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ABSTRACT: Fingerprint features, as unique and stable biometric identi�ers, are crucial for identity veri�cation.
However, traditional centralized methods of processing these sensitive data linked to personal identity pose signi�cant
privacy risks, potentially leading to user data leakage. Federated Learning allows multiple clients to collaboratively
train and optimize models without sharing raw data, e�ectively addressing privacy and security concerns. However,
variations in �ngerprint data due to factors such as region, ethnicity, sensor quality, and environmental conditions
result in signi�cant heterogeneity across clients. �is heterogeneity adversely impacts the generalization ability of the
globalmodel, limiting its performance across diverse distributions. To address these challenges, we propose anAdaptive
Federated Fingerprint Recognition algorithm (AFFR) based on Federated Learning. �e algorithm incorporates a
generalization adjustment mechanism that evaluates the generalization gap between the local models and the global
model, adaptively adjusting aggregation weights to mitigate the impact of heterogeneity caused by di�erences in data
quality and feature characteristics. Additionally, a noise mechanism is embedded in client-side training to reduce the
risk of �ngerprint data leakage arising fromweight disclosures during model updates. Experiments conducted on three
public datasets demonstrate that AFFR signi�cantly enhancesmodel accuracywhile ensuring robust privacy protection,
showcasing its strong application potential and competitiveness in heterogeneous data environments.
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1 Introduction

Biometric features, such as facial structure, �ngerprints, and iris patterns, are critical physiological and

behavioural attributes for verifying individual identity. Among them, due to their uniqueness and invariance,

�ngerprint features play a crucial role in various �elds, such as public safety, criminal investigation, mobile

device security, �nancial operations, and access control systems. Deep learning has demonstrated signi�cant

advantages in �ngerprint recognition, particularly in handling low-quality and partially missing �ngerprint

data, with improved robustness and automated feature extraction capabilities. However, centralized training

in traditional deep learning presents signi�cant privacy risks, especially when handling sensitive infor-

mation. Processing large datasets centrally further increases the likelihood of data leakage. Consequently,

developing a framework that enables multiple clients to collaboratively train models without sharing raw

data is essential. Federated Learning (FL) enables local training on clients and the subsequent upload of
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only the model parameters to a central aggregator, without disclosing any original data, achieving data
decentralization and thereby e�ectively protecting privacy. In recent years, FL has been extended to various
biometric systems, including facial [1–3] and �nger vein recognition [4,5].

Despite the advantages of federated learning, it still faces challenges when applied to �ngerprint
recognition. Firstly, similar to facial data, the variations in�uenced by environmental, racial, sensor quality,
image resolution, and other related factors lead to signi�cant di�erences in �ngerprint data. �is het-
erogeneity causes biases in the local models’ representation vectors towards their data domains, which
hampers their adaptability to other distributions and diminishes the overall representational capability of
the global model [6]. Moreover, the local optimization objectives of di�erent clients do not align with the
global optimization goals, leading local models to converge in diverse directions and thereby impeding
the global model’s ability to achieve consistent convergence [7]. Although federated learning ensures that
original data remains on the client through data decentralization, reducing the risk of direct data leakage,
it still cannot completely prevent data leakage caused by attacks on gradient information in model updates.
Additionally, model updates may reveal sensitive information indirectly through membership inference
attacks or model inversion attacks, where an attacker could infer if a particular data sample was used during
training or even reconstruct parts of the data. For example, original data can be inferred through techniques
such as gradient inversion. Furthermore, studies by Zhu et al. [8], Geiping et al. [9], and Wu et al. [10] have
shown that attackers can reconstruct original training data through gradient inversion attacks. �erefore,
FL still remains vulnerable to privacy attacks, and additional privacy protection measures, such as enhanced
encryption or data obfuscation techniques, are necessary within the current federated learning framework.

Wepropose anAdaptive Federated Fingerprint Recognition (AFFR)method to address the issues above.
In this method, an adaptive weighting mechanism is embedded to tackle the heterogeneity problem caused
by the signi�cant di�erences in �ngerprint data resulting from various regional, racial, and environmental
factors. Speci�cally, during the t-th round of global model generation θ t+1

g , the global model θ t
g from the

t − 1 round is �rst distributed to the clients i = 1, 2, . . . ,C. On each client, a subsetDi of the local data is used
to evaluate the performance of the distributed model, and the generalization gap G

Di
(θ t

g) is calculated as

the di�erence in performance between θ t
g and the previously updated local model θ t−1′

i . A�er local training,

both the generalization gap and the updated local model θ t′

i are uploaded to the server. �e server then uses
the uploaded generalization gap to adjust the aggregationweights for generating θ t+1

g .�ismethod e�ectively
mitigates the degradation of model performance caused by data heterogeneity. Additionally, during local
training on the client i, a di�erential privacy protectionmechanism is embedded. By adding randomnoise to
sensitive data, this reduces the risk of �ngerprint privacy data leakage caused by gradient inversion attacks.
Experiments have been conducted on three public datasets, demonstrating the method’s e�ectiveness in
preserving data privacy, improving generalization in heterogeneous environments, and enhancing overall
model performance.

2 RelatedWork

2.1 Fingerprint Recognition

Traditional methods rely heavily on manually extracted features, such as minutia and core points.
However, in real-world applications, �ngerprint data is o�en a�ected by factors such as sensor quality,
acquisition conditions, and the condition of the �nger, leading to inconsistent or partiallymissing data.�ese
inconsistencies can make traditional feature extraction methods less e�ective. In contrast, deep learning
methods are more capable of handling such complex data and can maintain high accuracy even in practical
application scenarios.
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Siamese networks have also been e�ectively employed in �ngerprint recognition. Liu et al. [11] designed
an embedded image processing algorithmbased on a Siamese network to enable �ngerprint recognition from
any source without requiring a pre-built database. Zhu et al. [12] further compared the impact of di�erent
network structures on �ngerprint recognition accuracy using three distinct Siamese networks.

Subsequently, techniques for �ngerprint recognition have signi�cantly improved through novel feature
extraction and model structure optimization methods. Öztürk et al. [13] proposed a novel local descriptor
generation model that generates embedding vectors for a �xed-size patch extracted around a minutia, using
a local similarity assignment algorithm to produce a global similarity match score. Saeed et al. [14] aimed to
determine the architecture of CNNmodels automatically adapted to �ngerprint classi�cation using FKT and
the ratio of the traces of the between-class scatter matrix and the within-class scatter matrix to determine the
number of layers and �lters automatically. Zhang et al. [15] enhanced partial �ngerprint recognition through
occlusion-enhanced data augmentation and occlusion-aware modeling.

Moreover, attention mechanisms are widely employed in �ngerprint recognition. Chen et al. [16]
proposed a novel single-to-multiparty �ngerprint recognition method based on the attention mechanism
to solve the local �ngerprint matching problem by adaptively extracting and fusing the features of a set of
�ngerprints. Grosz et al. [17] combined a conventional convolutional neural network (CNN) and a visual
transformer (ViT) based on an attention mechanism to re�ne the global embedding representation by
accurately comparing local features in two �ngerprint images. Building on this, LFR-Net [18] introduces
local enhancement and segmentation techniques to improve the quality of �ngerprint images, a fusion of
local features and global embeddings, and the introduction of a multi-stage matching process to improve
the processing speed of latent �ngerprint matching. Qiu et al. [19] �rst utilized ViT with a global attention
mechanism to generate dense pixel-level correspondences of feature points on a given �ngerprint pair.

However, the need for extensive training data and concerns over user privacy o�en limit the ability to
adequately train and improve deep learning-based models. To address this issue, federated learning enables
distributed model training without compromising data security.

2.2 Federated Learning

Constructing training datasets for biometric models in deep learning typically requires a large volume
of private data. Federated Learning (FL), introduced by Google in 2016 [20], enables decentralized private
data while maintaining privacy through the FedAvg method. Similar optimization challenges arise in cloud
and IoT environments, particularly when handling large-scale, decentralized data [21]. Addressing statistical
heterogeneity, FedCG [22] utilizes clustering and Graph Convolutional Networks (GCNs) for domain
knowledge sharing and employs unsupervised teacher-student training for model adaptation. Similarly,
FedSM [23] combats client dri� in medical image segmentation by creating personalized models and
introducing a novel model selector for e�ective test data alignment. FedDG [24] enhances fairness and gen-
eralization by dynamically adjusting aggregation weights through Generalization Adjustment. FedALA [25]
improves personalization by adaptively aggregating global and local models, while FedPGP [26] balances
personalization and generalization in federated prompt learning by combining CLIP generalization and low-
rank personalization. Such methodologies are particularly valuable when integrated with federated learning
to enhance the robustness and privacy of the distributed learning framework.

Face Recognition. Aggarwal et al. [1] used FL to train face recognition models collaboratively. Each
client uploads the embedding layer vectors corresponding to its identity, while the server employs the
Spreadout regularization technique to enhance themodel’s generalization ability and robustness. Liu et al. [2]
introduced a decoupled feature customization module (DFC) to better adapt a pre-trained face model to
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the individual needs of speci�c clients. In further research, Meng et al. [3] employed a di�erential privacy-

based local clustering algorithm (DPLC) to achieve a uniformdistribution of the global feature space through

Consensus-Aware Face Recognition Loss, thus enhancing themodel’s recognition capability while protecting

privacy. Niu et al. [27] improved the discriminative power of cross-client class embeddings by introducing a

so�max-based regularizer to correct the gradient of the class embeddings via the FedGCmethod. Deepfake

detection techniques have also been explored to ensure the authenticity of facial data and prevent misuse in

federated learning systems [28]. �e FedForgery framework proposed by Liu et al. [29] combines federated

and residual learning to learn robust discriminative residual feature mappings via the Variable Autoencoder

(VAE) for detecting facial forgery.

Palmprint Recognition. Shao et al. [30] introduced FL into palmprint recognition using a public

dataset, which di�ers from private data and may raise privacy concerns. FedML [31] detected facial

forgeries by introducing Federated Metric Learning and constructing instance-level and relational-level

communication loss, achieving improved palmprint recognition accuracy without sharing private data. Yang

et al. [32] utilized di�erent wavelength spectra’s physical properties to verify cross-spectrum palmprint.

Finger Vein Recognition. Lian et al. [4] proposed the FedFV framework, which addresses the het-

erogeneity problem of non-IID data through a personalized aggregation algorithm. Further, PAFedFV [5]

designed a more complex personalized model aggregation method and employed a synchronized training

module to utilize waiting time fully.

In our study, we introduce federated learning to �ngerprint recognition, accounting for �ngerprint

heterogeneity, and adopt a generalized tuning strategy to enhance the model’s performance.

3 Method

We propose an adaptive weight adjustment federated learning method for �ngerprint recognition. In

this method, we address the performance issues caused by data heterogeneity while mitigating privacy and

security risks associated with centralized training. First, we optimize the generalization gap during the global

model aggregation process to mitigate the impact of client �ngerprint di�erences, thereby enhancing the

model’s generalization and robustness. Next, simple perturbation techniques are employed to protect data

privacy further and counter security threats such as inference attacks.�e overall framework of this method

is illustrated in Fig. 1.

3.1 Problem Description

Fingerprint veri�cation systems use embedded classi�ers to transform �ngerprint images into discrimi-

native feature vectors bymapping them into amulti-dimensional Euclidean space. A data sampler generates a

pair of �ngerprint images (x1 , x2) and a label y, where x1 is the query image and x2 is the reference imagewith

a known identity. �e feature extractor fθ maps each image to a d-dimensional feature space and extracts

features as fθ (x) ∈ Rd .

�e training process involves optimizing the model parameters to minimize the loss function L:

L (x1 , x2 , y) = y ⋅ d ( fθ (x1), fθ (x2))2 + (1 − y) ⋅max (0,m − d ( fθ (x1), fθ (x2)))2 (1)

In Eq. (1), y = 1 if x1 and x2 belong to the same identity, and y = 0 otherwise.�e distance function d (⋅)
measures the Euclidean distance between the feature vectors, and m represents the margin. �is adjustable

hyperparameter speci�es the minimum distance between pairs of di�erent identities.
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Figure 1: AFFR. Each client �rst processes the local data using FP-DFSN to protect the privacy of the datasource,
then trains model θ i and uploads the model to the server along with the accuracies of the selected validation set
Di . �e server uses the aggregated model θ g to validate again. It dynamically adjusts the weights α i according to the
generalization gap between the models to optimize recognition

In the evaluation phase, the system generates feature vectors and calculates distances between test pairs

to verify identity matches. As shown in Fig. 2, according to the mapped features fx1 and fx2 , the model

determines whether the two �ngerprints belong to the same identity by calculating the feature similarity of

the pair of �ngerprint images. We get the matching result y by:

y (x1 , x2) =
⎧⎪⎪⎨⎪⎪⎩
1, i f ∥ fx1 − fx2 ∥2≤ m
0, otherwise

(2)

In addition, deep learning models require a large amount of data for training. In traditional centralized

learning methods, �ngerprint data must be stored centrally on a server, which poses signi�cant privacy risks

due to the sensitive nature of such data. To address this issue, we adopt a FL approach. In this approach,

user data remains on local devices; all model training is conducted locally, and only the resulting model

parameters are uploaded to the central server. �e server then aggregates these parameters to update the

global model, which is redistributed to the clients. In this way, we use the distributed data for model

training while avoiding the centralized storage and transmission of sensitive data, thus achieving reliable

�ngerprinting while preserving privacy. �e global model θ g is created by aggregating local client models,

using a weighting mechanism based on the volume of data each client contributes:

minθ g
ε (θ g) =∑C

i=1
α iεDi

(θ i), α i = N i

∑C
j=1 N j

(3)
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In Eq. (3), εDi
(θ i) = 1

N i
∑N i

j=1 L (θ i ; a
i
j , b

i
j , y

i
j) represents the prediction loss of the model θ i on client

i’s datasetDi . Here, N i denotes the number of sample pairs (both positive and negative) on client i, and C

represents the totalnumber of clients in the federated framework.

Figure 2: Anoverview of the training framework for �ngerprint recognition.�e training aims to optimize the network
by minimizing the feature distance of positive samples and maximizing the feature distance of negative samples. In the
evaluation stage, the distance between test pairs is calculated to verify the identity matching

3.2 Model Aggregation with Adaptive Generalization Adjustment

In the context of �ngerprint recognition within FL, given the signi�cant di�erences and heterogeneity
in �ngerprint information across various countries and regions, as shown in Table 1, the distribution of
�ngerprint patterns (circular, spiral, and arched) varies among individuals of di�erent ethnicities and
geographical locations, in�uenced by genetic, environmental, and developmental factors.

Table 1: Di�erences in �ngerprint pattern distribution among various ethnic groups [33]

Pattern Prioritized (Highest to lowest)

Loops Black 27% White 26% Hispanic 25% Asian 21%
Whorls Asian 34% Hispanic 26% Black 22% White 18%
Arches Black 32% Hispanic 30% White 26% Asian 18%

Radial loops White 42% Hispanic 23% Black 18% Asian 17%
Central pocket loops White 36% Asian 25% Black 22% Hispanic 17%

Double loops Asian 29% White 27% Hispanic 23% Black 22%
Tented arches Hispanic 36% White 27% Asian 23% Black 15%

In �ngerprint recognition scenarios, the signi�cant diversity of �ngerprint data from di�erent regions
and countries leads to di�erences in data distributions between clients and local models. �e training
process tends to over�t speci�c clients’ data, potentially diminishing the generalization performance of the
global model. To address this, we use a data domain generalization global model aggregation strategy to
improve themodel’s ability to generalize across diverse datasets. By adjusting the globalmodelweights during
aggregation, we aim to minimize the variance in generalization gaps, enhancing the model’s robustness.

In each round of global model updates, the server distributes the current global model parameters θ g

to all clients. A�er receiving the global model parameters, each client trains the local model based on its
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local datasetDi and obtains the updated local model parameters θ i . To evaluate the performance di�erence
between the global model and local models, we �rst calculate the global model’s accuracy (correct matching
rate) and loss on each client’s local datasetDi . �en, each client sends these local model parameters back to
the server, and the server aggregates these updates according to the client’s weight α i to obtain the updated
global model for the next round.

Our primary optimization objective is to minimize the total loss function across all clients, according
to Eq. (3), the optimization objective can be further described as:

min
θ g ,α1 ,α2 , . . . ,αC

ε (θ g) = α1εD1
(θ1) + α2εD2

(θ2) + . . . + αCεDC
(θC) (4)

However, minimizing the loss alone does not guarantee that the global model will generalize well on
the data of each client. To evaluate the generalization performance of the global model on di�erent clients,
we can compute the di�erence in accuracy between the global model and the local model of client i during
the i–th training round, which serves as the generalization gap:

G
Di
(θ t

g) = AccDi
(θ t

g) − AccDi
(θ t−1′

i ) (5)

In Eq. (5), a larger generalization gap indicates a greater di�erence in accuracy between the global and
local models for client i, suggesting that the global model generalizes less e�ectively on client i’s data. We
can translate the analysis of the generalization gap into an analysis of the relationship between the global and
local models, as expressed by ∆θ t in Eq. (6).

∆θ t = θ t
g − θ

t−1′

i = θ t−1′

i + (α i − 1) θ t−1′

i +∑ j≠i
α jθ

t−1′

j − θ t−1′

i

= (1 − α i) θ t−1′

i +∑
j≠i

α jθ
t−1′

j , s.t.α i +∑ j≠i
α j = 1. (6)

According to Eq. (6), it’s easy to see that increasing α i brings the global model θ t
g closer to the local

model θ t−1′

i . �is is bene�cial as it reduces the accuracy di�erence G
Di
(θ tg) on client i’s data, thereby

enhancing the globalmodel’s performance for that client.�erefore, we integrate the followingweight update
scheme, as shown in Eq. (7).

α t′

i = (GDi
(θ t

g) − µ) ⋅ d t + α t−1
i

max j (GD j
(θ t

g) − µ) , α t
i = α t′

i

∑N
j=1 α

t′

j

(7)

In Eq. (7), µ = 1
C ∑

C
i=1 GDi

(θ t
g) represents the average generalization gap across all clients, and d t =

(1 − t
T
) ⋅ d is a hyperparameter that linearly decays with the number of communication rounds T , used to

control the magnitude of weight adjustments, with larger adjustments allowed early in training and more
stable updates as training progresses.

�is dynamic weight adjustmentmechanism is especially e�ective when clients’ data distributions di�er
signi�cantly. For clients with more diverse data, the generalization errors tend to be larger. By increasing the
weight α i of these clients, the global model can better adapt to their speci�c data features, thus enhancing the
model’s generalization capabilities across di�erent datasets. By increasing the weight for clients with larger
generalization errors, the gap between them and other clients is reduced enabling the globalmodel to balance
the in�uence of di�erent client data adaptively, thereby improving its overall performance in heterogeneous
environments. �e detailed procedure is outlined in Algorithm 1.
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Algorithm 1: Adaptive model aggregation algorithm

Input: Global model θ g = θ0g , datasetsDi for C clients, initial weights for each client α0
i = 1/C,

randomly selected validation sets Di for weight optimization for each client. (Hyperparameters:
local epochs E, total communication rounds T, learning rate η, and step size d for GA.)

�e server initializes the global model θ0g .
for t = 0 to T − 1 do

Sends θ t
g to all clients.

for each of the clients i = 1, . . . ,C do

Compute the generalization gapG
Di
(θ t

g) between the localmodel ε
Di
(θ t−1′

i ) and and the global

model ε
Di
(θ t

g) ;
Train the local model θ t′

i based on local dataDi ∶ θ t′

i ← θ t
i − η∇θ t

i
L (Di)

Send θ t′

i and G
Di
(θ t

g) back to the server.
end

Server: Update the weights α t using α t−1 and G
Di
(θ t

g) from all clients.

Aggregate θ t+1
g with α t to obtain a new global model: θ t+1

g = ∑C
i=1 α

t
i ⋅ θ

t′

i .
Distribute the global model θ t+1

g to all clients.
end

Output: Final global model θT
g

3.3 FP-DFSN: Fingerprint Privacy Protection by Introducing Noise and Computing Image Di�erentials

Although federated learning does not directly exchange data, security challenges exist, such as inference

attacks, where participants can infer training data from other participants based on uploaded parameters.

To address this, the study introduces noise and performs di�erential processing for �ngerprint images in the

client, the privacy protection process involves the following steps:

1. First, to enhance the clarity and detail of �ngerprint images for superior feature extraction, we apply

a frequency-domain-based sharpening technique:

g (x , y) = F −1 {F [ f (x , y) ⋅ (−1)x+y] ⋅ (1 − exp(− D2

2D2
0

))} ⋅ (−1)x+y (8)

Initially, the input grayscale image f (x , y) is prepared for the Fast Fourier Transform (FFT) by

multiplying it by (−1)x+y , which centers and resizes the image for optimal FFT performance. A Gaussian

high-pass �ter, de�ned by 1 − exp (− D2

2D2
0
), is then applied In this expression, D represents the distance from

any point to the center of the frequency domain, and D0 is the normalized cutof frequency. A�er �ltering

in the frequency domain, the processed data is converted back to the spatial domain using the inverse FFT.

Finally, the image is re-centered by multiplying it again by (−1)x+y , resulting in a sharpened image. �is

process enhances high-frequency details by suppressing low-frequency components, thereby sharpening

the image.

2. A�er sharpening the image, we extract minutia M = {P ∣ CN (P) = 1 or CN (P) = 3} from the

�ngerprint image g (x , y) by calculating the Crossing Number (CN) of pixel points. For a binarized pixel

point P its CN value is determined by the number of changes in pixel values in its 8-neighborhood as given
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by:

CN (P) = 1

2
∑

7

i=0
∣x i+1 − x i ∣ (9)

In Eq. (9), x i and x i+1 represent 8 consecutive pixel values in the domain of P, and x8 = x0. When

CN (P) = 1, P is considered an end point; when CN (P) = 3, P is identi�ed as a divergence point.

Next, we improve feature extraction accuracy by �ltering out minutia too close to the image edge, using

a distance threshold. In other words, for eachminutia, if its distance D (p,M) to the nearest boundary is less
than a given threshold Td , the detail point is discarded to eliminate noise and false detections.

3. Finally, we add random Gaussian noise in the local neighborhood of the minutia M extracted in

the previous step. According to Eq. (10), the image data is further processed by computing the weighted

di�erence between the noise-added and original images. �e parameter β controls the in�uence of noise

in the di�erential image processing. �is weighted processing helps enhance privacy protection while

maintaining data usability. �e features extracted from the weighted di�erence processed �ngerprint image

are subsequently used to train models locally on the client side.

Idiff = I − β ⋅ Inoisy ,
Inoisy (x , y) =

⎧⎪⎪⎨⎪⎪⎩
f (x , y) + N (0, σ 2) , if (x , y) ∈ M
f (x , y) , otherwise

(10)

In Eq. (10), β is an adjustment parameter that controls the strength of the noise in�uence. A more

signi�cant value of β indicates that more noise is subtracted from the original image, resulting in a �nal

di�erential image that visually di�ers more from the original image.

In this study, parameters such as the Gaussian �lter’s cuto� frequency (D0), distance thresholds,

and neighborhood sizes are optimized based on experimental results to achieve an ideal balance between

image clarity, feature extraction accuracy, and privacy protection across various conditions. �ese steps

signi�cantly enhance the security of sensitive data in the client’s local environment when uploading model

parameters. Fig. 3 compares the images before and a�er processing. �e processed images show increased

noise and reduced clarity, demonstrating the introduced perturbations’ e�ectiveness.

Figure 3: Panels (a), (b), and (c) represent the similarity comparison before and a�er processing for three datasets,
respectively. �e image on the right in each panel is the processed data, and the similarity between the two images is
evaluated using the AlexNet model selected by LPIPS to evaluate the similarity between the two images
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4 �eoretical Analysis

In this section, we analyze the convergence of the global loss function under the adaptive weight-
ing mechanism.

�eorem: Suppose the loss function L is L-smooth, meaning there exists a constant LL > 0 such that for

any model parameters θ and θ′,

∣∇L (θ) −∇L (θ′)∣ ≤ LL ∥ θ − θ′ ∥ (11)

Additionally, let the weights α t
i in each round be adaptively adjusted based on the generalization gap of

each client, ensuring that ∑C
i=1 α

t
i = 1. If the learning rate η is chosen such that η ≤ 2

LL
, then the global loss

function Lt
g will converge to a minimum L∗.

Proof:

1. Stability of the Weight Adjustment Mechanism

Under the adaptive weighting mechanism, the weight update rule follows the scheme de�ned in Eq (7).
In the early stages of training, dynamic adjustment of α t

i allows the model to better adapt to the data
characteristics of di�erent clients. As training progresses and the generalization gap d t diminishes, the
weights stabilize,minimizing their interferencewith the globalmodel updates.�is approach enablesmodels
from clients that di�er signi�cantly from the global model to exert greater in�uence, thereby enhancing
robustness in learning.

2. Monotonic Decrease of the Global Loss

�e global model update is achieved by aggregating local updates from each client. Suppose each client’s
local update follows:

θ t+1
i = θ t

i − η∇L i (θ t
i) (12)

then the global model update can be written as:

θ t+1
g =∑C

i=1
α t
iθ

t+1
i = θ t

g − η∑
C

i=1
α t
i∇L i (θ t

i) (13)

Using the Lipschitz continuity of ∇L, we can bound the change in the global loss as follows:

L (θ t+1
g ) ≤ L (θ t

g) − η ∥ ∇L (θ t
g)∥2 + LL

2
η2∑

C

i=1
α t
i∇L i(θ t

i)2 (14)

Choosing the learning rate η such that η ≤ 2
LL

ensures that the term −η ∥ ∇L (θ t
g) ∥2 dominates. �is

is crucial because it guarantees a net decrease in the global loss L (θ g) with each iteration, leading to
convergence.

3. Accumulated Convergence of the Global Loss

By accumulating theinequality for each round, we obtain:

∑
T−1

t=0
(Lt

g − L
t+1
g ) ≥ η∑T−1

t=0
∥ ∇Lt

g ∥2 −LL

2
η2∑

T−1

t=0
∥∑C

i=1
α t
i∇L i (θ t

i) ∥2 (15)

Since the loss function is bounded, it follows that:

∑
T−1

t=0
∥ ∇Lt

g ∥2<∞ (16)
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implying that as T →∞, ∥ ∇Lt
g ∥→ 0. Under the conditions established in the �rst point, the weights α t

i

stabilize, minimizing interference with the descent of the global loss. �us, we conclude that:

lim
t→∞

Lt
g = L∗ (17)

where L∗ represents a minimum of the global loss.

In summary, this analysis proves that under the adaptive weightingmechanism, the global loss function
Lg in federated learning will converge to a minimum value L∗. �e stability of the weight adjustment and
the choice of learning rate play pivotal roles in ensuring e�ective convergence. ◻

5 Experiment

5.1 Datasets

�eNIST Supplemental Fingerprint Card Data Database (NIST SD10) [34] consists of 5520 �ngerprint
images from 522 individuals, each with a resolution of 832× 768 pixels.�ese images are divided across three
CD-ROMs and are classi�ed into NCIC classes provided by the FBI.

�e SOCOFing dataset [35] includes 6000 images from 600 subjects, captured using Hamster Plus and
SecuGen SDU03PTM scanners. It o�ers three levels of di�culty (easy, medium, and hard) for synthetic
modi�cations: deletion, center rotation, and z-cut modi�cations.

CASIA-FingerprintV5 [36] contains 20,000 �ngerprint images from 500 volunteers, captured with the
URU4000 sensor. Each subject contributed 40 images across eight �ngers, stored as 8-bit gray-level BMP
�les with a resolution of 328 × 356 pixels.

As shown in Table 2, the NIST SD10, SOCOFing, and CASIA datasets exhibit signi�cant di�erences in
terms of image quality (NFIQ2.0 scores), image resolution, and regional sources.�e EarthMover’s Distance
(EMD) heatmap and the t-SNE visualization in Fig. 4 quantify these distributional di�erences based on
feature characteristics, illustrating the degrees of similarity and divergence between the datasets. Higher
EMD values, or darker regions, indicate greater distributional di�erences between datasets. Each of the three
datasets is assigned to a separate client, where data is processed for feature extraction and comparison. In the
t-SNE plot, the features of each client dataset are represented by di�erent colored dots, with minimal overlap
between clusters, re�ecting signi�cant feature heterogeneity. �is shows that each dataset has substantial
di�erences at the feature level, and these di�erences will a�ect the overall accuracy and generalization ability
of the model.

Table 2: Comparison of �ngerprint datasets

Dataset NIST SD10 SOCOFing CASIA-Fingerprint V5

Number of images 5520 6000 20,000
Number of subjects 522 600 500

Image size 832 × 768 96 × 103 328 × 356
Source (Nationality) United States African China

NFIQ2.0 Score 47.72 32.09 32.81
Image format 8-bit grayscale PNG 8-bit color BMP 8-bit grayscale BMP
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Figure 4: Illustration of feature heterogeneity: (a) EMD Distance Heatmap quanti�es distributional di�erences, and
(b) t-SNE Map visually shows the feature clusters for each dataset

5.2 Experiment Details

In our research, we consider each �nger as a separate classi�cation class. We utilize the SOCOFing
and NIST SD10 datasets, which provide one �ngerprint per �nger per subject, and the CASIA dataset,
which provides multiple �ngerprints per �nger. We choose one �ngerprint per �nger for our experiments
to simplify data processing and ensure equitable �ngerprint selection. �is approach facilitates consistent
experimental analysis.

We divide each client’s data into training and testing sets at a 4:1 ratio, with one-��h of the training
set randomly chosen as a validation set to tune model weights during global updates. We label �ngerprint
pairs (x1 , x2) as 1 if they belong to the same �nger (true pair) and 0 if not (false pair). We generate numerous
�ngerprint pairs and their corresponding labels using the training dataset. For testing, we create two types of
�ngerprint test sample pairs for each client. Each test sample pair consists of a �ngerprint from the template
library, a reference �ngerprint, and a query �ngerprint, whichmatches the �ngerprint in the template library
for veri�cation. To comprehensively evaluate system performance, we generate all possible matching pairs.
capping the generation of incorrect match pairs at 10,000 to maintain computational e�ciency. �e system
is designed to detect correct and incorrect matches accurately.

Our model employs a Siamese network with two CNNs that share weights, trained using a contrastive
loss function. We use a learning rate of 0.0003 and the Adam Optimizer. We set the batch size at 32. We
conduct 1000 training epochs, 20 communication rounds, and 5 local epochs for single dataset experiments.
For cross-dataset generalization, we extend training to 2000 epochs and 40 communication rounds, with a
coe�cient of 0.5 applied to process the di�erence image.

5.3 Experiment Results

5.3.1 Comparative Analysis of Training Strategies on a Single Dataset

In this section, we construct experiments to compare the performance of local training, centralized
training, FedAvg [20], and our proposed AFFR framework, which incorporates FedDG [24] for adaptive
weight updates, within a �ngerprint recognition system to evaluate the speci�c impacts of federated learning
on model performance. Each client independently trains a model with its own local training set in local
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training.We evaluate the performance of eachmodel with the local test set and calculate the average accuracy
For centralized training, we aggregate the training data fromall clients onto a central server, and a�er training
evaluate the performance of the global model using the combined test set.

�e experimental results shown in Fig. 5 indicate that the models trained using the AFFR method
signi�cantly improve accuracy compared to the models trained only on local datasets. For example, on
the NIST SD10 dataset, the locally trained model has an accuracy of 99.41%. �e accuracy increased to
99.97% using the FedAvg training method, and further increased to 99.98% using the AFFR method, which
is on par with the accuracy of the central training method. �is shows that Federated Learning enhances
the performance and robustness of its localmodels by integrating private data frommultiple clients without
directly accessing them while maintaining data privacy.

Figure 5: Comparison of local training, FedAvg, AFFR, and centralized training methods on three �ngerprint datasets

5.3.2 Generalization Performance Analysis in Heterogeneous Data Settings

In this section, we evaluate the model’s generalization ability using our proposed method. We conduct
experiments under various environmental conditions to determine the optimal global update strategy.

Analysis of Model Generalization Ability under Di�erent Data Quality Conditions We introduce
noise in the details of �ngerprint images and compute di�erential images to improve security and protect
user privacy. To evaluate the model’s robustness across various data quality conditions, we divided a single
dataset into ten parts and distributed each to one of ten clients in our federated learning (FL) setup. Each
client was assigned a distinct di�erence coe�cient, β, ranging from 0 to 0.9.�is range allowed us to simulate
data environments of varying quality and analyze the impact of these di�erences on themodel’s performance.

As shown in Fig. 6, the �ngerprint image quality of di�erent datasets under di�erent β values is tested
using the �ngerprint image quality assessment algorithm NFIQ2.0. It can be observed that despite some
�uctuations, the overall trend indicates a decline in image quality scores as the β increases, particularly in
the SOCOFing dataset. Additionally, the e�ective region in the �ngerprint image may become too small for
the algorithm to extract su�cient features for evaluation.

Table 3 demonstrates the e�ectiveness of our adaptive global model aggregation approach compared
to FedAvg. Speci�cally, AFFR improves accuracy across all datasets. For example, AFFR improves accuracy
on the CASIA dataset by 1.47% in the NIID condition. �ese results highlight the e�ectiveness of AFFR in
improvingmodel accuracy and generalization performance in di�erent data quality environments, especially
in environments with non-homogeneous data distributions.
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Figure 6: Comparison of �ngerprint image quality at di�erent β values using NFIQ2.0 evaluation on three datasets

Table 3: IID andNID performance comparison. IID refers to clients having equal data amounts, while NIID represents
clients with unequal data amounts. �is refers to the weighted average accuracy across all clients

Method SOCOFing NIST SD10 CASIA

(a) IID

FedAvg 98.93 99.80 99.44
AFFR 99.39 99.94 99.97

(b) NIID

FedAvg 98.81 99.64 98.42
AFFR 99.62 99.94 99.89

Analysis of Model Generalization Performance under Diverse Dataset Features In our FL setup
we conduct experiments on three clients, each using a distinct dataset. Fig. 7 presents the training loss
and accuracy over communication rounds for the experiments with AFFR. As seen in the �gure, the
loss value decreases rapidly in the initial stages of training, indicating that the model e�ectively learns
feature representations. As the training progresses, the loss stabilizes near zero. At the same time, accuracy
rapidly increases and remains stable at near 1.0, demonstrating that the model has converged with high
accuracy.

Table 4 shows that while locally trainedmodels performwell on their data, they generalize poorly to data
fromother clients. FedAvg improves performance across all clients but is still impacted by data heterogeneity.
In contrast, FedALA achieves an average accuracy of 99.97%but shows some �uctuation, with a slightly lower
accuracy of 99.90% on Client 1. FedDBE achieves a balanced performance across clients with an average
accuracy of 99.96%. FedAS also reaches an average accuracy of 99.97%, though it showsminor drops on some
clients. AFFR further increases accuracy to 99.99% matching the performance of centralized training. �is
demonstrates that by incorporating an adaptive threshold generalization strategy, AFFR achieves optimal
performance and generalization, highlighting the e�ectiveness of this approach.
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Figure 7: Training loss and accuracy over communication rounds with adaptive generalization mechanism

Table 4: Performance comparison across di�erent methods and clients. Client i Local refers to local training on client
i. �e �rst line refers to the performance on the test data of clients 1–3, and their average values

Method Client 1 Client 1 Client 1 Avg

Client 1 Local 99.91 98.86 98.68 99.15
Client 2 Local 99.85 99.96 99.94 99.92
Client 3 Local 99.19 99.54 99.88 99.54

FedAvg 99.91 99.85 99.95 99.90
FedALA [24] 99.90 100.0 100.0 99.97
FedDBE [6] 99.94 99.98 99.97 99.96
FedAS [37] 100.0 99.96 99.94 99.97

AFFR 99.97 100.0 99.99 99.99
Centralized 99.99 99.99 100 99.99

5.3.3 Ablation Studies

Ablation Study: Evaluating the Privacy ProtectionE�ectiveness of FP-DFSN inFederated Learning:

In the federated learning environment, since users are required to upload model parameters for model
aggregation, there is a potential risk that private data could be recovered using the uploaded gradient
information. To explore this issue, we assume the attacker is a malicious server, which not only observes the
gradient updates uploaded by users but also makes minimal modi�cations to the shared model architecture
to directly recover private user data from the gradient updates. Speci�cally, the attacker employs a minimally
modi�ed model architecture by introducing additional linear layers and ReLU activation functions, creating
structured gradients that can leak user input information. In this study, we integrate a new network layer,
the Imprint Module, into the model architecture [38], aiming to evaluate whether gradients from this layer
can be used to infer users’ original data. We conducted experiments using two methods: training with FP-
DFSN (w.) and training directly on the original data (wo.). We used three datasets: SOCOFing, NIST SD10,
and CASIA.
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Fig. 8 shows that the �ngerprint image processed using the FP-DFSN method su�ers from severe loss
of detail and blurred images compared to the original image, whereas the �ngerprint image without the
FP-DFSN method retains more detail and clarity, and is closer to the original real image.

Figure 8: Comparison of �ngerprint reconstruction quality across three scenarios: ground truth images images
reconstructed with FP-DFSN, and images reconstructed without FP-DFSN

Table 5 shows the performance comparison of these methods on di�erent datasets. �e results indicate
that while the proposed method degrades in terms of preserving image details and structural quality,
it may enhance privacy protection by making it more di�cult to recover the original data from the
processed images.

Table 5: Performance metrics for reconstruction with and without FP-DFSN. Calculated as the mean of two input
branches across multiple datasets

Dataset Method MSE PSNR SSIM LPIPS

SOCOFing w. 0.24 9.16 0.77 0.18
wo. 0.12 122.03 0.96 0.03

NIST SD10 w. 0.26 7.50 0.75 0.21
wo. 0.13 121.95 0.97 0.03

CASIA w. 0.29 7.49 0.76 0.17
wo. 0.11 124.10 0.97 0.02

To evaluate the privacy protection of �ngerprint data in a federated learning environment, we use
training data as member data and testing data as non-member data. �e evaluation is conducted using the
following metrics:

Membership Inference Attack Accuracy (MIA Accuracy): Measures the attacker’s success rate in
correctly identifying whether a data sample belongs to the training set.

AUCValue (Area Under the ROCCurve): Re�ects the model’s ability to distinguish between member
and non-member data in a membership inference attack.

Mutual Information: Ouanti�es the amount of shared information between the input data and the
model outputs. Lower mutual information means the model outputs leakless information about the input
data, reducing privacy risk.
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Entropy: Measures the randomness or unpredictability in the model outputs. Lower entropy values
indicate that the model outputs contain less information that could be exploited by an attacker, enhancing
privacy protection.

As shown in Table 6, when FP-DFSN is not applied (wo.), the values of MIA Accuracy, AUC Value
Mutual Information, and Entropy are all higher.�is indicates that themodel is more susceptible to exploita-
tion by attackers, with a higher risk of information leakage and weaker privacy protection e�ectiveness.
In contrast, a�er applying FP-DFSN (w.), these metric values decrease, demonstrating stronger privacy
protection performance. Lower MIA Accuracy and AUC values mean that the attacker’s success rate in
membership inference attacks decreases. �e reductions in Mutual Information and Entropy indicate that
the amount of information about the input data contained in themodel outputs decreases, reducing potential
information leakage risks.

Table 6: Privacy metrics for three datasets with and without FP-DFSN

Dataset Method MIA accuracy MIA AUC Mutual information Entropy

SOCOFing
w. 0.71 0.7509 0.0214 6.98
wo. 0.80 0.9054 0.0244 7.21

NIST SD10
w. 0.52 0.5370 0.0112 6.12
wo. 0.88 0.9634 0.0218 6.84

CASIA
w. 0.56 0.6085 0.0033 6.33
wo. 0.77 0.8222 0.0247 7.22

By calculating the di�erence between the original image and the noise-added image, we generate a
di�erential image to enhance privacy protection. �e coe�cient parameter β is used to adjust the in�uence
of this di�erential image on the �nal processed image, allowing us to blur certain details while retaining the
main features of the �ngerprint image. �is e�ectively reduces the risk of reconstruction attacks.

Fig. 9 shows the variation in recognition accuracy across the SOCOFing, NIST SD10, and CASIA
datasets under di�erent β values. �e experimental results indicate that an appropriate β value not only
maintains recognition performance but also emphasizes the �ne-grained details in the �ngerprint images
by adding noise to these details, similar to a regularization e�ect, thereby improving the model’s ability to
capture these key features.

Further analysis shows that as β increases, the quality of the reconstructed images decreases signi�cantly
making it harder for attackers to reconstruct the original image using gradient information, thereby
enhancing privacy protection. Speci�cally, the recognition accuracy for the SOCOFing and NIST SD10
datasets peaks when β approaches a certain optimal value. In contrast, while the recognition accuracy for
the CASIA dataset also improves as β increases, it slightly declines a�er reaching its peak, suggesting that
excessive blurring might have a minor negative impact on the recognition performance for certain datasets.

Furthermore, Fig. 10 illustrates the e�ect of noise variance (Var) on recognition performance. In this
context, Var controls the amount of noise directly added to the images. It can be observed that as the noise
variance increases, recognition accuracy �rst increases and then decreases. A moderate level of noise helps.
the model focus on key features, thereby enhancing recognition performance; however, excessive noise
variance leads to blurred details, which can negatively impact recognition.
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Figure 9: Comparison of recognition accuracy at di�erent β values on three datasets

Figure 10: Impact of di�erent noise variances on recognition accuracy across three datasets independently distributed
on clients

In summary, the experimental results demonstrate that by carefully selecting and optimizing the di�eren
tial image coe�cient β and the noise variance Var, a balance between privacy protection and recognition
performance can be e�ectively achieved. With moderate noise addition and appropriate blurring, the model
can accurately recognize important features while reducing the quality of the reconstructed images, thus
achieving a balance between privacy protection and recognition performance.

Ablation Studies of the Step Size and Linear Decay Strategy: Table 7 illustrates the trend in model
performance across di�erent step size settings. As the step size increases, the model’s recognition accuracy
precision, and F1 Score all improve, rising from 99.91% accuracy and an Fl Score of 99.51% at a step size of
0% to 99.99% and 99.94% at a step size of 0.8. �is indicates that a moderate increase in step size enhances
the model’s generalization capability, allowing it to better adapt to the features of di�erent datasets. However,
when the step size reaches 1, the performance shows slight �uctuations, as an excessively large step size
weakens the model’s ability to capture subtle features.

Table 7: Performances under varying weight adjustments across three independent dataset clients

Step size Accuracy Precision Recall F1 Score

0 99.91 99.02 100.00 99.51
0.2 99.94 99.38 100.00 99.69
0.4 99.96 99.61 100.00 99.81
0.6 99.97 99.68 100.00 99.84

(Continued)
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Table 7 (continued)

Step size Accuracy Precision Recall F1 Score

0.8 99.99 99.98 100.00 99.94
1 99.96 99.62 100.00 99.81

Fig. 11 presents the uni�ed confusion matrix analysis across all datasets under di�erent algorithms

(FedAvg and AFFR). Speci�cally, Fig. 11a shows the overall confusion matrix for FedAvg, re�ecting its

classi�cation performance under this algorithm. Fig. 11b displays the confusion matrix for the AFFR

algorithm with a step size of 0.8. It can be observed that the performance improves at a step size of 0.8.

Figure 11: Illustration of the uni�ed confusion matrix across all datasets

6 Conclusions

In this study, we present the Adaptive Weighted Global Aggregate Joint Learning framework (AFFR)

for �ngerprint recognition. �e framework dynamically adjusts the weights during the model aggregation

process, thus e�ectively narrowing the generalization gap between global and local models and addressing

the performance degradation due to data heterogeneity. In addition, we implement a simple data preprocess-

ing module that enhances security by blurring the raw data, thus e�ectively preventing potential inference

attacks. �is paper also reports experiments conducted on three datasets. �e experimental results show

that the proposed approach can e�ectively share data and improve the generalization and robustness of the

model while preserving privacy. Future work may improve the framework by integrating more sophisticated

cryptographic techniques to enhance security measures in joint learning environments.
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