
echT PressScience

Doi:10.32604/cmc.2025.058495

ARTICLE

Local Content-Aware Enhancement for Low-Light Images with Non-Uniform
Illumination

Qi Mu*, Yuanjie Guo, Xiangfu Ge, Xinyue Wang and Zhanli Li

College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, 710054, China
*Corresponding Author: Qi Mu. Email: muqi@xust.edu.cn
Received: 13 September 2024; Accepted: 17 December 2024; Published: 06 March 2025

ABSTRACT: In low-light image enhancement, prevailing Retinex-based methods often struggle with precise illumina-
tion estimation and brightness modulation. This can result in issues such as halo artifacts, blurred edges, and diminished
details in bright regions, particularly under non-uniform illumination conditions. We propose an innovative approach
that refines low-light images by leveraging an in-depth awareness of local content within the image. By introducing
multi-scale effective guided filtering, our method surpasses the limitations of traditional isotropic filters, such as
Gaussian filters, in handling non-uniform illumination. It dynamically adjusts regularization parameters in response to
local image characteristics and significantly integrates edge perception across different scales. This balanced approach
achieves a harmonious blend of smoothing and detail preservation, enabling more accurate illumination estimation.
Additionally, we have designed an adaptive gamma correction function that dynamically adjusts the brightness value
based on local pixel intensity, further balancing enhancement effects across different brightness levels in the image.
Experimental results demonstrate the effectiveness of our proposed method for non-uniform illumination images
across various scenarios. It exhibits superior quality and objective evaluation scores compared to existing methods.
Our method effectively addresses potential issues that existing methods encounter when processing non-uniform
illumination images, producing enhanced images with precise details and natural, vivid colors.
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1 Introduction
Images contain rich information and are indispensable to a wide array of high-level computer vision

tasks. Nonetheless, their quality can be compromised under low-light conditions, typically exhibiting
diminished contrast, reduced brightness, and obscured details. These degradations challenge human visual
perception and impede the accuracy of critical computer vision tasks, such as object detection, tracking, and
semantic segmentation. Thus, developing effective low-light image enhancement techniques has become a
prominent research focus [1,2].

Retinex-based [3] methods have distinguished themselves by achieving a dynamic balance across
multiple aspects, particularly excelling in color retention and detail enhancement in low-light conditions [4–
6]. These methods employ filters as center-surround functions to estimate illumination and subsequently
mitigate its effects. The accuracy of this estimation relies on the performance of the filters. Traditional
Retinex methods, utilizing isotropic filters, have successfully increased the brightness of low-light images
and unveiled details in dark regions. However, when applied to non-uniformly illuminated images, these
isotropic filters are prone to deviations at illumination transition regions, resulting in halo artifacts and detail
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loss, as exemplified by the multi-scale Retinex with color restoration (MSRCR) [7] method in Fig. 1b. To
overcome these limitations, researchers have developed novel Retinex enhancement methods, categorized
into traditional and deep learning strategies.

(a) (c) (d) (e)(b) (g) (h)(f) 
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Figure 1: The enhanced results of different methods in images with non-uniform low illumination: (a) Original images,
(b) MSRCR, (c) NPE, (d) Mu’s method, (e) Retinex-Net, (f) KinD, (g) URetinex-Net, (h) Ours

In traditional Retinex enhancement methods, a series of anisotropic filters has been implemented to
estimate illumination [8]. Although these methods offer some relief from halo artifacts and improve the
natural rendering of colors, they still encounter difficulties with accurately estimating illumination at areas
of light transition. This limitation can result in edge blur in the enhanced images, as exemplified by the
naturalness preserved enhancement (NPE) [9] method shown in Fig. 1c. Additionally, these methods may
not constantly adjust brightness finely across different regions of an image, potentially resulting in inadequate
enhancement of dark areas or over-enhancement of the bright areas, as illustrated by the Mu et al. [10]
in Fig. 1d.

In recent years, advances in deep neural networks have prompted researchers to utilize these sophis-
ticated models to separate and adjust illumination and reflectance components in images. Compared
to traditional methods, deep learning approaches have demonstrated superior brightness enhancement
capabilities and a reduced propensity for halo artifacts at illumination transitions, as illustrated by models
such as deep Retinex network (Retinex-Net) [11], Kindling the Darkness network (KinD) [12], and Retinex-
based deep unfolding network (URetinex-Net) [13]. Nonetheless, the absence of an optimized network
structure can sometimes result in the loss of features during the decomposition process, potentially leading
to blurred details, as shown in Fig. 1e,f. The performance of supervised learning-based low-light image
enhancement methods solutions largely depends on the training dataset, including its size, diversity, and
differences from real-world data, all of which can impact the model’s performance [14]. As a result, some deep
learning methods may risk over-enhancing bright regions when dealing with non-uniformly illuminated
images, as shown in Fig. 1g.

To cope with the above problems, we propose a novel local content-aware enhancement method for
low-light images with non-uniform illumination. Our approach effectively mitigates halo artifacts, edge
blurring, and over-enhancement in bright regions while simultaneously removing noise and preserving
essential image details, as illustrated in Fig. 1. Our contributions are as follows:
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(1) We proposed a multi-scale effective guided filtering approach complemented by an adaptive gamma
correction function. This integrated methodology ensures precise illumination estimation and adjust-
ment across diverse image regions, tailored to the specific characteristics of each local area within
the image.

(2) We utilized an effective guided filter to denoise the reflectance component, focusing on edge preserva-
tion and accurate noise removal. Subsequently, we implemented a detail enhancement process on the
denoised image, preventing noise amplification during the enhancement process.

(3) We conducted comprehensive experiments on six varied low-light image datasets encompassing a
range of scenes. Our method was rigorously compared with several mainstream Retinex enhancement
methods. These experiments substantiated the effectiveness of our approach in enhancing low-light
images, particularly under non-uniform illumination conditions.

2 Related Work

2.1 Image Enhancement through Gray Mapping Techniques
Gray mapping methods adjust brightness and contrast by compressing or stretching pixel values point-

by-point. Representative methods include gamma correction and histogram equalization (HE). Gamma
correction adjusts brightness using a nonlinear transformation. Global correction parameters struggle
with non-uniform illumination. Hence, adaptive gamma correction functions have been developed [15].
Histogram equalization enhances contrast by expanding the dynamic range of pixel values. Early global
methods processed all pixels uniformly, ignoring local differences. This often led to over-enhancement
and noise amplification in low-light images with non-uniform illumination. Consequently, many local HE
methods and improvements have been proposed to enhance brightness and contrast [16,17].

Gray mapping methods ignore the influence of spatial context, making the image prone to over-
enhancement and detail loss, which results in an unnatural appearance. They are typically used with other
methods to improve enhancement effects in practical applications [8,18].

2.2 Retinex-Based Image Enhancement
Land proposed the Retinex theory [3] based on color constancy. This theory effectively models color

perception in the human visual system. According to the Retinex theory, the image P can be decomposed
into two components: the reflectance component R and the illumination component I. The mathematical
description is given in Eq. (1).

P = I ⋅ R (1)

The core of Retinex-based image enhancement methods is to remove or suppress the influence of the
illumination component from the original image P. The key lies in accurately estimating the illumination.
Early Retinex enhancement methods assumed uniform illumination, using isotropic Gaussian filtering (GF)
for estimation and treating the reflectance component as a result. However, real-world illumination is non-
uniform, and GF often fails at light transition areas, leading to halo artifacts, edge blurring, and detail
loss in enhanced images. To address these issues, anisotropic bilateral filtering (BF) [19] has been applied
for illumination estimation, enhancing image details, and reducing halo phenomena. However, gradient
reversal near edges causes artifacts. The NPE method combines neighborhood brightness information with a
bright-pass filter and dual-logarithm transformation to enhance detail and naturalness. Many researchers use
guided image filters (GIF) [20] and their improved versions for more accurate illumination estimation [21].
Unlike these, Fu et al. [22] designed a weighted variational model for better prior modeling and edge
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preservation. The structure-revealing low-light image enhancement (SRLIE) [23] method introduces various
priors to construct an optimization function, effectively suppressing noise and halo phenomena.

Deep learning-based low-light image enhancement methods have made significant progress recently.
Zhang et al. proposed KinD, which reduces noise and preserves color fidelity by training on paired datasets
under different exposure conditions. However, the enhanced images still exhibit light spots and blurred
details in some cases. To address these issues, Zhang et al. [24] introduced an improved version, KinD++,
which incorporates a multi-scale illumination attention module to significantly reduce light spots and
detail blurring. Nevertheless, when processing images with non-uniform illumination, artifacts may still
appear in areas with abrupt lighting transitions. Wu et al. [13] introduced URetinex-Net, a deep unfolding
network that effectively restores clear details while suppressing noise, though it tends to over-enhance
non-uniformly illuminated images. Cai et al. [25] presented Retinexformer, the first Transformer method
with Retinex theory, which improves low-visibility areas, removes noise, and avoids artifacts. Compared to
traditional methods, deep learning approaches recover details and restore colors more accurately by learning
rich features and contextual information, enhancing visual quality. However, they require large annotated
datasets, complex training, and high computational resources.

2.3 Guided Filter-Based Illumination Estimation
The GIF is an anisotropic filter that establishes a local linear relationship between the guide image G

and the filtered result image O, as shown in Eq. (2).

Oi = akGi + bk ,∀i ∈ ωk (2)

where i denotes the pixel coordinates in the image, ωk denotes the square neighborhood window centered at
pixel k, and (ak , bk) denotes the coefficients of the linear constant term within the neighborhood window.

The values of (ak , bk) are obtained by establishing the cost function E(ak , bk) (as shown in Eq. (3))
between the filtered result image and the image to be enhanced.

E(ak , bk) = ∑
i∈ωk

(akGi + bk − Xi)2 + εa2
k (3)

where Xi represents the image to be processed, and ε is the regularization parameter, which acts as a penalty
coefficient to prevent ak from becoming too large and determines the filtering effect.

GIF uses the guide image’s structural information to adjust weights. GIF ensures that the output
image shares the same gradient edges as the guide image, effectively avoiding the gradient reversal problem
in BF [26]. However, GIF uses the same regularization parameter in all filtering windows, overlooking
regional differences in non-uniform illumination. This results in halo artifacts and edge blurring in areas
with significant texture variations. To address this, researchers have developed improved versions of GIF
for illumination estimation. Weighted guided image filtering (WGIF) [27] introduces edge-aware weights
and adaptively adjusts the regularization factor, better preserving edges and preventing blurring. Gradient
domain guided image filtering (GGIF) [28] further enhances filtering performance by incorporating multi-
scale edge-aware weights and edge-aware constraints. However, these filters have limited local perception
capabilities and are highly sensitive to the regularization parameter. As the regularization parameter
increases, halo artifacts become more severe. Effective guided image filtering (EGIF) [29] incorporates the
average of local variances of all pixels into the cost function, accurately preserving edges. This approach is
more robust to the regularization parameter and significantly reduces halo artifacts. Therefore, we employ
EGIF for illumination estimation.
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3 Method
Fig. 2 shows the framework of the proposed method for local content-aware enhancement for low-

light Images with non-uniform illumination. The input image P is converted from the RGB to the HSV
color model. This method enhances only the Value (brightness) channel V. First, multi-scale effective guided
image filtering (MS-EGIF) estimates the illumination component VI from the Value channel image V. Then,
according to the Retinex theory model, the reflectance component VR is obtained. Next, adaptive gamma
correction (AGC) and contrast limited adaptive histogram equalization (CLAHE) are used to adjust the
brightness and contrast of the illumination component. Next, EGIF is applied to denoise the reflectance
component (E-Denoise). Moreover, the multi-scale detail boosting (MDB) method is applied to enhance the
texture details of the denoised reflectance component. Finally, the enhanced illumination component VIGH
and the reflectance component VRDM are combined to obtain the enhanced brightness channel image VE .
The linear color restoration (LCR) method is then used to convert the enhanced image back to the original
RGB color model, resulting in the final enhanced color image PE .

Figure 2: Framework of local content-aware enhancement for low-light Images with non-uniform illumination

3.1 Illumination Estimation
We introduce the MS-EGIF method for illumination estimation. This method enhances the accuracy of

illumination estimation by utilizing EGIF across multiple scales to capture both local and global illumination
variations, achieving superior detail smoothing and edge preservation.

In the MS-EGIF method, multiple appropriate scale parameters are initially selected using a scale-
adaptive selection strategy. Based on these scale parameters, illumination estimation is subsequently
conducted using effective guided image filtering. Finally, the illumination components estimated at different
scales are weighted and averaged to derive the final illumination component VI , as shown in Eq. (4).

VI(x , y) =
N
∑
i=1

α ⋅ EGIFi(V(x , y), V(x , y), ri , ε) (4)

where EGIFi() represents the EGIF at the i-th scale. Both the guide image and input image use the Value
channel image V. ri denotes the scale parameter, which specifies the filter window size. ε is the regularization
parameter set to 0.1. N represents the number of scales. In multi-scale image filtering methods, the number
of scales N can be adjusted based on the specific characteristics of the image. However, setting N too high
can lead to increased computational costs. As a result, we refer to various multi-scale methods [7,30] and set
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the parameter N in MS-EGIF to 3 in the experiments of our method. α represents the weighting coefficient
for each scale and is set to 1/N .

The scale-adaptive selection strategy dynamically adjusts the scale parameters to accommodate images
of different sizes, thereby enhancing the perceptual accuracy of the illumination estimation method. As indi-
cated by Eq. (5), smaller images’ scale parameters are relatively minor, which helps avoid excessive smoothing
while preserving crucial edge information. Conversely, larger images yield larger scale parameters, capturing
a broader range of illumination variations while ensuring smooth detail processing. This approach overcomes
the limitations of fixed scale parameters by balancing edge preservation with detail smoothing across images
of varying sizes, thereby improving the accuracy of illumination estimation.

r1 = ⌊
min(m, n)

2N ⌋ , rN = ⌊
max(m, n)

2
⌋ , ri = ⌊r1 + (i − 1) ⋅ rN − r1

N − 1
⌋ (i = 2, . . . , N − 1) (5)

The EGIF used in the MS-EGIF method is an outstanding edge-preserving smoothing filter. EGIF uses
the average of local variances of all pixels as edge-aware weights Γ in Eq. (6), incorporating them into the
GIF cost loss function in Eq. (3) to adaptively adjust the regularization parameters ε, as shown in Eq. (7). Γ
enhances the filter’s ability to detect edges. This leads to more accurate illumination estimation.

Γ = σ 2 = 1
N

N
∑
k=1

σ 2
k (6)

E(ak , bk) = ∑
i∈ωk

[(ak Vi + bk − Vi)2 + εΓa2
k] (7)

where σ 2
k is the local variance of guided image V in ωk . The partial derivative of the cost loss function is set

to zero to calculate the linear constant coefficient (ak , bk). Since both the input image and guided image are
the Value channel image V, the simplified linear constant coefficients (ak , bk) as shown in Eqs. (8) and (9).

ak =

1
∣ω∣ ∑i∈ωk

Vi Vi − μkV k

σ 2
k + εΓ

=
σ 2

k
σ 2

k + εΓ
= 1

1 + ε Γ
σ 2

k

= 1

1 + ε σ 2

σ 2
k

(8)

bk = (1 − ak)μk (9)

where μk and σ 2
k are the mean and variance of the guide image V in ωk , ∣ω∣ is number of pixels in ωk .

According to Eqs. (8) and (9), if pixel k is at an edge, the local variance is greater than the average,
making ak and bk closer to 1 and 0, respectively, for better edge preservation. If pixel k is in a smooth area,
the local variance is less than the average, making ak and bk closer to 0 and 1 for better smoothing. EGIF
adaptively adjusts the regularization parameters to enhance detail textures and edges. It effectively preserves
edges at illumination discontinuities while simultaneously smoothing image details.

Following these steps, the estimated illumination component VI is accurately obtained, and the
reflectance component VR is then derived using Eq. (1).

3.2 Illumination Adjustment
After obtaining the illumination component, our method designs adaptive illumination adjustment. It

adjusts enhancement magnitude based on pixel brightness values for precise illumination adjustment. First,
the brightness of low-light regions is enhanced through AGC, improving the overall visibility of these areas.
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However, it may not be sufficient to recover local details. The image’s local contrast is further enhanced using
CLAHE, particularly in low-light regions, making the image details clearer.

The adaptive gamma correction function adjusts the gamma correction parameter adaptively based on
the value of each pixel in the illumination component image. It corrects the local brightness of the image
pixel by pixel to achieve varying degrees of enhancement in dark and bright regions, as shown in Eqs. (10)
and (11).

VIG(x , y) = VI(x , y)γ (10)
γ = a ⋅ VI(x , y) + b (11)

where γ is the correction parameter that determines the enhancement magnitude of each pixel’s brightness.
The constants a and b range from 0 to 1. Experimental results indicate that the brightness correction is
optimized when a and b are set to 0.8 and 0.4, respectively.

Fig. 3 shows the AGC designed in this study (red curve), the standard gamma correction function
(γ = 0.3, γ = 0.5, γ = 0.8), and the adaptive gamma correction function curves designed by Shin et al. [31],
where our method is indicated in red. The magnified red box area shows that our method significantly
suppresses high-brightness areas while enhancing the brightness of dark regions, effectively preventing
over-enhancement in bright regions.

Figure 3: The different gamma correction function curves. The horizontal axis x is the input grayscale value, and the
vertical axis y is the output grayscale value

Subsequently, the adjusted illumination component VIG is optimized using CLAHE to enhance the con-
trast. This process results in the final enhanced illumination component VIGH , as shown in Eq. (12). CLAHE
can adaptively adjust the contrast enhancement levels in different regions, enabling better restoration of local
image details.

VIGH(x , y) = CLAHE(VIG(x , y)) (12)
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3.3 Reflectance Enhancement
Classical Retinex-based enhancement methods do not consider noise, leading to noise amplification.

Direct denoising causes detail loss. We propose an effective reflectance component adjustment method that
considers both noise and details, resulting in a reflectance component with reduced noise and clear details.

First, EGIF is used to denoise the reflectance component (E-Denoise), as shown in Eq. (13). EGIF
effectively senses noise and textures. It retains as much edge and texture information as possible during
denoising.

VRD(x , y) = EGIF(VR(x , y)) (13)

A multi-scale local detail enhancement method (MDB) [32] is applied to the denoised reflectance
component VRD to make the local details and textures clearer and richer. First, the denoised reflectance
component VRD is filtered with three different scale Gaussian kernels to obtain blurred images of varying
degrees VRDG i , as shown in Eq. (14).

VRDG i = Gδi ∗ VRD (14)

where Gδi represents Gaussian kernels of different scales, and the radius of the Gaussian kernel is 3. The
standard deviations are δ1 = 1, δ2 = 2 and δ3 = 4, respectively.

Images VRDG1, VRDG2 and VRDG3 with different blurriness degrees from Eq. (14) extract detail layers Di
assigned weight coefficients hi , and fused into a detailed image. Adding the detailed image to the denoised
reflectance component VRD yields the final denoised and detail-enhanced reflectance component VRDM . The
process is shown in Eqs. (15) and (16), where h1 = 0.5, h2 = 0.5 and h3 = 0.25.

D1 = VRD − VRDG1 , D2 = VRDG1 − VRDG2, D3 = VRDG2 − VRDG3 (15)
VRDM = VRD + [1 − h1 × sgn(D1)] × D1 + h2 × D2 + h3 × D3 (16)

Finally, the enhanced illumination component VIGH with improved brightness and contrast is fused
with the denoised and detail-enhanced reflectance component VRDM to obtain the enhanced value channel
image VE , as shown in Eq. (17).

VE = VIGH ⋅ VRDM (17)

The enhanced value channel image VE obtained from the above steps needs to be converted into the final
enhanced RGB image PE . We use an efficient linear color restoration method (LCR) [33] for this conversion,
effectively avoiding color distortion.

4 Experiments and Discussion

4.1 Data and Methods
This section validates the effectiveness of the proposed method by comparing it with various existing

low-light image enhancement methods. These include traditional methods such as MSRCR [7], MF [34],
SRLIE [23], Hong’s method [35], and Frequency [36], as well as deep learning methods like Retinex-Net [11],
URetinex-Net [13], Retinexformer [25], global structure-aware diffusion (GSAD) [37], and double domain
guided network (DDNet) [38]. The code and results for the comparison methods were obtained from the
original authors’ websites. Default parameters specified in their articles were employed in the experiments.
All experiments were conducted using the following setup: Intel Core i7 CPU @ 2.40 GHz, 16 GB RAM,
Windows 11 × 64 operating system, and Matlab R2020a experimental platform.



Comput Mater Contin. 2025;82(3) 4677

To ensure data diversity, this study utilized images from six low-light image datasets for subjective and
objective evaluations. These datasets include DICM [39], LIME [40], MEF [41], NPE [9], VV1 and LOL [11].
The DICM dataset contains 69 images, 44 captured under low-light conditions. The LIME dataset includes
10 low-light images spanning various scenes. The MEF dataset comprises 9 indoor and 8 outdoor low-
light images. The NPE dataset includes 85 low-light images captured under diverse weather and lighting
conditions. The VV dataset comprises 24 real multi-exposure images at various resolutions, featuring
indoor and outdoor scenes with people and natural landscapes. The LOL dataset contains 500 pairs of
low-light and normal-light images. These datasets encompass various lighting conditions, including indoor
objects and decor, outdoor buildings, and natural landscapes. Additionally, we evaluated our method’s and
other methods’ average objective metrics and time performance on the DICM, LIME, and MEF datasets.

4.2 Subjective Evaluation
Figs. 4–8 illustrate the enhancement results of our method and other methods for uniform and non-

uniform low-illumination color images. Figs. 4 and 7 display the enhancement results of images with uniform
and non-uniform illumination, respectively. Fig. 8 displays the local details within the red-boxed regions of
the images shown in Fig. 7. Figs. 5 and 6 show the enhancement outcomes of the non-uniform illumination
images Candle and Cadik, along with detailed comparisons of local regions.

(h) URetinex-Net (i) Retinexformer (l) Our(g) Retinex-Net

(a) Original (c) MF (d) SRLIE (e) Hong's method(b) MSRCR

Factory

Cupboard

(f) Frequency

(j) GSAD (k) DDNet

Figure 4: The enhanced results of different methods in images with uniform low illumination

1https://sites.google.com/site/vonikakis/datasets, accessed on 01 November 2024.

https://sites.google.com/site/vonikakis/datasets
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(a) Original (c) MF (d) SRLIE (e) Hong's method(b) MSRCR (f) Frequency

(h) URetinex-Net (i) Retinexformer (l) Our(g) Retinex-Net (j) GSAD (k) DDNet

Figure 5: The detailed enhanced results of different methods in Candle

(f) Frequency(a) Original (c) MF (d) SRLIE (e) Hong's method(b) MSRCR

(h) URetinex-Net (i) Retinexformer (l) Our(g) Retinex-Net (j) GSAD (k) DDNet

Figure 6: The detailed enhanced results of different methods in Cadik
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(a) Original (c) MF (d) SRLIE (e) Hong's method(b) MSRCR

(h) URetinex-Net (i) Retinexformer (l) Our(g) Retinex-Net

Tower

House

Madison

Women

(f) Frequency

(j) GSAD (k) DDNet

Figure 7: The enhanced results of different methods in images with non-uniform low illumination
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(a) 

Women

(c) (d) (e) (b) (f) (h) (i) (l) (g) (j) (k) 

Figure 8: The detailed enhanced results of different methods in images with non-uniform low illumination: (a) Original
images, (b) MSRCR, (c) MF, (d) SRLIE, (e) Hong’s method, (f) Frequency, (g) Retinex-Net, (h) URetinex-Net, (i)
Retinexformer, (j) GSAD, (k) DDNet, (l) Ours

As shown in Fig. 4, these methods effectively enhance the brightness of images with uniform low-
light conditions, revealing more detailed information. Among them, MSRCR, Frequency, Retinex-Net, and
URetinex-Net exhibit the most significant improvements in brightness. However, each of these methods
introduces varying degrees of color distortion. Although SRLIE effectively reduces noise, it blurs image
details, as shown in Fig. 4d. In comparison, MF, Hong’s method, and the proposed method achieve satisfac-
tory enhancement effects. However, MF produces slightly lower image sharpness than the proposed method,
as seen in Fig. 4c. The Hong’s method and GSAD show insufficient brightness enhancement for images
in extremely low-light conditions, as shown in Fig. 4e,j. Retinexformer and DDNet improve brightness in
uniformly low-light images and maintain natural color in the enhanced images. However, DDNet suffers
from reduced image sharpness, as shown in Fig. 4k.

As shown in Figs. 5–8, the MSRCR, Retinex-Net, and URetinex-Net methods effectively enhance
brightness in the dark regions of images with non-uniform illumination. However, MSRCR and Retinex-Net
exhibit severe halo artifacts, color distortion, and noise amplification. The URetinex-Net method suffers from
substantial detail loss in the bright regions and presents low contrast, giving the image an overall washed-out
appearance. In contrast, MF, SRLIE, Hong’s method, Frequency, DDNet, and the proposed method manage
Non-Uniform Illumination effectively, enhancing brightness in dark regions without over-enhancing bright
areas. Despite this, these methods still have some limitations. For instance, the SRLIE and Hong’s method
fail to effectively address edge artifacts, with halos still visible around the candle base in Fig. 5d,e. SRLIE
results in significant details blurring in dark regions, as shown in Fig. 7d. The Frequency produces blurred
edges and unnatural color in enhanced images, as shown in Fig. 7f. The detail sharpness of images enhanced
by DDNet is slightly inferior to that achieved by the proposed method, as shown in Fig. 7k. Additionally,
Retinexformer and GSAD show limited brightness enhancement in dark regions, which leads to obscured
details, as illustrated by the Cadik image in Fig. 6i,j.

Overall, our method demonstrates significant advantages in handling images with non-uniform illumi-
nation. The images enhanced by our method demonstrate no significant halo artifacts in areas with abrupt
changes in illumination, and the colors are rendered more vividly and authentically. Both dark and bright
regions are well-enhanced. For example, the inner frame of the lamp in the Cadik image in Fig. 6l and the
clouds in the Tower image in Fig. 7l are well-defined. Additionally, our method preserves precise details
in enhanced images, as seen in the books in the Cadik image in Fig. 6l and the portrait in the Madison
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image in Fig. 7l. However, compared to URetinex-Net and Retinexformer, our algorithm still has room for
improvement in noise reduction in extremely dark regions of non-uniform illumination images, as illustrated
by the magnified details in the Cadik image in Fig. 6l and the wall in the House image in Fig. 7l.

4.3 Objective Evaluation
To comprehensively and objectively evaluate the enhancement effects of the proposed method and

its comparison methods, we will use the following seven objective metrics to measure the quality of
the enhanced images from detail richness, sharpness, color, contrast, and naturalness perspectives. (1)
Information entropy (IE) is employed to assess the richness of image information. A greater value of IE
indicates a richer abundance of detail. (2) The energy of the gradient (EOG) is utilized to evaluate image
sharpness. A higher value of EOG reflects improved image sharpness. (3) ΔH measures the degree of hue
change before and after processing. A lower color variation rate signifies better color fidelity before and
after processing. (4) Contrast enhancement-based image quality (CEIQ) [42] is a no-reference image quality
assessment metric designed to measure image contrast using features such as structural similarity, histogram-
based entropy, and cross-entropy. A greater value of CEIQ indicates a better-quality image. (5) Entropy-based
no-reference image quality assessment (ENIQA) [43] is a high-performance general-purpose no-reference
(NR) image quality assessment (IQA) method based on image entropy. It effectively evaluates the quality of
various distorted images by leveraging features from both spatial and frequency domains, including mutual
information and entropy. (6) The blind/referenceless image spatial quality evaluator (BRISQUE) [44] is a
no-reference image quality assessment model based on natural scene statistics that quantifies the loss of
naturalness in an image due to distortions by analyzing locally normalized luminance coefficients in the
spatial domain. This model effectively assesses the overall quality of an image. (7) The natural image quality
evaluator (NIQE) [45] is a blind image quality assessment model designed to predict the quality of distorted
images by analyzing measurable deviations from statistical regularities observed in natural images. ENIQA,
BRISQUE, and NIQE assess image naturalness from different perspectives, with lower values indicating
higher and more natural quality.

Table 1 presents the objective evaluation metrics for selected images used in the subjective assessment
of this study. Tables 2 and 3 display the average NIQE, BRISQUE, and CEIQ values, along with the average
time performance, for various methods applied to images from the DICM, MEF, and LIME datasets. The
best values are highlighted in red, and the second-best values are highlighted in blue. Subjective evaluations
reveal that images enhanced by MSRCR exhibit severe distortion, adversely affecting visual perception. In
contrast, the other comparative methods, including ours, show favorable enhancement results. To further
evaluate the strengths and weaknesses of these methods, various objective metrics are used to compare image
detail richness, clarity, color, contrast, and naturalness.

Table 1: Objective evaluation metrics of different enhancement methods for low illumination images

Indicator

Method IE↑ EOG(×1011) ↑ ΔH ↓ CEIQ↑ ENIQA↓ BRISQUE↓ NIQE↓
DICM-
Factory

MF 7.2620 0.5572 0.0244 3.2908 0.1069 21.6814 2.3726

SRLIE 6.9608 0.4477 0.0643 3.3177 0.2999 38.2658 3.8697
Hong’s
method

7.1184 1.3862 0.0256 3.1925 0.0740 21.7161 2.3699

(Continued)
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Table 1 (continued)

Indicator

Method IE↑ EOG(×1011) ↑ ΔH ↓ CEIQ↑ ENIQA↓ BRISQUE↓ NIQE↓
Frequency 7.0201 0.0845 0.1831 3.2301 0.1192 29.0286 2.9417

Retinex-Net 7.0449 1.6463 0.1507 3.2325 0.1783 39.5511 4.8757
URetinex-

Net
7.4329 0.5788 0.0898 3.4646 0.1223 23.5859 3.1239

Retinexformer 6.6902 0.2002 0.1018 2.8269 0.0576 21.7077 3.6692
GSAD 7.6976 0.1930 0.4122 3.2917 0.1024 9.9809 2.6840
DDNet 6.6418 0.1724 0.1244 2.7505 0.0921 19.3646 3.7576

our method 7.3970 0.9864 0.0198 3.3951 0.0641 19.3265 2.3323

LOL-
Cupboard

MF 6.8430 0.1233 0.0408 3.1334 0.0305 15.5981 4.1473

SRLIE 6.0061 0.0037 0.0634 2.8050 0.3780 58.1363 7.7840
Hong’s
method

6.2383 0.0551 0.0392 2.8346 0.0605 16.7735 3.9147

Frequency 6.0134 0.0021 0.0264 2.7264 0.2550 28.9116 8.1477
Retinex-Net 6.5363 0.5904 0.0543 2.9100 0.3651 44.9004 8.7300
URetinex-

Net
6.6950 0.3310 0.2437 3.1235 0.0953 25.2134 6.4224

Retinexformer 7.1413 0.0312 0.1881 3.2959 0.1533 31.9828 4.8168
GSAD 5.9945 0.0113 0.1630 2.3215 0.0983 22.1940 5.2969
DDNet 6.2426 0.0164 0.3451 3.3641 0.1176 15.8851 4.8093

our method 6.9138 0.0650 0.0367 3.1033 0.0582 15.2892 4.1135

NPE-Tower MF 7.3624 2.3743 0.0445 3.4096 0.0290 27.3605 2.8620
SRLIE 6.9999 1.0867 0.0176 3.2222 0.2163 33.6940 3.1045
Hong’s
method

7.1178 23.6637 0.0207 3.2961 0.0441 38.8743 2.8364

Frequency 6.6815 0.2316 0.0093 2.9753 0.1525 19.9741 2.9733
Retinex-Net 7.2632 18.2832 0.0378 3.3129 0.0513 28.0227 5.1893
URetinex-

Net
5.9693 16.0408 0.2588 3.1779 0.0145 65.3364 4.9518

Retinexformer 7.0819 3.1248 0.0482 3.2488 0.0198 5.0422 3.1106
GSAD 6.7310 0.7393 0.9840 2.7727 0.0101 6.3052 3.5687
DDNet 7.2359 2.1230 0.0483 3.2654 0.0060 8.7927 2.6781

our method 7.5681 8.0677 0.0366 3.5258 0.0354 13.8076 2.5644

MEF-House MF 7.7272 0.3255 0.0103 3.5250 0.1288 24.1788 3.4237
SRLIE 7.5575 0.2332 0.0892 3.4531 0.2163 37.7641 4.4593
Hong’s
method

7.6257 0.6478 0.0062 3.4535 0.1004 27.6591 3.2346

Frequency 7.7188 0.0186 0.0468 3.5679 0.1215 32.7833 4.2532
Retinex-Net 7.5845 0.6491 0.0325 3.4910 0.0401 30.6925 5.9544

(Continued)
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Table 1 (continued)

Indicator

Method IE↑ EOG(×1011) ↑ ΔH ↓ CEIQ↑ ENIQA↓ BRISQUE↓ NIQE↓
URetinex-

Net
7.7084 0.1668 0.1076 3.6674 0.0351 35.3075 4.3369

Retinexformer 7.3753 0.0891 0.0650 3.1553 0.0469 22.2122 3.9231
GSAD 7.3440 0.0504 0.1315 3.2376 0.0752 16.4777 3.2783
DDNet 7.7047 0.0819 0.0414 3.5384 0.0636 22.2361 3.6122

our method 7.6922 0.7538 0.0170 3.5837 0.0322 23.6186 3.3462

MEF-
Madison

MF 7.3658 1.9665 0.0747 3.2408 0.0707 14.3839 2.2622

SRLIE 7.1308 0.8459 0.0231 3.1279 0.1901 37.2088 4.0156
Hong’s
method

7.1980 2.4612 0.0735 3.1117 0.0361 17.5521 2.8149

Frequency 7.0900 0.0675 0.0335 3.1998 0.1390 22.3889 3.0308
Retinex-Net 7.3145 2.0984 0.0988 3.3633 0.0525 35.3800 4.5882
URetinex-

Net
7.3700 0.7494 0.6951 3.3713 0.0287 16.0342 2.5939

Retinexformer 7.0607 0.1128 0.3260 3.1190 0.0599 14.5840 2.6023
GSAD 6.1413 0.7216 0.2222 2.3309 0.0694 20.5123 2.7792
DDNet 7.3935 0.3865 0.0742 3.3698 0.0673 13.3987 2.7301

our method 7.4676 0.8111 0.0872 3.3891 0.0999 9.1946 2.4236

Table 2: Quantitative comparison of the DICM, MEF, LIME datasets using NIQE, BRISQUE, CEIQ indicators

Datasets

Method DICM MEF LIME

NIQE↓ BRISQUE↓ CEIQ↑ NIQE↓ BRISQUE↓ CEIQ↑ NIQE↓ BRISQUE↓ CEIQ↑
MF 3.6942 23.8183 3.2458 3.5713 17.7639 3.1819 4.1522 20.9914 3.1867

SRLIE 6.4623 47.0398 3.1759 7.6614 55.0069 3.2082 4.5407 32.7560 3.1564
Hong’s method 3.6626 26.4078 3.1997 3.1225 22.9110 3.1225 4.1411 23.3331 3.0600

Frequency 4.4230 31.0492 3.0966 4.1693 21.4112 3.1451 4.8479 21.8146 3.1590
Retinex-Net 4.4073 30.9511 3.1469 4.2428 20.0950 3.2008 4.7311 27.0441 3.2193

URetinex-Net 3.9805 20.5915 3.3144 3.6099 19.7734 3.3781 4.5735 24.9238 3.3301
Retinexforme 3.9525 15.1985 3.0898 3.6334 15.1867 3.0127 4.5347 21.0497 3.1759

GSAD 4.2973 20.4079 3.0761 3.8730 18.3098 3.0394 4.3074 18.5721 3.0697
DDNet 3.9047 19.2697 3.1489 3.4659 15.4604 3.1888 4.1342 16.3115 3.1303

Our 3.5919 23.0790 3.3582 3.0893 17.3364 3.2565 4.1288 20.8058 3.1864
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Table 3: Comparison of the average processing time of different algorithms in the DICM, MEF, LIME dataset (unit:
second)

Method

Datasets MSRCR MF SRLIE Hong’s Frequency Retinex-Net URetinex-Net Retinexformer GSAD DDNet Ours
method

LIME 0.4033 0.1562 0.2374 0.0760 8.1072 0.6471 0.0428 0.1704 1.2134 0.1275 0.1485
MEF 0.2730 0.1891 0.1369 0.0540 2.8169 0.2781 0.0261 0.1263 0.5790 0.1101 0.0960

DICM 0.4177 0.1638 0.1934 0.0963 6.3938 0.1675 0.0489 0.1490 1.0143 0.1343 0.1857

As shown in Table 1, images processed by our method under various lighting conditions achieved the
best or second-best results across multiple metrics. This indicates that our approach performs well regarding
image detail richness, sharpness, color fidelity, contrast, and naturalness under diverse lighting conditions,
consistent with subjective evaluations. Specifically, Retinex-Net and Frequency methods lead to color
distortion in enhanced images, reflected in their higher ΔH values. SRLIE generates blurry images, resulting
in lower performance across several metrics, including low EOG and high ENIQA values. URetinex-Net
tends to excessively enhance bright regions when processing images with non-uniform lighting, yielding less
natural images and higher NIQE values. GSAD demonstrates limited brightness enhancement capabilities,
and the loss of image details results in a lower IE value. Both MF and Hong’s method yield good overall
enhancement results. However, their CEIQ and BRISQUE values are slightly lower than our method,
indicating that contrast and overall quality are marginally inferior. DDNet and Retinexformer exhibit
favorable results on naturalness-related metrics. However, their detail sharpness needs to be improved, with
EOG values slightly lower than those obtained by our method.

As illustrated in Table 2, our method consistently achieves the best NIQE scores across three datasets
and obtains optimal or near-optimal values in the BRISQUE and CEIQ metrics. This indicates that our
method reliably enhances low-light images under various illumination conditions and across diverse scenes.
Although our method does not achieve the highest score for every metric on each dataset, it provides the
best overall enhancement effect with better robustness.

Table 3 presents the average processing time for enhancing low-light images in the DICM, MEF, and
NPE datasets using the algorithms discussed. As shown in Table 3, Hong’s method and URetinex-Net
demonstrate shorter processing times, whereas MSRCR, Frequency, Retinex-Net, and GSAD require longer
processing times. The runtime of MF, Retinexformer, DDNet, and our method is comparable. Considering
both subjective and objective evaluations, as well as the time efficiency of each algorithm, our method
achieves the best overall performance.

4.4 Ablation Experiment
To verify the necessity of each processing module used in our method, we conducted an ablation

experiment. The experiments include: (a) without adaptive gamma correction (w/o AGC), (b) without
contrast limited adaptive histogram equalization (w/o CLAHE), (c) without EGIF denoising (w/o ED), (d)
without multi-scale detail boosting (w/o MDB), and (e) the complete proposed method. The ablation study
design is shown in Table 4. Due to space constraints, only two images, Cadik and Desk, from different scenes
are presented for the ablation study. The final experimental results are displayed in Figs. 9 and 10.
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Table 4: Ablation experiment design and objective evaluation results

AGC CLAHE E-Denoise MDB Cadik/Desk ablation study quality evaluation

NIQE↓ BRISQUE↓ CEIQ↑
(a)w/o AGC × ✓ ✓ ✓ 4.5701/2.7518 18.6531/22.7059 2.5907/2.9207

(b)w/o CLAHE ✓ × ✓ ✓ 3.7433/2.8281 20.7335/21.3895 3.1371/3.0971
(c)w/o E-Denoise ✓ ✓ × ✓ 3.1660/2.4541 18.3308/19.5756 3.2912/3.4418

(d)w/o MDB ✓ ✓ ✓ × 3.4330/2.5893 20.9889/21.5155 3.2677/3.4095
(e)Our ✓ ✓ ✓ ✓ 3.1598/2.4242 18.1817/19.2343 3.2926/3.4427

(a) Original (b)w/o AGC (c) w/o CLAHE (d) w/o E-Denoise (e) w/o MDB (f) Our

Figure 9: Ablation experiment results in Cadik image

(a) Original (b)w/o AGC (c) w/o CLAHE (d) w/o E-Denoise (e) w/o MDB (f) Our

Figure 10: Ablation experiment results in Desk image

Figs. 9 and 10 show the results of the ablation study for each design scheme, leading to the following
conclusions: (a) Without AGC, the overall brightness of the image is low, and the enhancement of dark
areas is insufficient, as seen in the books against the wall in Fig. 9a. (b) Without CLAHE, the image
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brightness is significantly enhanced, but the recovery of local details is insufficient. (c) Without E-Denoise,
the image details are richer, and edge textures are clearer. However, the noise is significantly amplified, and
the image looks unnatural. (e.g., the wall sections in Fig. 9c and Fig. 10c). (d) Without MDB, the noise is
effectively filtered out, but detailed texture information is blurred, resulting in a less clear image. (e) Our
method, which includes complete processing modules, performs better in brightness, contrast enhancement,
denoising, and detail enhancement. Additionally, Table 4 presents the objective evaluation metrics for all
images in Figs. 9 and 10, where our method achieves the best values in multiple metrics, outperforming the
other compared images.

4.5 Parameter Analysis Experiment
In this section, we evaluate the relevant parameters in the paper, specifically the regularization parameter

ε in Eq. (7) and the parameters a and b in Eq. (11). To facilitate a more intuitive analysis of the impact
of parameter variations on image enhancement effects, this section directly displays the values of relevant
objective evaluation metrics below the corresponding images.

First, we assess the regularization parameter ε in Eq. (7) by setting it to the values in the set (0.01, 0.1, 1)
and observing the corresponding results. The IE and BRISQUE metrics are used to evaluate these out-
comes. Fig. 11 illustrates that the estimated illumination component becomes smoother as the regularization
parameter ε increases. However, when ε is set to 1, the image exhibits edge blurring. Conversely, smaller
ε values enhance the image’s brightness and clarity but also significantly increase noise levels. Therefore,
to balance the impact of brightness, clarity, and noise, we select 0.1 as the default parameter. Objective
evaluation metrics indicate that variations in the regularization parameter ε have a relatively minor impact
on enhancement performance. This is because the EIGF in MS-EGIF designed in our method incorporates
edge-aware weights that enable adaptive adjustment of the regularization parameter ε, thereby effectively
avoiding poor enhancement results due to improper parameter settings.

In Eq. (11), the AGC function determines the gamma correction parameter primarily based on the
parameters a and b, along with the pixel value at each point. To systematically explore the effects of these
parameters, we selected a series of values for a and b: (0.2, 0.4, 0.6, 0.8, 1) and conducted comprehensive
experimental evaluations on each combination. Fig. 12 presents the detailed impact of these parameter
combinations on the experimental results. BRISQUE and CEIQ metrics were employed to assess each result.

As shown in Fig. 12, parameter a minimizes impact on the overall enhancement results. When b is fixed,
the decreasing parameter a results in a slight improvement in image contrast. In contrast, parameter b has
a more significant influence on image brightness. With a fixed, as b decreases, the image brightness and
contrast gradually increase. The BRISQUE score decreases rapidly, while the CEIQ score gradually increases,
indicating a significant improvement in overall image quality. When b is reduced to below 0.4, the BRISQUE
value stabilizes. However, if b becomes too low, the color naturalness deteriorates. Therefore, our experiments
set a = 0.8 and b = 0.4 as the default parameters to achieve a balanced overall enhancement effect.

5 Conclusion
Despite the exceptional performance of deep learning in image enhancement, traditional methods

retain their prevalence in resource-limited scenarios, such as embedded devices, industrial inspection, and
mobile processing. We propose a local content-aware enhancement method for low-light images with non-
uniform illumination. MS-EGIF is used for localized illumination estimation, improving the accuracy of
illumination estimation. It can effectively solve the halo artifacts often appearing in enhanced non-uniform
illumination images. To avoid over-enhancement of bright regions, an AGC function is designed to enhance
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Figure 11: The enhanced results of different regularization parameter values ε in Light and BelgiumHouse images

the brightness of dark areas while effectively suppressing bright regions. EGIF and MDB methods adjust the
reflectance component. This ensures noise reduction while preserving image details.

Experimental results show that the proposed method can efficiently enhance images captured under
uniform illumination. Compared to existing methods, the resulting images show significant improvements
in addressing halo artifacts and over-enhancement in bright regions. Additionally, the images exhibit
natural colors and display more prosperous, more precise details. Although the method achieves satisfactory
enhancement results, it still exhibits limitations in denoising in low-light regions when dealing with images
with extremely non-uniform illumination. Resolving this issue will be part of our future work.
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Figure 12: The enhanced results of different parameter values a and b in Madison images
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