppressing irrelevant information, enhancing the model’s focus on diagnostically
significant areas. This systematic approach leverages both global contextual and localized spatial information,
resulting in a robust and highly accurate classification of DR severity.
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Algorithm 1: AMSFuse algorithm for diabetic retinopathy classification
1: Input: Retinal fundus images
2: Output: Diabetic retinopathy classification
3: Step 1: Feature Extraction
4: Extract global features Vi using a pre-trained Vision Transformer (ViT) and local features Ci using

depthwise convolutions (Eq. (1)).
5: Step 2: Adaptive Fusion
6: Adaptively fuse Vi and Ci with the AMSFuse block (Eqs. (2), (3)).
7: Step 3: Integrated Attention Mechanism (IAM)
8: Refine the fused features using IAM (Eqs. (6)–(9)).
9: Step 4: Classification

10: Pass the refined features through Global Average Pooling, Layer Normalization, and a Linear layer to
produce class probabilities. The class with the highest probability is selected as the final prediction.

4 Experimental Results and Visualization
The AMSFuse model is trained using the cross-entropy loss function, which is commonly used for

classification tasks. This loss function measures the difference between the predicted class probabilities and
the actual class labels, and its formula is as follows:

Loss = −
n
∑
i=1

yi log ŷi . (10)

In Eq. (10), yi represents the ground truth label of sample i, and ŷi represents the predicted probability
of sample i being the target label.

We ran a series of experiments with two datasets to evaluate the AMSFuse model’s effectiveness and
reliability. The outcomes of these trials show that, in terms of classification performance, our method
performs better than earlier state-of-the-art network models. In the subsequent sections, we will offer an
in-depth analysis of the datasets used, outline the evaluation metrics utilized, and describe the experimental
setup. Following this, we will present the results of our experiments across all datasets, including a
comprehensive examination of our model’s performance through a series of ablation studies conducted on
the APTOS dataset.

4.1 Dataset
We utilized two publicly available datasets for evaluating the performance of the AMSFuse model:

APTOS2019 and RFMiD.
The APTOS2019 Blindness Detection Dataset [27] includes 5590 fundus images with five DR classi-

fications labeled into various stages of DR: No DR (label 0), Mild (label 1), Moderate (label 2), Severe (label
3), and Proliferative (label 4). Only the annotations of the training set (3662 photos) are publicly accessible.
These annotations were randomly divided into 70% for training, 15% for validation, and 15% for testing.

The RFMiD Retinal Fundus Multi-disease Dataset [28] contains a total of 1900 fundus images, and we
exclusively utilize it for diagnosing diabetic retinopathy. In both datasets, we followed standardized protocols
commonly used in the research community to ensure consistency and fairness in our study. All utilized
images are of high quality, with clear visibility of retinal features necessary for accurate DR classification.
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4.2 Pre-Trained Model
A ViT model trained on a dataset of 345,271 fundus samples is used as the pre-trained model for retinal

disease diagnosis tasks. This dataset includes samples annotated as normal (208,733), diabetic retinopathy
(38,284), age-related macular degeneration (21,962), glaucoma (24,082), and cataract (67,230) [19].

4.3 Evaluation Metrics and Implementation Information
We chose ACC, F1, Precision, and Kappa as the main classification metrics, all derived from the

confusion matrix. This matrix consists of True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) counts. Thus, Accuracy (ACC) is calculated using the following formula Eq. (11), which
represents the proportion of correctly identified samples:

Accuracy = TP + TN
TP + TN + FP + FN

. (11)

Precision, reflecting the model’s prediction accuracy, is computed using Eq. (12), representing the ratio
of true positive samples among those predicted to be positive:

Precision = TP
TP + FP

. (12)

Recall is calculated using the Eq. (13):

Recall = TP
TP + FN

, (13)

this equation calculates the recall rate, which measures the percentage of actual positive cases that the model
accurately identifies.

The F1 score, defined by Eq. (14), balances Precision and the proportion of actual positives:

F1 = 2 × Precision × Recall
Precision + Recall

= 2TP
2TP + FP + FN

. (14)

The Kappa coefficient, used to measure classifier consistency, ranges from 0 (random agreement) to 1
(perfect agreement), and is calculated by Eq. (15):

κ = Po − Pe

1 − Pe
, (15)

where Po represents the observed agreement, which is the actual accuracy of the model, calculated as the
proportion of instances where the model’s predictions agree with the ground truth. Pe is the expected
agreement by chance, calculated based on the marginal frequencies of the classes in the dataset.

4.4 Parameter Tuning and Analysis
To optimize AMSFuse, we conducted a grid search for key hyperparameters. The learning rate was

set to 1e−4 after testing values from 1e−6 to 1e−3, ensuring a balance between convergence speed and
stability. AMSFuse block and IAM parameters were fine-tuned to enhance multi-scale feature fusion and
emphasize critical image regions. For comparison methods, we used the parameters reported in their
original publications for fairness. Additionally, the model was trained for a total of 100 epochs, determined
based on preliminary experiments to ensure sufficient learning without overfitting. A batch size of 32 was
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selected to balance computational efficiency and model performance. The optimizer used was AdamW with
a momentum of 0.9 and a weight decay of 0.01 to regularize the model and improve generalization. The
minimum learning rate was set to 1e−6 to allow for fine-tuning during the later stages of training, shown
in Table 1.

Table 1: Selected hyperparameters and training configuration for AMSFuse

Hyperparameter/Configuration Value
Framework PyTorch

GPU NVIDIA A100-SXM4-40 GB
Optimizer AdamW

Learning rate 1e−4

Min learning rate 1e−6

Optimizer momentum 0.9
Batch size 32

Number of epochs 100
Weight decay 0.01

Number of layers 6
Image size 384 × 384

4.5 Comparison with Other Advanced Models
DR Classification with APTOS Dataset. The comparison on the APTOS2019 dataset, shown in Table 2,

clearly shows that the AMSFuse network outperforms several state-of-the-art methods for diabetic retinopa-
thy (DR) grading. AMSFuse stands out with an impressive accuracy of 86.3%, an F1 score of 86.2%, and
a Kappa coefficient of 92.8%, which are the highest among the models compared. This indicates that
AMSFuse not only accurately identifies DR cases but also provides reliable and balanced performance. The
improvements over other models, including DLI [29], BiFormer-B [30], EfficientViT [31], and even advanced
architectures like ViT-CoMer [22] and MIL-ViT [19]. Fig. 3 shows the experimental results visualization.

Table 2: Comparison with state-of-the-art DR classification methods on APTOS2019

Method Acc (%) F1 (%) Kappa (%)
DANIL [32] 83.8 67.2 –

GREEN-ResNet50 [33] 84.4 83.6 90.8
GREEN-SE-ResNext50 [33] 85.7 85.2 91.2

UniFormer-B [34] 80.2 ± 0.4 79.5 ± 0.3 88.0 ± 0.2
BiFormer-B [30] 81.0 ± 0.5 80.5 ± 0.4 89.0 ± 0.3
TransMIL [18] 82.5 82.9 91.5

Mvitv2 [21] 82.6 ± 0.3 82.6 ± 0.4 90.7 ± 0.2
ViT-CoMer [22] 83.2 ± 0.4 83.0 ± 0.5 91.2 ± 0.3
EfficientViT [22] 84.1 ± 0.3 84.4 ± 0.2 91.9 ± 0.4

MIL-ViT [19] 85.8 ± 0.2 85.5 ± 0.3 92.3 ± 0.2
AMSFuse (Ours) 86.3±0.2 86.2±0.3 92.8±0.2
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Figure 3: PR curve, ROC curve, confusion matrix, and t-SNE visualization on APTOS

DR Classification with RFMiD Dataset. In the comparison of the RFMiD2020 dataset, shown
in Table 3, the AMSFuse network outperforms various leading diabetic retinopathy (DR) classification
methods. AMSFuse has the highest metrics, with an accuracy of 96.6%, F1 score of 96.1%, precision of
97.1%, and recall of 96.5%. These results demonstrate the model’s performance to accurately and reliably
categorize DR instances. Other models, such as ResNeXt50 [35] show lower performance metrics, with
ResNet34 obtaining 87.8% accuracy and ResNeXt50 achieving 89.8%. Mvitv2 [21] and BiFormer-B [34]
perform well, but fall short of AMSFuse, with accuracies of 88.0% and 88.5%, respectively. Advanced models
such as TransMIL [18], EfficientViT [31], and ViT-CoMer [22] demonstrate improvements, with CSA-DMIL
reaching 90.6% accuracy. However, the AMSFuse model shows better results compared to these models.
Notably, the MIL-ViT [19] model achieves competitive results with 93.2% accuracy, but it does not surpass
the performance of AMSFuse. Fig. 4 shows the experimental results visualization.

Table 3: Comparison with state-of-the-art DR classification methods on RFMiD2020

Method Acc (%) F1 (%) Precision (%) Recall (%)
ResNeXt50 [35] 89.8 93.6 92.9 94.4

Swin [36] 88.5 92.8 92.2 93.4
UniFormer-B [34] 88.8 ± 0.3 89.1 ± 0.2 88.7 ± 0.3 89.6 ± 0.2
BiFormer-B [30] 89.1 ± 0.2 89.5 ± 0.3 89.1 ± 0.2 90.2 ± 0.3
CSA-DMIL [37] 90.6 93.9 94.0 93.8
LG-DMIL [38] 89.8 93.7 94.1 94.4
TransMIL [18] 91.1 94.5 95.5 93.6

Mvitv2 [21] 91.3 ± 0.3 94.3 ± 0.2 95.8 ± 0.3 94.1 ± 0.2
ViT-CoMer [22] 91.6 ± 0.2 95.1 ± 0.3 95.4 ± 0.2 94.6 ± 0.3
EfficientViT [31] 92.2 ± 0.3 96.4 ± 0.2 94.2 ± 0.4 93.1 ± 0.3

MIL-ViT [19] 93.2 ± 0.2 95.8 ± 0.3 96.8 ± 0.2 94.9 ± 0.2
AMSFuse (Ours) 96.6±0.2 96.1±0.2 97.1±0.2 96.5±0.3

Figure 4: PR curve, ROC curve, confusion matrix, and t-SNE visualization on RFMiD



5164 Comput Mater Contin. 2025;82(3)

4.6 Ablation Study
We conducted an ablation study to evaluate the impact of the different branches of our network on the

APTOS dataset. The study is divided into three levels that examine the contributions of the local block, global
block, AMSFuse, and IAM.

Effectiveness of Local Block, Global Block, and AMSFuse. We started by comparing the performance
of running the local and global blocks individually using AMSFuse. The results demonstrate that the global
block outperforms the local block, and the application of AMSFuse considerably increases performance. The
local block obtained 75.0% accuracy, 60.0% F1 score, and 65.0% Kappa, whereas the global block increased
these metrics to 78.0%, 68.0%, and 70.0%. The integration of AMSFuse led to significant gains, obtaining the
greatest metrics with an accuracy of 86.3%, F1 score of 86.2%, and Kappa of 92.8%, shown in Table 4.

Table 4: Experimental results of the effectiveness of local block and global block on the APTOS dataset

Branch Acc (%) F1 (%) Kappa (%)
- Local Block 75.0 60.0 65.0

- Global Block 78.0 68.0 70.0
- AMSFuse 86.3 86.2 92.8

Impact of AMSFuse Block and IAM. An additional experiment was conducted to further assess the
influence of the AMSFuse Block and IAM in the performance of the model. For this ablation experiment,
three configurations were tested:

• Model with the IAM disabled: with only global and local branches without AMSFuse block.
• Model with AMSFuse block disabled: with only global and local branches with IAM.
• Model with AMSFuse and IAM disabled.
• Model with AMSFuse and IAM enabled.

Table 5 the results indicate that the AMSFuse block, along with IAM, significantly contributes to
improved performance. The model with concat and the IAM disabled achieved 79.4% accuracy, 79.6% F1
score, and 83.3% Kappa. On the other hand, the model without the AMSFuse block obtained 80.1% accuracy,
80.5% F1 score, and 92.0% Kappa. In contrast, the model that integrates both blocks exhibited remarkable
improvements with an accuracy of 86.3%, F1 score of 86.2%, and Kappa of 92.8%, which demonstrates the
benefits of adaptively fusing multi-scale features without compromising their individual representation.

Table 5: Ablation study results on AMSFuse block and IAM on APTOS dataset

Branch Acc (%) F1 (%) Kappa (%)
- Global + Local (Concat) 79.4 79.6 83.3
- Global + Local + IAM 80.1 80.5 92.0

- AMSFuse − IAM 85.8 85.5 92.3
- AMSFuse + IAM 86.3 86.2 92.8

The ablation study results indicate that both the AMSFuse Block and IAM play crucial roles in enhancing
the performance of the proposed network. The global block consistently outperforms the local block when



Comput Mater Contin. 2025;82(3) 5165

used individually, and the integration of these blocks via AMSFuse further boosts accuracy. The IAM further
refines the feature fusion, leading to significant gains in classification metrics.

5 Discussion
While AMSFuse has demonstrated performance in grading DR, there are several constraints to consider.

Variability in datasets, such as differences in image quality and patient demographics, may influence how
well the model performs in different clinical contexts.

To better understand AMSFuse’s effectiveness, it’s helpful to compare its performance with current
clinical standards. For instance, research has shown that deep-learning algorithms can sometimes match the
accuracy of manual grading by retinal specialists, particularly in terms of sensitivity and specificity across
various stages of DR classification [39]. In this regard, AMSFuse’s results suggest that it has the potential to
improve conventional diagnostic techniques in healthcare settings.

Interpretability is crucial for clinical acceptance. Making the model’s decisions more transparent will
help to build trust among healthcare professionals. Future work will focus on integrating more interpretable
components. With the potential to adapt AMSFuse for related tasks, such as medical image segmentation,
we expect that our approach could improve segmentation accuracy compared to traditional methods, and
we plan to investigate this further. By capturing global context and local details through adaptive multi-scale
feature fusion, and highlighting important regions with the IAM, we hope to enhance the model’s ability to
focus on critical anatomical features. This could potentially lead to better segmentation performance, but
further research is needed to confirm this. Furthermore, AMSFuse’s computational demands and the need
for high-performance hardware may limit its use in resource-constrained environments. By addressing these
areas, we aim to make AMSFuse a reliable and versatile tool for clinical use.

6 Conclusion
We introduced AMSFuse, an Advanced Multi-Scale Fusion framework designed to improve the classi-

fication of diabetic retinopathy (DR) from retinal fundus images. The core innovation lies in the AMSFuse
block, which combines multi-scale feature fusion with an Integrated Attention Mechanism (IAM) to capture
both global and local features. This approach enables the model to focus on critical regions in the images,
enhancing classification accuracy across different DR stages. Our experiments on the APTOS2019 and
RFMiD2020 datasets demonstrated that AMSFuse outperforms existing state-of-the-art models, achieving
higher accuracy, precision, recall, and F1 scores. These results highlight the effectiveness of our multi-
scale fusion strategy and attention mechanisms in capturing the complex patterns associated with DR. By
improving the accuracy of DR classification, AMSFuse has significant implications for medical image analysis
and automated DR screening. It can assist ophthalmologists in early detection and treatment planning,
potentially reducing the risk of vision loss among diabetic patients. Its scalability and efficiency make
it suitable for integration into clinical workflows, meeting the growing demand for automated screening
solutions. For future work, we plan to extend our framework to other retinal diseases, explore additional
modalities like optical coherence tomography (OCT) images, and assess the generalizability of AMSFuse in
diverse clinical settings.
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