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ABSTRACT: The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos
without utilizing annotation information. Due to the higher similarity in appearance between vehicles compared to
pedestrians, pseudo-labels generated through clustering are ineffective in mitigating the impact of noise, and the
feature distance between inter-class and intra-class has not been adequately improved. To address the aforementioned
issues, we design a dual contrastive learning method based on knowledge distillation. During each iteration, we utilize
a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label
categories. By conducting contrastive learning between the two student models, we extract more discernible vehicle
identity cues to improve the problem of imbalanced data distribution. Subsequently, we propose a context-aware
pseudo label refinement strategy that leverages contextual features by progressively associating granularity information
from different bottleneck blocks. To produce more trustworthy pseudo-labels and lessen noise interference during
the clustering process, the context-aware scores are obtained by calculating the similarity between global features
and contextual ones, which are subsequently added to the pseudo-label encoding process. The proposed method
has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive
experimental results on publicly available datasets.

KEYWORDS: Unsupervised vehicle re-identification; dual contrastive learning; pseudo label refinement; knowledge
distillation

1 Introduction
The purpose of vehicle re-identification (Re-ID) is to retrieve vehicles with specific identities under

cross-camera surveillance systems [1,2]. Unsupervised vehicle Re-ID refers to the accurate retrieval of a
given vehicle image from gallery datasets without any data annotation [3–5]. Due to the high similarity
in appearance of vehicles, the goal of unsupervised vehicle Re-ID is to effectively distinguish the feature
distribution within the data domain. Recently, with the development of neural networks [6,7] in the field
of computer vision, unsupervised vehicle Re-ID methods have achieved significant performance on public
datasets using clustering labeled pseudo labels [8–11]. However, existing works only consider the use of
global features as clustering inputs to generate pseudo-labels, which not only generates a large amount of
pseudo-label noise but also affects the optimization of unsupervised data distribution.
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Due to the high similarity among vehicles, this poses challenges to the judgment in some unsupervised
vehicle Re-ID works [8,9,12] that rely on visual representation. Recent studies have employed contrastive
learning techniques to address the distance relationships between samples [11,13–15]. By constructing positive
and negative sample pairs and optimizing the inter-cluster distance, these methods effectively segregate hard
negative samples and train the network. For instance, Dai et al. [13] established contrastive learning within the
centroid of clustering to optimize the distance between samples and centroids. Lan et al. [15] segmented the
image into three parts and utilized three centroid bank for contrastive learning. However, this approach may
lead to excessive memory consumption. Although these contrastive learning methods have demonstrated
remarkable performance in unsupervised vehicle Re-ID tasks, they overlook the distributional characteristics
in the data domain. Consequently, the development of methodologies that optimize data distribution and
construct superior visual representations remains an issue deserving of further investigation.

To tackle the issue of pseudo-label noise, previous works utilize the pseudo-label refinement strate-
gies [9,10,15,16]. These methods use clustering filtering or knowledge distillation-based feature optimization
to generate accurate label information. For example, Chen et al. [10] used contrastive learning by calculating
the similarity score between the original image and the enhanced image as a pseudo label of the image.
Wang et al. [9] adopted a joint clustering filtering method with a teacher network to filter out labels with
low similarity scores and realize the assignment of false labels to images. However, due to the loss of feature
information extracted by convolutional neural network (CNN), these methods rely on global features as
the basis for image clustering or pseudo-label assignment, while neglecting the information between image
contexts. The above-mentioned methods may make it more difficult for the Re-ID model to distinguish
between hard samples.

Our motivation is to explore the granularity information of bottleneck blocks, reduce the noise
interference by clustering, and optimize the distribution of vehicle features. Specifically, our goal is to
increase the distance between inter-class features while reducing the distance between intra-class features. To
overcome the limitations of aforementioned methods, this paper proposes a novel fully unsupervised vehicle
Re-ID framework consisting of two components: the distillation-based dual contrastive learning method
(DCL) and context-aware pseudo label refinement (CPLR). The proposed method gradually correlates the
granularity of information at different levels of the network, effectively reducing noise interference in the
process of generating pseudo labels for global features. Additionally, we constructed a contrastive learning
method between the student network and the teacher network to deeply explore the feature distribution
within the data domain.

Our contributions can be summarized as follows:

• A dual contrastive learning framework based on knowledge distillation is designed to to improve the
distribution of unsupervised sample features. In the clustering stage, the teacher model is used to divide
the domain data after clustering, provide the student model joint contrastive learning, and discover the
sample information with more discriminative ability.

• We propose a context-aware pseudo label refinement strategy to improve the awareness of image context.
The contextual features of images are calculated using the differences in granularity information between
different levels of the network, and the context-aware score calculated with the global features is used to
provide reliable pseudo-labels.

• Extensive experimental results demonstrate the effectiveness of our method, significantly outperforming
existing state-of-the-art methods on several mainstream vehicle Re-ID tasks.

The remaining structure of this paper as follows. Section 2 reviews the related work. Section 3 provides
a detailed introduction to the proposed methods. Section 4 presents experimental data to validate the
superiority of the proposed methods. Section 5 concludes this paper.
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2 Related Work

2.1 Unsupervised Vehicle Re-ID
Existing unsupervised vehicle Re-ID methods mainly focus on how to smoothly assign the one-hot label

weights to other categories after clustering. The feature space-based label smoothing methodology primarily
entails establishing potential correlation between global and localized features [15–18], or augmenting
the global feature representation through the incorporation of supplementary modal information [1,19].
Cho et al. [16] proposed the partially guided pseudo-label refinement (PPLR) method, which exploits the
complementary relationship between global and local features to reduce label noise. He et al. [19] proposed
a graph-based progressive fusion network to fuse the RGB features and multi-infrared features of vehicles.
Furthermore, inspired by transfer learning methodologies that leverage intra-domain category relationships,
several endeavors [4,20–22] have employed style transfer techniques to generate samples characterized by
distinct domain styles and then mine the intra-domain and inter-domain category relationships to smooth
label weights. Wang et al. [20] proposed dual constrained label smoothing to monitor unlabeled source
domain data from few-sample source domain data to mine the information of source domain data, and
guide the style transfer of different domain data through domain difference penalty. Ding et al. [21] proposed
adaptive exploration to deal with the uneven distribution of image domains after clustering. These methods
have demonstrated excellent performance in addressing noise and data domains. However, label smoothing
in these methods only utilizes global and local features, and irrelevant local features may introduce excessive
redundancy, thereby increasing computational load and potentially reducing feature discriminative ability.
This work explores how to extract contextual features from the model blocks to improve the quality of
pseudo labels.

2.2 Contrastive Learning
The contrastive learning method in unsupervised vehicle Re-ID tasks is mainly based on Momentum

Contrast (MoCo) [23] to optimize features distribution by constructing positive and negative samples. The
first paradigm relies on clustering outcomes, wherein datasets are divided into positive and negative sample
pairs, followed by comparative learning conducted on these instances [10,11,24,25]. Ge et al. [11] proposed a
self-paced contrastive learning framework to provide hybrid supervision through multiple different forms
of category prototypes to fully exploit the distribution of data within clusters. Hu et al. [25] proposed a
hard sample-guided hybrid contrastive learning method to improve feature representation by contrastive
learning clustering centers and instance samples. The second paradigm conducts samples to perform
contrastive learning on the centroids of clusters, and update the features of centroids with momentum in
each learning process [13,15,26]. Dai et al. [13] proposed the centroid contrastive learning method to better
partition the feature distribution of different instances. Yang et al. [26] proposed a contour-guided mask
autoencoder method to extract the edge information of the vehicle contour to improve the quality of the
label. These methods have contributed to exploring and optimizing the feature distribution of data, but they
have generally neglected the imbalance of sample distribution in unsupervised processes. In contrast, our
motivation is to explore the imbalance of the initial pseudo-label assignment and further optimize the feature
distribution of the samples.

2.3 Knowledge Distillation
Knowledge distillation is an approach for teaching the knowledge of a complicated model to a simple

model [27], which tries to lead the training of a student model on a downstream task by using the prior
knowledge of a teacher model on an upstream job. Several recent research studies [9,15,28,29] have used
knowledge distillation into unsupervised vehicles Re-ID task. Typically, these methods use the teacher model
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for clustering to guide the training of the student model, and the student network model updates the teacher
network using exponential moving average (EMA). Wang et al. [9] proposed an uncertainty-aware clustering
method that assigns pseudo-labels through collaborative filtering of teacher and student networks. Lan
et al. [15] employed an off-line distillation approach by training a teacher model from noisy pseudo-labels,
which is then used to guide the learning of a student model. Ge et al. [28] utilized the joint training method of
multi-teacher networks to perform joint label smoothing operations on the labels of images through the joint
learning of two student networks. The aforementioned methods illustrates the superior efficacy of distillation
techniques in the Re-ID field. To some extent, these methods rely on the quality of the pseudo-labels extracted
by teacher model but ignore the noise existing in the initial teacher model. Distinct from those methods, we
endeavor not only to use the teacher model for the extraction of high-quality pseudo-labels but also to derive
more reliable information from the student model.

3 Proposed Method

3.1 The Overall Framework
As shown in Fig. 1, We extract contextual features of the extracted model from the training set. In the

clustering stage, the teacher model is used to calculate the similarity distance matrix of the global features and
the contextual features respectively, and the two pair-wise distances are clustered after similarity fusion to
reduce the noise influence of global features. At each iteration, the training set is randomly divided into two
subdomains according to the pseudo label category to simulate different data distributions for the learning of
the dual contrastive model. Then, each student model predicts the two extracted features and performs label
smoothing between the prediction vector and the one-hot label to obtain more reliable pseudo-labels for the
learning of the loss function. The student model performs parameter updates under the joint supervision
of softmax-triplet contrastive loss, context-aware identity discrimination loss, and centroid contrastive loss.
After each round of learning, the dual contrastive model updated the parameters of the teacher model by
collaboration EMA (Co-EMA) to obtain a more stable distillation effect.

Figure 1: The overall flow of the proposed method
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3.2 Distillation-Based Dual Contrastive Learning
The classification of unsupervised samples is limited by the quality of feature extraction, particularly

during the early training phase when the pseudo-label distribution is uneven, which makes it challenging
for the model to learn to differentiate hard negative data. Inspired by Shi et al. [30], the study employed
contrastive learning to optimize the distance of data features in the dataset. We consider the variances
in data distribution within clusters and introduce a dual contrastive learning framework incorporating
knowledge distillation. This framework consists of two student models with identical network topology and
a teacher model.

Given D = {x1 , x2, . . . , xn} denote the unlabeled training dataset, the global feature Fg =
{ f g

1 , f g
2 , . . . , f g

n } is obtained by the network fθ (xi) extraction. In the clustering phase, we first use the
teacher network to cluster the data domain D. Subsequently, the samples of each cluster are randomly
divided into two subdomainsD1 andD2 based on the β ∈ (0, 1) ratio. We allocate centroid memory banks
for each subdomain to facilitate online learning for students. The centroid is obtained through Eq. (1):

φ j =
1

∣C j∣
∑i∈C j

f g
i , (1)

where C j is the number of samples in category j, The value of C j changes with each round clustering results.
During each iteration of training, the centroid will be updated. The update for: φt

j ← mφt−1
j + (1 − m) f g

i ,
where m is momentum update factor.

The pioneering work Wei et al. [3] and Lan et al. [15] employed the cluster-level noise-contrastive
estimation (ClusterNCE) loss for contrastive learning, optimizing feature distribution by generating pair-
wise positive and negative samples. However, information from hard samples may be erroneously grouped
into the same cluster. We utilize soft label information (Section 3.3) to guide ClusterNCE, aiming to balance
the convergence rates of different types of samples through soft labels. Shown in Fig. 2, we employ a strongly
supervised prototype as supervisory information, considering pairs within the same cluster as positive and
those between different clusters as negative. The centroids contrastive loss Lcc l can be defined as Eq. (2):

Lcc l = −∑D
i=0 yi ⋅ log

ex p (⟨ f g
i ⋅ φT

i ⟩ /τ)

∑C
j=0 ex p (⟨ f g

i ⋅ φT
j ⟩ /τ)

, (2)

where ⟨⋅⟩ indicates cosine similarity, τ is a temperature hyper-parameter, yi is the pseudo label of instance
i. The pseudo labels are allocated from each subdomain. Therefore, the total loss for one student training is
as Eq. (3):

Lneti = Lcc l +Lc id , (3)

where Lc id represents the context-aware identity discrimination loss (Section 3.3). After each iteration, the
teacher model will be jointly updated by the dual contrastive model in the Eq. (4) in a Co-EMA manner:

f t
θT

= α f t−1
θT

+ (1 − α) (β fθ 1 + (1 − β) fθ2), (4)

where f t−1
θ T

denotes t − 1 hour iterative teachers model parameters, f θ1
and f θ2

respectively two students
model parameters. The parameter α is the hyper-parameter for updating the momentum of the model, and
β is the scaling factor used to partition the data domainD.
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Figure 2: LossLccl description, monitored by label smoothing method, simple samples are closer to the centroid, while
hard samples have a slower speed of approaching the centroid

To handle the global features f g
i and their pseudo-labels yi that are extracted by each student network,

we also utilize softmax-triplet loss [31]. In addition, we merge the features extracted from the sub-domains,
and jointly calculate the softmax-triplet contrast loss of the dual contrastive network and the teacher network,
to better eliminate mistake amplification. The expression is as Eq. (5):

Ltr i_S = −∑ log
⎛
⎝

e∥ f g
i − f g

i ,n∥

e∥ f g
i − f g

i , p∥ − e∥ f g
i − f g

i ,n∥

⎞
⎠

Ltr i_T = −∑ log
⎛
⎝

e∥ f̃ g
i − f̃ g

i ,n∥

e∥ f̃ g
i − f̃ g

i , p∥ − e∥ f̃ g
i − f̃ g

i ,n∥

⎞
⎠

, (5)

where f g
i , f̃ g

i respectively from the student network f θ and teacher network f θ T
extract query instance i

global features. (i , n), (i , p) denote the positive and negative samples of query instance i, respectively.

3.3 Context-Aware Pseudo Label Refinement
Contextual feature extraction. Granularity information typically refers to the degree to which data or

information is subdivided at different levels or scales. As illustrated in Fig. 3, there are significant differences
in the scale of image features presented by different layers of network blocks. It is noteworthy that in this
work, our granularity information is cross-hierarchical. We hierarchically extract granularity information
from four network blocks and achieve progressive correlation through a self-attention (SA) mechanism,
effectively establishing long-term dependencies between these features.

Specifically, we applied 1 × 1 convolution, global average pooling (GAP), ReLU and batch norm (BN) to
feature maps from each stage at different scales, aligning their feature dimensions to 2048. Subsequently, we
utilize the feature maps from the previous layer as Q, and those from the subsequent layer as K and V for
feature enhancement. The contextual features of each layer can be defined as Eq. (6):

SA( fi , f j) = so f tmax (
f j ⋅ f T

i√
dk

) fi , (6)

where fi from the current layer as K & V, f j from the prior layer as Q. In particular, we employ the multi-
head self-attention (MSA) mechanism to establish the relationship of features, which is an extended form
of multiple independent SA modules. It is denoted as MSA = [SA0, SA1 , . . . , SAm]W , where W is the
projection matrix. We empirically set m to 4.
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Figure 3: Illustration of the contextual feature extraction. Association of feature maps extracted from different levels
in the network through a progressive approach

Based on Eq. (6), we compute the contextual feature information between the current layer and the
previous layer in a progressive manner, thereby deriving the contextual features of the image. Let us
review whether SA based contextual feature extraction is necessary? Although the implementation of SA
undoubtedly escalates the complexity of the model, it is noteworthy that, in comparison to traditional
methods of direct feature concatenation, SA can effectively capture the dependency relationships among the
various components of the input data. This capability facilitates a more robust contextual understanding
during the feature extraction process, especially considering the recognition interference that may arise from
the high similarity between vehicle models. We deem that, in addition to relying on the network for extracting
global features of the image, it is also necessary to focus on the contextual information of the image (such
as fine-grained vehicle information: license plates, headlights, logos, etc.). In subsequent experiments, we
conducted further analysis on the impact of contextual feature extraction on the overall performance of
the model.

Optimization of cluster noise. Owing to the inherent informational biases in isolated global feature
clustering, we employ a teacher network to extract both contextual features f c

i and global features f g
i .

Subsequently, during the clustering phase, we compute the Jaccard distance matrix for each feature across
the entire sample denoted Dg , Dc . The weighted pair-wise distance is implemented as follows:

D = (1 − λD) Dg + λD Dc , (7)

where λD is the pair-wise matrix weighting factor. In line with cluster-based methods like Chen et al. [10]
and PPLR [16], we generate one-hot labels using the DBSCAN [32] clustering algorithm. This allows us to
establish hard pseudo-labels y = {y1 , y2 , . . . , yn′} for the training dataset. Because of outliers, the number
of clustered samples n′, is smaller than the training set sample n.

Pseudo-label refinement. Although contextual features are employed during the clustering phase to
mitigate biases introduced by global features, the resulting labels remain fundamentally hard labels. Feature
extraction and clustering algorithms can impact the quality of label assignment, thereby complicating the
attainment of effective generalization. Owing to variations in visual attention regions, contextual features
and global features convey complementary information. By leveraging the global features f g

i and contextual
features f c

i of a query image, we employ cosine similarity to compute a similarity-aware score Si , as Eq. (8):

Si =
f g

i ⋅ f c
i

∥ f g
i ∥2 ∗ ∥ f c

i ∥2
, (8)
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A high similarity perception score means that there is a significant correlation between global features
and semantic context features, and the two information can complement each other to provide a more com-
prehensive feature representation. Conversely, a low similarity perception score means that the intersection
of the two provides unreliable information. q = {q1 , q2 , . . . , qC} is obtained by f θ (x i) prediction get C
category labels. The label yi is smoothed as Eq. (9):

yi = (1 − λh) yh
i + λh [(1 − Si) qg

i + Si qc
i ] , (9)

where λh is a constant and is set to 0.7 in the experiments, yh
i represents one hot label, derived from clustering

algorithm. qg
i , qc

i extracted from global features and contextual features respectively. During the training
phase, the student model’s loss function (Section 3.2) is computed using the trustworthy pseudo labels that
we acquired from label smoothing. The loss associated with context-aware identity discriminationLc id can
be defined as Eq. (10):

Lc id = −yi ⋅ log
⎛
⎜
⎝
(1 − Si)

ex p (qg
i )

∑C
j=1 ex p (qg

j )
+ Si

ex p (qc
i )

∑C
j=1 ex p (qc

j)

⎞
⎟
⎠

, (10)

3.4 Training Objective and Real-Life Application
Overall, the training loss arises from two student networks and a teacher network. The calculation of

the overall framework’s training loss is as Eq. (11):

Ltotal = βLne t1 + (1 − β)Lne t2 + γLtr i_S + (1 − γ)Ltr i_T , (11)

where γ is the comparison weight parameter of the triplet loss of the teacher network and the dual contrastive
network, and β is the training dataset partition factor, which is used to balance the loss weight of the two
student networks.

Clearly, the two student networks are updated the parameters by Ltotal, and the teacher network is
jointly updated with the two student networks in a Co-EMA manner (details in Eq. (4)). The overall training
process is shown in Algorithm 1.

In summary, the real-life application scenarios of the model include:
(1) Vehicle tracking: achieve continuous tracking of target vehicles across cameras. For example, in

cross camera traffic scenarios, the vehicle re identification system can integrate data from various security
surveillance cameras in the city, accurately identify and associate the same vehicle in different video frames,
and construct a complete driving trajectory of suspected vehicles including fake license plates and obscured
license plates, providing key clues for case investigation.

(2) Cross city model deployment: based on unsupervised learning methods, the system can explore the
potential patterns and structures of the data itself, learn directly from a large amount of unlabeled monitoring
data, and do not rely on labeled data for specific traffic scenarios. Therefore, it has better cross city retrieval
capabilities, can adapt to the traffic environment of different cities, and achieve generalized deployment of
the model.
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Algorithm 1: The training procedure of proposed method
Inputs: Initialize the student models { fθ 1 , fθ2}, The teacher model fθT , DBSCAN, Unlabelled training dataset
D, Dataset partitioning factor β.
1. for i = 0 in [1, epochs] do
2. fθT → { f g

i , f c
i } ;

3. Calculate Jaccard distance by { f g
i , f c

i }, and cluster into C clusters through DBSCAN;
4. Divide D in proportion β to category {D1 ,D2} and generate pseudo-label;
5. Initialize cluster memory dictionaries {φD1 , φD2} with Eq. (1);
6. for j = 0 in [1, iterations] do
7. P × K sample query images xD1 , xD2 fromD1 ,D2 respectively;
8. Extract features { f g

i , f c
i } by { fθ 1(D1), fθ2(D2)};

9. Si ← { f g
i , f c

i } with Eq. (9), assign soft label with Eq. (10);
10. Calculate the total loss with Eq. (11);
11. Update centroid memory banks and teacher model parameter with Eq. (4).
12. end
13. end

4 Experiments
In this section, we will experimentally analyze the performance of the proposed method. The following

four issues need to be considered: RQ1: Is the effect of label smoothing better than other methods. RQ2:
How DCL affects the performance of models. RQ3: How to assess the impact of label smoothing beyond
accuracy. RQ4: How to evaluate the contribution of contextual feature to global feature representation.

4.1 Dataset and Evaluation Protocols
VeRi-776 [33] is a basic dataset widely used in vehicle re-identification research. It consists of over 50,000

images captured by 20 cameras covering 776 different vehicles. The training set contains 37,781 images of 576
vehicles, the query set contains 1678 images of 200 vehicles, and the gallery set contains 11,579 images of the
same 200 vehicles.

VERI-Wild [34] is a large-scale vehicle re-identification dataset consisting of 416,314 images of 40,671
vehicles captured by 174 cameras. Different from the VeRi-776 [33] datasets, the VERI-Wild dataset has
differences in illumination, weather and night changes caused by time span. The training set contains 277,797
images of 30,671 vehicles, and the test set contains 128,517 images of 10,000 vehicles and is further subdivided
into three subsets of different sizes: Test3000, Test5000, and Test10000.

Following the general evaluation metrics in the vehicle Re-ID task, we use cumulative matching curve
(CMC) and the mean average precision (mAP) proposed by Zheng et al. [35] to evaluate the performance of
the proposed method.

Rank-k. Rank-k in the CMC curve is used to evaluate the matching degree of the model at different
rankings. Rank-k calculation is as follows:

Rank − K = ∑N
i=1 gt (i , k)

N
, (12)

where N represents the total number of vehicle images in the query set. When there are accurately matched
images in the K-th retrieved images g t(i , k) = 1, otherwise g t(i , k) = 0.
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mAP. The average precision (AP) for each image in the query set is calculated as follows:

AP = ∑M
k=1 P(k) × gt(k)

Ng t
, (13)

where M is the length of the entire gallery set, N g t denotes the number of images in the gallery set with the
same ID as the query image, and P(k) denotes the accuracy of the top k query result. If the ID of the k-th
image is the same as the query image g t(k) = 1, otherwise g t(k) = 0. MAP is the average AP value of the
entire query set N, which can be defined as:

mAP = ∑N
i=1 APi

N
. (14)

mAP comprehensively reflects the accuracy of the model across all retrieval results. A higher mAP
value indicates superior performance of the model in accurately matching vehicles. Conversely, Rank-k
metric signifies the probability that at least one of the top k retrieved results is a positive sample, with
Rank-1 and Rank-5 being common evaluation criteria. These Rank-k metrics can more directly indicate the
retrieval performance of the model in comparison to mAP. Nevertheless, neither Rank-k nor mAP alone
can accurately describe the performance of the re identification system. Therefore, both indicators must be
considered simultaneously to comprehensively represent the retrieval performance of the model.

4.2 Implementation Details
We adopt ResNet50 [36] as ours backbone, we remove all sub-module layers after the fourth layer

and add the GAP operation as the representation of global features. Initialize these two student network
parameters using ImageNet [37]. All experiments were performed on 2× NVIDIA Tesla V100 GPU. Our
training process divided into two stages. The whole training process is divided into 50 epochs, in the image
clustering stage, we use DBSCAN [32] as the clustering algorithm to assign pseudo-labels to images. On the
VeRi-776 dataset, the maximum distance d is set to 0.7, while on the VERI-Wild datasets, the maximum
distance d is set to 0.6. Due to device limitations, all our VERI-Wild experiments use a uniform set of 40,000
images as the training set. During training phase, we chose an initial learning rate of 3 × 10−4, decreasing by
a factor of 10 every 20 epochs. Use the Adam optimizer to optimize the weights of the network and set the
weight decay to 5 × 10−4. To augment the data, we used random horizontal flips and random occlusion [38],
both with probability set to 0.5. During training phase, we set the weighting factor λD of the pair-wise matrix
to 0.7. In addition, the weight coefficient γ of Ltr i_S and Ltr i_T is set to 0.8.

4.3 Ablation Studies
Influence of the Different Modules: To verify the effectiveness of the proposed framework in the

unsupervised vehicle Re-ID task, we conduct experiments to analyze the combination effect of the CPLR
and DCL method. The explanation for each ablation module is as follows:

• “Baseline” means using the traditional clustering-based unsupervised pipeline without any abla-
tion modules.

• “w/ CPLR” indicates that only context-aware pseudo label refinement strategy based on “Baseline”.
• “w/ DCL” indicates employing only dual contrastive learning methods based on “Baseline”.
• “Ours” indicates the use of two proposed ablation modules.
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In the Table 1, we compare the results of different combinations of modules. The results show that DCL
exhibits significant performance in both datasets, owing to its ability to differentiate the distribution of sam-
ples within the two simulated subdomains. Additionally, employing CPLR improved R-1 and mAP by 4.9%
and 4.7% respectively over the “Baseline” in VeRi-776, demonstrating its effectiveness in label purification.
When integrated, the combination further enhanced accuracy, clearly illustrating the complementarity of
the two modules, which offers more robust information in the realm of unsupervised vehicle enrichment.

Table 1: Ablation studies on the impacts of individual components in VeRi-776 and VERI-Wild. “w/” denotes only using
individual ablation modules. “R-1” and “R-5” represent the accuracy of Rank-1 and Rank-5, respectively. In subsequent
experiments, we will keep the definitions of these indicators unchanged

Methods VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
Baseline 79.6 85.6 35.1 51.8 75.9 27.3
w/ DCL 85.2 90.5 40.6 60.7 79.7 31.4
w/ CPLR 84.5 90.0 39.8 58.9 80.0 30.8

Ours 87.8 92.1 43.2 62.8 82.8 32.8

Influence of the Partitioning Factor: To explore the effect of random partitioning factor β in different
dataset domains, we conduct experiments on VeRi-776 and VERI-Wild datasets. In each experiment, we keep
the other hyper-parameters fixed and only adjust the partition factor β. The experimental results are shown
in Table 2. Experimental results show that a small value of β will lead to unreliable identity information
and confidence, while a high value of β will reduce the accuracy of the model. Due to the partition of the
data domain, the centroids update frequency in the subdomain and the loss function of the student network
change, which leads to the network influence on the learning of the information in the sample. Experimental
results prove that the process of pseudo-label assignment will lead to the difference of data distribution in the
domain. Based on the above experimental results, we choose the value of β 0.7 and 0.8 as the basic parameters
of VERI-Wild and VeRi-776 datasets in the subsequent experiments.

Table 2: Factor of partitioning factor β value results on the VERI-Wild and VeRi-776 datasets

Parameters β VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
0.1 80.1 87.8 34.9 51.7 74.9 24.3
0.2 81.5 88.3 35.4 53.7 77.8 25.4
0.3 81.8 88.9 35.5 56.6 78.4 28.8
0.4 83.6 90.5 37.6 59.1 80.0 30.3
0.5 84.7 90.5 39.6 61.5 81.1 31.4
0.6 85.6 91.7 40.8 61.8 81.1 32.0
0.7 87.2 91.5 42.1 62.8 82.8 32.8
0.8 87.8 92.1 43.2 62.4 82.8 32.6
0.9 86.0 90.4 41.2 61.3 80.9 31.2



3932 Comput Mater Contin. 2025;82(3)

Analysis of Loss Function: We explore the effect of different loss functions on model performance
on VeRi-776 and VERI-Wild, and Table 3 displays the results of our loss function ablation. The first row
illustrates the results of utilizing onlyLtri loss, which reduces mAP and R-1 by 8.1% and 12%, respectively. This
indicates that the softmax-triplet loss cannot effectively optimize the model performance. Rows 2 and 3 show
the ablation results of removing Lccl and Lcid, respectively, with mAP dropped by 4.4% and 2.7% in VeRi-
776, respectively. This demonstrates that by including contextual feature, feature quality can be improved
and features with distinct identities may be effectively distinguished in Lc id loss. Additionally, Lccl push
inter-class data farther and intra-class data closer, which will enhance the feature distribution.

Table 3: Ablation studies on the effects of different loss function in VeRi-776 and VERI-Wild

Ltr i (Ltr i_S +Ltr i_T ) Lcc l Lc id VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
√

80.1 87.6 35.2 51.6 73.3 25.1√ √
83.6 90.0 38.8 59.6 80.6 29.6√ √
85.1 90.6 40.5 60.8 81.4 31.0√ √ √
87.8 92.1 43.2 62.8 82.8 32.8

Effect of the label refinement strategy: To answer RQ1. We investigated multiple pseudo-labeling
strategies, ensuring fair comparisons by conducting all experiments within the “Baseline” model, as detailed
in Table 4. The “One-hot” label is derived from clustering results, with the correct cluster assigned a value of
1 and all others set to 0. The “LSR” strategy, introduced by Szegedy et al. [39], assigns a weight of 0.9 to the
correct label, distributing the remaining weights evenly at 0.1 each. The “OLS” strategy, proposed by Zhang
et al. [40], is an online label smoothing technique that leverages correct classifications from past epochs
to refine label smoothing in the current epoch. The aforementioned method demonstrates that the hard
labels produced by clustering are unreliable. However, these approaches all depend on the accuracy of global
feature extraction. In contrast, “CPLR” exhibits superior effectiveness by synergistically smoothing labels
using both contextual and global features, without relying on the quality of single feature extraction, thereby
more effectively mitigating the impact of label noise.

Table 4: Ablation studies on the effects of the label refinement strategy in VeRi-776 and VERI-Wild

Methods VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
One-hot 79.6 85.6 35.1 51.8 75.9 27.3
LSR [39] 80.6 88.5 37.1 53.2 77.2 27.5
OLS [40] 81.7 89.2 38.8 55.6 78.8 28.5

CPLR 84.5 90.0 39.8 58.9 80.0 30.8

Analysis of DCL: To answer RQ2, we conducted an in-depth analysis of DCL’s impact on model
performance. As shown in Table 5, removing the Memory Bank (row 2) led to a significant drop in perfor-
mance. This is because DCL depends on contrastive learning to extract intra-domain feature distributions.
When momentum updates were removed (row 3), the model became heavily reliant on the quality of
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feature extraction at the start of each iteration, failing to utilize historical data feature distributions. We
further examined the reliance on label information during contrastive learning (row 4). By removing label
information from Lccl (Eq. (2)) and using ClusterNCE for the contrastive loss, the mAP of both datasets
decreased by 1% and 0.8%, respectively, suggesting that label refinement somewhat lessens the reliance
on label information. Additionally, we analyzed the impact of the teacher model on performance (row 5)
by substituting the teacher model task in framework Fig. 1 with a student model, encompassing pseudo-
label clustering assignments, data domain partitioning, and loss training. The results showed that if the
dual contrast network only learns intra-domain information, it can easily lead to model overfitting. The
teacher model enhances model robustness by jointly updating parameters with feature information from
their respective sub-domain distributions, facilitated by Co-EMA methods of the student networks.

Table 5: Analysis of DCL on model performance in VeRi-776 and VERI-Wild

Methods VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
Ours 87.8 92.1 43.2 62.8 82.8 32.8

w/o Memory bank 83.6 90.0 38.8 59.6 80.6 29.6
w/o Momentum updating 83.7 90.8 39.9 60.3 81.6 30.6

w/o Label refinement 86.9 91.5 42.3 62.1 82.2 31.6
w/o Knowledge distillation 84.9 91.2 40.1 57.5 80.0 30.7

Additionally, we analyzed the impact of various momentum update rates m on the model, as illustrated
in Fig. 4. The momentum coefficient m closer to 1 indicates a slower update rate. A higher m value increases
the model training process’s dependency on the quality of centroid feature extraction. Conversely, as m
approaches 0, centroid feature updates tend towards the current sample, potentially causing frequent updates
and a consequent loss of information from other features within the same cluster. The optimal model
accuracy is achieved when m approaches 0.1.

Figure 4: Ablation study of the momentum value m on model performance in VeRi-776 and VERI-Wild
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4.4 Comparison with State-of-the-Arts
We evaluate our method with other state-of-the-art unsupervised vehicle Re-ID techniques, including

UDA and USL methods. As shown in Table 6, the results for the two widely used vehicle datasets. We also use
some open-source code in the field of object or person Re-ID in our research, as pure unsupervised vehicle re-
identification approaches are currently limited. Such: MMT [28], ICE [10], HHCL [25], RLCC [41], UCF [9],
Lan et al. [15]. All results are from experiments conducted in their open-source code or on their published
vehicle Re-ID dataset. For fair comparison, we have kept the basic parameters of the model consistent in the
open-source code. Despite the simplicity of the approach, we demonstrated strong competitive performance
across both datasets.

UDA models (e.g., MMT [28], UCF [9], CTFRN [29], and TDSR [3]) first undergo a fully supervised
learning phase in the source domain, followed by an unsupervised training phase in the target domain.
These methods primarily address the challenges of data adaptability and domain discrepancies. For instance,
MMT learns representations from the source domain data and uses a dual-teacher network to perform
joint smoothing operations on the images, thereby facilitating domain adaptation. Our method is fully
unsupervised and does not require the use of fully supervised source domain data for training. Our method
has been implemented on ResNet50 [36] and IBN-ResNet50 [42] backbone networks. Specifically, the
performance is achieved at mAP = 43.2%, 32.8%, R-1 = 87.8%, 62.8%, and R-5 = 92.1%, 82.8% on the ResNet50
backbone for VeRi-776 and VERI-Wild (Test3000), respectively.

Table 6: Comparision with the state-of-the-art methods on VeRi-776 and VERI-Wild. “*” represents unsupervised
domain adaptation (UDA) method

Methods References VeRi-776 VERI-Wild

R-1 R-5 mAP Test3000 Test5000 Test10000

R-1 R-5 mAP R-1 R-5 mAP R-1 R-5 mAP
MMT [28]* ICLR’20 60.9 69.0 25.4 45.6 67.1 21.8 39.2 61.2 18.3 30.4 50.8 14.1
SPCL [11] NIPS’20 79.9 86.8 36.9 52.8 77.6 27.6 48.5 72.8 26.4 38.1 61.9 20.3

HHCL [25] IC-NIDC’21 69.6 75.6 31.0 56.3 79.7 30.2 49.2 73.3 26.1 38.3 62.3 20.5
RLCC [41] CVPR’21 83.4 88.8 39.6 55.2 79.4 29.1 47.3 72.8 24.9 37.0 62.2 19.5

ICE [10] ICCV’21 82.1 87.1 37.9 54.7 78.6 28.7 47.0 71.3 24.8 37.0 61.1 19.3
CACL [43] TIP’22 62.4 73.5 27.3 57.0 80.3 30.3 48.8 74.0 26.1 38.2 63.6 20.5

CTFRN [29]* PR’22 76.7 81.5 37.1 61.3 82.4 32.3 51.8 74.9 27.5 42.1 65.7 22.1
Cluster-Contrast [13] ACCV’22 86.2 90.5 40.8 56.2 78.7 29.5 48.6 72.9 26.0 37.8 62.2 19.5

PPLR [16] CVPR’22 85.6 88.7 41.6 59.6 82.1 31.4 51.5 74.5 26.9 42.1 65.3 22.2
Lan et al. [15] TIP’23 78.5 84.8 35.1 56.3 80.4 30.2 47.3 71.0 25.5 36.5 60.8 19.9

TDSR [3]* TITS’23 86.8 92.1 40.0 – – – – – – – – –
UCF [9]* TMM’23 85.2 89.2 40.5 62.3 82.9 32.3 51.0 74.3 26.1 41.8 65.2 21.8

Ours (ResNet50) This paper 87.8 92.1 43.2 62.8 82.8 32.8 53.0 75.6 27.5 43.5 67.3 22.6
Ours (IBN-ResNet50) This paper 88.4 91.8 42.6 63.4 83.3 33.2 53.2 76.2 28.1 44.2 68.5 22.8

The methods SPCL [11], Cluster-Contrast [13], HHCL [25] and CACL [43] are based on contrastive
learning techniques. These methods focus on how to optimize features within the data domain. Such SPCL
proposes an automatic contrastive learning framework that makes use of a range of distinct category proto-
types to provide hybrid supervision. HHCL proposes instance contrastive learning to mine the information
between instances. Although these methods have explored optimizing feature space distribution, they have
higher requirements for pseudo labels in data allocation. It is notable that the primary parameters of
contrastive learning methods encompass the quantity of input data and update size for each iteration. Under
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the same momentum update parameters and batch size, our mAP on VeRi-776 and VERI-Wild (Test3000)
improves by 6.3% and 5.2%, respectively, in comparison to SPCL.

Furthermore, our method outperforms several label refinement techniques, including UCF [9], Lan
et al. [15], ICE [10] and PPLR [16]. These methods employ teacher models or local features for label smoothing
to mitigate pseudo-label noise. Although PPLR uses a label smoothing method, like most cluster-based
algorithms, it only uses global features for cluster assignment pseudo-labels and relies on the reliability of the
clusters. To lessen the inherent bias of global features, our method considers the contextual information of the
images during the clustering process. These methods are based on the clustering label smoothing paradigm,
and we uphold the consistency of the clustering algorithm, encompassing same clustering parameters,
backbone architecture, training epochs and batch size. Compared to PPLR, our mAP in VeRi-776 and
VERI-Wild (Test3000) improved by 1.6% and 1.4%, respectively.

4.5 Further Analysis
Effective of different backbones. Considering that unsupervised vehicle Re-ID relies on the quality

of visual feature extraction, we studied various mainstream CNN visual extraction backbone architectures
(PCB, OSNet, DenseNet121, ResNet50) in Table 7. It can be observed that the proposed method achieves
optimal Re-ID performance when using ResNet50 as the backbone network. Compared to DenseNet, ResNet
establishes residual connections between network blocks without additional parameters. This allows ResNet
to maintain efficient performance while having fewer parameters and shorter back propagation time. In
addition, although PCB and OCN are widely used as universal backbone networks for Re-ID, their scalability
is limited due to their main design for pedestrian features, and they cannot effectively extract a wide range
of contextual features for the granularity information of vehicles. Therefore, the experimental results and
analysis have verified the rationality and superior performance of choosing ResNet50 as the backbone
network in this paper.

Table 7: Comparison of different backbones on VeRi-776 and VERI-Wild

Methods VeRi-776 VERI-Wild (Test3000)

R-1 R-5 mAP R-1 R-5 mAP
PCB [44] 78.3 81.8 36.5 52.3 76.5 28.3

OSNet [45] 84.9 89.3 39.6 59.2 80.6 30.7
DenseNet121 [46] 83.4 88.0 39.8 56.7 78.6 29.6

ResNet50 [36] 87.8 92.1 43.2 62.8 82.8 32.8

Performance analysis of the model. We evaluated the performance distinctions between “Ours” and
other unsupervised methodologies in terms of models. Specifically, we conducted a thorough evaluation
of the model across two dimensions: spatial complexity and time complexity. To maintain parity in the
comparison, the time complexity indicator only uses the time consumption of a single epoch during the
model training phase. As delineated in Table 8, Lan et al. [15] introduced a teacher-guide student model
optimization framework that markedly escalates the time complexity when contrasted with single contrastive
learning techniques such as cluster concentrate [13] and HHCL [25] by segmenting the image into three parts
for contrastive learning. Furthermore, MMT [28] and CTFRN [29] implement a dual teacher-student model,
which collaboratively smooths the labels of their respective region images, thereby incurring supplementary
time consumption during the backpropagation process. “Ours” leverages self-attention to associate network
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bottleneck blocks to extract contextual features, demanding additional memory resources and failing to
exhibit superiority over a solitary ResNet50 architecture. In summation, our approach is at an intermediary
level, but within an acceptable performance overhead margin, it demonstrates superior model performance
compared to other methods.

Table 8: Compare the performance of the model with other methods. “Params” represents the size of model parameters
and are used to evaluate spatial complexity. “Time (VeRi-776)” and “time (VERI-Wild)” represent the running time in
each epoch of their respective datasets, which are employed to evaluate time complexity

Methods Params (M) Time (VeRi-776) Time (VERI-Wild)
MMT [28] 90 16.2 m 19.3 m
SPCL [11] 23.5 6.7 m 9.5 m

HHCL [25] 23.5 8.5 m 10.2 m
ICE [10] 23.5 9.1 m 12.7 m

CACL [43] 44.9 14.6 m 19.2 m
CTFRN [29] 90 15.2 m 20.6 m

Cluster-Contrast [13] 23.5 7.7 m 11.4 m
PPLR [16] 23.5 7.3 m 10.5 m

Lan et al. [15] 44.9 12.3 m 15.6 m
UCF [8] 44.9 10.2 m 14.1 m

Ours (ResNet50) 33.4 9.5 m 13.8 m

4.6 Visual Quality
T-SNE visualization: To intuitively demonstrate the clustering effectiveness of our proposed method,

we employed T-SNE [47] to analyze the feature extraction results of different components. We randomly
selected 15 samples from the VeRi-776 dataset, with each category represented by one sample. As illustrated
in Fig. 5, considering the red ID sample, the features extracted by the “baseline” have a relatively scattered
distribution in the feature space, making it difficult to effectively distinguish individual samples. The DCL
method demonstrates a more focused feature distribution for simple data, yet it is not sufficiently distinct
for distinguishing challenging samples. Following the integration of the CPLR, the discriminability of the
feature distribution has improved; however, the features are still not sufficiently concentrated within the
feature space, leading to confusion with similar data. By combining both modules, the extracted features
demonstrate a more tightly clustered distribution within the feature space, facilitating clear differentiation
between categories.

Figure 5: We selected 15 categories from VeRi-776 for T-SNE of different ablation modules, with different color points
representing different categories. (a) Baseline; (b) w/ DCL; (c) w/ CPLR; (d) Ours
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Cluster pseudo-label quality: To answer RQ3, we followed the pair-wise precision proposed by Wang
et al. [48]. To evaluate the quality information of pseudo labels generated by our method and baseline during
clustering. Due to the limitations of the DBSCAN on clustering results, we uniformly set the maximum
distance d to 0.7. Firstly, we construct ωn×n , Ωn×n matrixs for the entire sample. ωi , j indicates whether
samples i and j share the same pseudo label, where ωi , j = 1 represents a same cluster, ωi , j = 0 represents
different clusters. Similar usage of Ω i , j represents whether samples i and j have the same true label, Ω i , j =
1 represents a same cluster, Ω i , j = 0 represents different clusters. We use TP to represent positive sample
pairs and FP to represent negative sample pairs. However, when calculating TP and FP, we consider the
existence of outliers. The accuracy P of clustering is calculated as: P = TP/(TP + FP), where TP denotes
ωi , j = 1 & Ω i , j = 1, FP denotes ωi , j = 1 & Ω i , j = 0. As shown in Fig. 6, our method significantly improves the
accuracy of clustering, with higher quality clustering and fewer outliers, providing reliable pseudo labels for
model training.

Figure 6: Quantification of pseudo label quality (%) for the proposed method and baseline on the VeRi-776 dataset.
Pair-wise precision represents the accuracy of clustering

Rank-list visualization: To verify the qualitative outcomes of our proposed method, we compared the
rank-list visualization with the “Baseline” and chose three different viewing angles for the retrieval. As shown
in Fig. 7, the experimental results reveal that the “Baseline” tends to include images with similar backgrounds
and resolutions in the query results, leading to incorrect matches that resemble the query samples in
appearance and viewpoint. In contrast, “Ours” mitigates the disturbances from variations in viewpoint,
background, and lighting intensity. This indicates that our approach can better distinguish, capturing their
contextual information, and effectively distinguish negative samples.

Attention map visualization: To answer RQ4. We utilized Grad-CAM [49] for the ablation analysis
of model feature predictions. We randomly selected three groups of images with different views, as shown
in Fig. 8. The focus distribution of the “Baseline” is relatively scattered, making it susceptible to viewpoint
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changes. However, with the integration of the CPLR module, additional contextual information is incor-
porated. This suggests that semantic contextual features can focus on fine-grained information within the
image, resulting in more precise prediction outcomes. When DCL is combined with CPLR, the attention
information in the image is further amplified.

Figure 7: Retrieve Rank-5 visualization. Matched and unmatched images are marked in green and red, respectively.
(a) Baseline; (b) w/ DCL; (c) w/ CPLR; (d) Ours

Figure 8: Visual analysis of Grad CAM ablation models for three sample vehicles. (a) Baseline; (b) w/ DCL; (c) w/
CPLR; (d) Ours

5 Conclusion and Future Works
In this work, we propose a novel unsupervised vehicle Re-ID framework to mitigate the label noise

and data domain distribution problem. First, we design a DCL training method to optimize the distance
distribution of data features, which effectively improves the imbalance of data domain distribution through
online joint training of teachers and dual contrastive networks. Furthermore, we introduce a CPLR strategy
that progressively integrates granular information from various layers of the network to extract contextual
features, thereby generating more reliable pseudo-labels in conjunction with global features. Extensive
experiments have confirmed the effectiveness of our approach. In future work, we will extend our research
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to vehicle Re-ID in video streams, with a particular emphasis on enhancing the model’s comprehension of
spatial-temporal features. Additionally, we will address the challenges posed by occlusion and variations in
image quality, while further investigating the performance of vehicle Re-ID in real-world scenarios.
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