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ABSTRACT: Visual Place Recognition (VPR) technology aims to use visual information to judge the location of agents,

which plays an irreplaceable role in tasks such as loop closure detection and relocation. It is well known that previous

VPR algorithms emphasize the extraction and integration of general image features, while ignoring the mining of

salient features that play a key role in the discrimination of VPR tasks. To this end, this paper proposes a Domain-

invariant Information Extraction and Optimization Network (DIEONet) for VPR. �e core of the algorithm is a

newly designed Domain-invariant Information Mining Module (DIMM) and a Multi-sample Joint Triplet Loss (MJT

Loss). Speci�cally, DIMM incorporates the interdependence between di�erent spatial regions of the feature map in the

cascaded convolutional unit group, which enhances the model’s attention to the domain-invariant static object class.

MJT Loss introduces the “joint processing of multiple samples” mechanism into the original triplet loss, and adds a new

distance constraint term for “positive and negative” samples, so that the model can avoid falling into local optimum

during training. We demonstrate the e�ectiveness of our algorithm by conducting extensive experiments on several

authoritative benchmarks. In particular, the proposed method achieves the best performance on the TokyoTM dataset

with a Recall@1 metric of 92.89%.
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1 Introduction

Visual Place Recognition (VPR) is an indispensable key technology for smart city construction and

national defense security construction. As a downstream task in the �eld of image retrieval, it plays a key

role in loopback detection for robots and navigation and localisation systems for unmanned vehicles [1].

�e basic �ow of a VPR system is as follows: given a query image, retrieve the most similar image from the

existing geo-location reference image database, and use the retrieved image as the predicted geo-location

of the query image. However, a�ected by di�erent viewpoints and di�erent environments (such as lighting

changes, seasonal changes, etc.), images at the same location present large style di�erences, which brings

great challenges to the VPR task.

VPR tasks have been studied since the era of handcra�ed features. In order to solve the above challenges,

Mei et al. [2] used fast detection technology to extract key corners in the image, and then used SIFT (Scale

Invariant Feature Transform) descriptors to characterize the features. Churchill et al. [3] achieved accurate
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localization by querying repetitive structures in similar images and weighting related bag-of-words phrases.

�esemodels essentially use local featurematching, so they are resistant to viewpoint changes, but less robust

in the appearance changes. In order to solve the challenges caused by appearance changes, many researchers

consider the global image and use global feature descriptors. NetVLAD [4] uses the so� assignment VLAD

(Vector of Locally Aggregated Descriptors) algorithm to aggregate the local features extracted by the neural

network, and then reduces the dimension of the aggregated features to obtain the global features. NetVLAD

has shown good robustness against environmental changes, and its success has established the classic VPR

architecture–“backbone network-feature aggregation layer”.

At present, one of the core pursuits of VPR model design is how to obtain robust descriptors that adapt

to complex environmental changes. On this requirement, CNNs (Convolutional Neural Networks) and ViTs

(Vision Transformers) show their respective advantages. CNN can learn di�erent granularity information

from di�erent spatial levels when processing images. �e self-attention operation in ViTs can aggregate

global context information. For example, in recent representative work, Berton et al. [5] built a standard

baseline for VPR using several di�erent types of CNN backbones, which allows them to directly determine

the impact of CNN architectures with di�erent feature granularities onVPR accuracy by comparingmultiple

sets of experiments. Unlike Berton’s research, Oquab et al. [6] demonstrated the e�ectiveness of utilising

only ViT as a feature extractor, which can learn global dependencies between di�erent patch tokens from an

arbitrary collection of images. Based on this, AnyLoc [7] designed a generic VPR processing �ow. However,

the above twomainstream architectures inevitably have a problem, in that they emphasize the extraction and

integration of general features, and the extraction ability of salient features, which plays a key discriminative

role in the VPR tasks, is seriously insu�cient.

Objects such as buildings can be used as salient feature information of images. In VPR images, building

related classes have the advantage of maintaining detailed edge and contour information across seasons,

ages, and even day-night lighting changes. Based on this, we design a Domain-invariant InformationMining

Module (DIMM) to enhance the feature extraction ability of existing networks for static objects. �e design

of DIMM is inspired by the idea of dynamic convolution, and consists of a learnable attention map and a

weight generation module. �e attention map captures the semantic relationship between di�erent spatial

regions of the feature, and is constantly updated during the learning process. �e weight generation module

is a stacked structure, which can adaptively generate feature weights according to the input. In particular,

the weights generated by DIMM are fed to the input feature maps in the form of channel by pixel, in

order to comprehensively enhance the expression of building feature information from both channel and

spatial dimensions.

In addition, the current research on VPR algorithmmainly focuses on representation learning, and few

researchers consider more e�ective metric learning methods from the training level. As an important part of

the training strategy, the loss function plays a role in constraining model parameters and promoting model

convergence. As with upstream retrieval tasks, Triplet Loss has been widely used in VPR to aggregate similar

samples and separate unrelated samples in the feature space, but its disadvantages are also very obvious:

Since Triplet Loss only sees a negative sample, the problem of over�tting caused by inappropriate selection

of negative samples makes the model have optimization errors. In addition, dq,n (query-negative sample

distance) may decrease as dq,p (query-positive sample distance) decreases, causing the distance between the

query and negative samples to collapse, leading to the degradation of the model discrimination ability.

To address the above problems, we designed a new Loss function namedMJT Loss (Multi-sample Joint

Triplet Loss). On the one hand, MJT Loss introduces multiple negative samples on the basis of the triplet

loss to expand the sample space in the minimum training unit and increase the stability of training. On the

other hand, we also add a distance constraint term for positive and negative samples to push the distance
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between positive samples and multiple selected negative samples in the feature space synchronously, so that

the descriptors extracted by the model have higher discrimination, thus preventing the degradation of the

feature discrimination ability of the model.

�e main contributions and innovations of this work are as follows:

(1) A plug-and-play Domain-invariant Information Mining Module (DIMM) is proposed, which

uses a cascaded group of convolutional units to implicitly separate salient information from non-salient

information in features. �e model pays more attention to static objects, and e�ectively improves the

robustness and generalization ability of the VPR model.

(2) A new metric learning method, Multi-sample Joint Triplet Loss (MJT Loss), is designed, which

modi�es the “single-single” sample processing pattern of the distance constraint term to the “single-many”

sample processing pattern. Furthermore, the distance constraint is added to make the optimization path of

the model move towards the global optimal direction.

(3) Complete ablation experiments and algorithm comparison experiments are carried out to prove the

e�ectiveness of the proposed algorithm.

2 RelatedWork

Visual Place Recognition. Early VPR algorithms [1] were based on handcra�ed features for retrieval,

such as Bag-of-Words [8], Fisher vector [9], andVLAD[10].With the rapid development of deep learning, the

current mainstream approach is to use CNN or ViT framework as feature extractor to extract local features.

�e NetVLAD [4] algorithm proposed in 2017 is an important transformation from traditional manual

features to deep features. �e recent MixVPR [11] used ResNet as the backbone network and designed the

Feature-Mixer Feature aggregation module, which is at the advanced level in terms of e�ect and processing

speed on multiple datasets. In particular, the emergence of TransVPR [12] provided a new idea for the

development ofVPR.TransVPR combinedCNNand self-attentionmechanism to extract global features, and

fused tokens generated by Transformer modules of di�erent layers as local features to complete the second

stage of retrieval. Although the TransVPRmodel achieves high accuracy, its computation and complexity far

exceed previous work.

DynamicConvolution.Di�erent from the traditional convolution operation, themain idea of dynamic

convolution is to let the network adaptively adjust the weight of the convolution kernel according to the

characteristics of the input data. Some researchers adjust the parameters by adaptively adjusting the size

of the convolution kernel. Deformable kernels [13] sampled the weights in the space of the convolution

kernel to adapt to the e�ective reception �eld (ERF) while keeping the receptive �eld unchanged. Of course,

the size of the convolution kernel can be changed during the convolution operation, and the parameters

of the convolution kernel can also be dynamically adapted. Dynamic convolutional neural network DY-

CNN [14] started from the weight direction of convolution kernels, and performed so� attention onmultiple

convolution kernels to adaptively generate weight parameters. Our DIMM relies on content-aware dynamic

convolution, which focuses on the landmark information of a speci�c location, and shows good results in

visual scene recognition tasks.

Loss Function. Loss function is the most important part of the training strategy, which updates

and optimizes parameters through backpropagation [15]. Since the triple loss function was proposed in

2015 [16], it has become the most widely used loss function in retrieval tasks. In order to better represent

the semantics, Chen et al. proposed quadruplet loss [17], which introduces an additional negative sample to

build another triple with di�erent queries. CosPlace [18] is a work that used visual scene recognition as a

downstream classi�cation task, which introduces Large Margin Cosine (LMC) loss function [19] into visual
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scene recognition and shows good performance.However, classi�cation tasks require high data sets, and �ne-

grained recognition cannot be achieved in large visual scene recognition tasks. Based on the above analysis,

designing a better form of triple loss function is still an e�ective way to achieve fast and stable convergence

of the model.

3 Methodology

3.1 Overall Framework

As shown in Fig. 1, DIEONet takes NetVLAD [4] as the baseline and consists of three parts: the

backbone network VGG-DIMM, the NetVLAD aggregation head, and the Loss function MJT Loss. Among

them, VGG-DIMM and MJT Loss are the proposed new schemes, which perform the function of feature

mining and optimizing model parameters in the whole architecture, respectively. Speci�cally, the process of

DIEONet is as follows:

Figure 1: Overall architecture of DIEONet

Step 1: For a given image I, we utilize the backbone network VGG-DIMM to initially extract its local

feature descriptor f
(I)
l ocal
∈ RH×W×C , which is expressed as follows:

f
(I)
l ocal
= DIMM (VGG (I)) (1)

Step 2: Take the local feature f
(I)
l ocal

extracted by VGG-DIMM as input, and use the vanilla NetVLAD

aggregation head [4] to aggregate f
(I)
l ocal

into a one-dimensional global feature descriptor F(I) ∈ RD , whereD

= cluster_num × C and cluster_num is the number of aggregated clusters in NetVLAD, C is the number of

channels of f
(I)
l ocal

. �e expression of f
(I)
l ocal

is as follows:

F(I) = NetVLAD( f (I)
l ocal
) (2)

Step 3: Firstly, a certain number ratio of query, positive sample and negative sample images are

all operated by Step 1–Step 2 to obtain di�erent global feature descriptors. �en, these descriptors are

measured using the designed MJT Loss, and the parameters of the whole model are updated through the

backpropagation mechanism.
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3.2 VGG-DIMM

VGG-DIMM is composed of VGG16 (Visual Geometry Group 16) and DIMM in series. �e original

intention of our design is that VGG16 extracts the basic features of the input images, and then DIMM

completes the mining of the salient information in the basic features, as shown in Fig. 2.

Figure 2: Structure diagram of DIMM

Speci�cally, as a plug-and-play feature enhancement module, DIMM is processed as follows:

Step 1: For the basic feature map f
(I)
v g g ∈ RH×W×C extracted by VGG16, DIMM�rst increases the capacity

of feature channel information by a k = 3 × 3 convolution operation with stride = 1 to obtain a new feature

representation f
(I)
DI1 ∈ RH×W×(C×r), where r is the feature expansion rate.

Step 2: In order to improve the capacity and richness of the spatial information of f
(I)
DI1 , a sliding window

with k = 3 × 3 and stride = 1 is designed to traverse the f (I)DI1 featuremap along the width and height directions.

In particular, this process does not perform convolution operation, but merely copies the local receptive �eld

region selected by the sliding window and rearranges it according to its original spatial structure to obtain

f
(I)
DI2 ∈ RH×W×(C×r)×k2 . �at is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f
(I)
DI2 = Unfold ( f (I)DI1)
f
(I)
DI2 (i , j, C × r, α × k + β) = f

(I)
DI1 (i + α, j + β, C × r)

(3)

where i, j represent the pixel index of feature map f
(I)
DI1 in high and wide dimensions respectively, i.e., i =

1, 2, . . . , H, j = 1, 2, . . . , W ; α × k + β is controlled by the size of the sliding window and is the parameter of

the local receptive �eld expansion into columns, representing the index on the last dimension of f
(I)
DI2, where

α = 0, 1, . . . , k − 1, β = 1, 2, . . . , k.
Step 3:�e attentionmask φ output by the weight generationmodule, which has the same shape as f

(I)
DI2,

is fed back into the featuremap f
(I)
DI2 tomine the important domain-invariant information in f

(I)
DI2. and obtain
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the feature expression f
(I)
DI3 ∈ RH×W×(C×r)×k2 with strong robustness and strong generalization ability, that is:

f
(I)
DI3 = φ ⊗ f

(I)
DI2 (4)

where φ represents the weight descriptor output by the weight generation module, and the symbol ⊗
represents the multiplication of corresponding elements.

As shown in Fig. 2, the attention map (a tensor initialized with all ones of shapeH ×W × 4) is the input
of the weight generation module, which is transformed into the attention mask φ a�er being processed by

a cascaded group of convolutional units. φ can deeply obtain the interrelationship between di�erent spatial

regions in f
(I)
DI2 through subsequent iterative training, and recalibe the saliency information that needs to be

paid attention to. �e attention mask φ can be de�ned as follows:

φ =WeightBlock (attmap)
= GELU (LN (Conv (attmap)))×(N+2) (5)

For the weight generation module, we borrow the idea of the Transformer’s stacked structure that each

layer can capture the characteristics of the input data, and with the increase of layers, the model can learn

more complex and advanced data representation. It should be noted that the structure of the middle layer

(N convolutional units) of the weight generation module is exactly the same, except that the �rst layer

and last layer need to match the channels and dimensions of the external feature map. Speci�cally, each

convolutional unit of the weight generationmodule is composed of a convolutional layer (k = 3 × 3 and stride
= 1), layer normalization, and GELU (Gaussian Error Linear Units) activation function. It is well known that

layer normalization performs better than batch normalization in training small batches of samples, and layer

normalization is more �exible. �e activation function GELU has zero centrality, which helps alleviate the

vanishing gradient problem and can provide better gradient information.

In general, during the training process, the attention map is iteratively processed by the weight

generation module, which can adaptively obtain the weights of di�erent local features in f
(I)
DI2 during the

learning process, and can implicitly capture the semantic relationship between di�erent spatial regions in

f
(I)
DI2, so as to mine the building information in the image.

Step 4: Step 1 and Step 2 respectively enrich the detailed information of the feature map from two

dimensions of channel and space. In order to obtain the relevance of the spatial information of the feature

maps, the last dimension k2 of f
(I)
DI3 is summed to fuse the di�erent local receptive �eld information to obtain

f
(I)
DI4 ∈ RH×W×(C×r). In addition, in order to interact the channel information of the feature map, f

(I)
DI4 further

goes through the convolution operation with k = 3 × 3 and stride = 1 to obtain the local feature descriptor

f
(I)
l ocal
∈ RH×W×C of the �nal output of VGG-DIMM.

3.3 MJT Loss

Triplet loss has been proved bymany research works [11,12], and it is a reliable and e�ective loss function

in image retrieval tasks including VPR.�e core idea of Triplet loss is to try to learn a feature space in which

samples from the same class are closer together and samples from di�erent classes are farther apart:

LT (q, p, n) =max (0, d (q, p) − d (q, n) +m) (6)

wherem is the custommargin in the triplet loss function,which is parameter used to control the hard distance

between samples. d(q, p) = ∣∣q-p∣∣2 denotes the Euclidean distance between q and p; q, p, n denote the global

feature descriptors of the queries, positive samples, and negative samples, respectively.
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It is well known that the input form of Triplet loss is a triplet (q, p, n), that is, during the training

process, for a given query sample, the dataloader will randomly select a negative sample and a positive sample

corresponding to it, as shown in Fig. 3a. With the input of di�erent triples one by one, the best optimization

path for the model is to learn the convergence information from each triple in order, that is, to let the query

sample accumulate the experience of moving away from the last negative sample and continue to move away

from the next negative sample. However, when the loss function considers only one negative sample at a

time, the model may over�t that particular negative sample, especially if the negative sample is not selected

optimally. In addition, in VPR tasks, the number of positive samples is usually relatively small, because the

geographical location of the positive samples is required to be the same as that represented by the query

sample. �e negative sample space is much larger, because any sample that is geographically di�erent from

the query sample can be used as a negative sample.�erefore, due to the above class imbalance phenomenon,

it is almost impossible for the model to follow the globally optimal path to learn.

Figure 3: Schematic diagram of individual and joint processing

To solve the above problems, we design a “joint processing” mechanism for negative samples instead

of the previous “separate processing” way, in order to avoid the model falling into local optimum during

training. As shown in Fig. 3b, we introduce the consideration ofmultiple negative samples in the input triples.

In particular, considering that the problem of high inter-class similarity is prominent in the VPR domain,

we constrain the query to all the selected negative samples by maximizing the minimum distance between

the classes:

LU (q, p, {n i}) =max (0, d (q, p) −min ({d (q, n i)}) +m) (7)

where {d(q,ni)}denotes the distance set formed by the query and the selected negative samples, and idenotes

the index. Taking the query-negative sample with the minimum distance as the triple optimization goal,

on the one hand, the discrimination of the model to all negative samples can be greatly increased, and the
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generalization ability of the model can be improved. On the other hand, it can help the model to better learn

the features of those less common categories, so as to improve the overall learning e�ect of the model.

For Eq. (8), we want to achieve the purpose of optimization by reducing LU(q, p, {ni}), that is, using
d(q, p)-min({d(q, ni)}) > m to bring the triplet (q, p, {ni}) image closer or farther away in the feature

space. However, this optimization method still has an obvious disadvantage: in the process of learning, as

the distance between the query and the positive sample continues to get closer, the distance between the

query and the negative samples may continue to get closer, which will cause the degradation of the feature

recognition function of the model. Based on this consideration, we further add a new distance constraint

to Eq. (7) to force the distance between positive samples and all negative samples in the feature space to be

increased. Similarly, we achieve this by “focusing only on the closest negative sample to the positive sample”.

�e �nal loss function is de�ned as follows:

LMJT =max (0, d (q, p) −min ({d (q, n i)}) +m −min ({d (p, n j)}) +m′) (8)

where {d(q, ni)} and {d(q, nj)} are the query-negative sample distances sets and positive-negative sample

distances sets; ni and nj are the feature descriptors of the i-th and j-th negative samples in the joint processing,

respectively; m′ is the hard distance parameter for positive-negative samples.

Furthermore, in order to express the working principle of the proposed loss function more clearly, we

make a graphical description. As shown in Fig. 4, (a) is the feature space before training, where all samples are

disordered; (b) is the expression of the loss function LU in Eq. (8), which sees several more negative samples

than LT in a single learning. Under the constraint of this loss function, the positive samples are close to the

query, all negative samples are far away from the query, and any query-negative sample distance is at leastm

larger than the query-positive sample distance. (c) is a schematic of the working mechanism of MJT Loss,

which constrains the distance between positive samples and all negative samples to be at least m′ to make

all negative samples further away from the query, so as to further improve the discrimination of inter-class

samples on the basis of (b).

Figure 4: Graphical description of MJT Loss
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4 Experiments

4.1 Implementation Details

Model details. For the backbone network VGG-DIMM, its VGG is the part before the last ReLU

(Recti�ed LinearUnit) of the ��h layer of VGG16 obtained by cropping, which is pretrained on the ImageNet

dataset. In DIMM, the feature expansion rate is set to r = 4, and the number of convolution units in the

middle layer of the weight generation module and the convolution dimension of each convolution unit are

respectively set toN = 4 and L = 4. As the aggregation layer, NetVLAD inherits the Settings of the baseline [4],

where the number of clusters is 64 and the dimension of the output global feature vector is 64 × 512 = 32,768.
In the optimization process of MJT Loss, we cache 1000 triple at a time, and each triple is used as a direct

input, containing 1 query sample, 1 positive sample and 5 negative samples. In particular, we set the two

distance parameters m = 0.1 and m′ = 1.65 for MJT Loss.

Experimental setup. In order to ensure the consistency of the experimental results, the experiments in

this chapter are carried out under the same so�ware and hardware environment. �e computing platform

is 20.04.6LTS Linux system, using three Tesla T4 graphics cards (16 GB of video memory), Pytorch version

1.10.1, CUDA (Compute Uni�ed Device Architecture) version 11.4, and Python version 3.6.13. In the training

process, the training set is uniformly scaled to 640× 480, and the Batchwas set to 64. For the training strategy,
we use the SGD (Stochastic Gradient Descent) optimizer to update the model parameters, with momentum

set to 0.9 and weight decay set to 0.001. In addition, the learning rate adopted a multi-step learning strategy,

the initial learning rate was set to 0.001, and the learning rate was reduced to 0.5 times of the original when

the iteration reached the 5-th Epoch, and the training was stopped a�er 10 Epochs.

4.2 Datasets and Evaluation Metrics

Datasets.Weuse Pittsburgh30k [20] as the training set and evaluate our proposedmethod on four pub-

lic benchmarks including Pittsburgh30k-test (herea�er Pitts30k), Pittsburgh250k-test (herea�er Pitts250k),

Aachen Day-Night (herea�er Aachen) [21], and TokyoTM [4]. As shown in Table 1, these benchmarks take

into account complex environmental variations such as season, weather, lighting, viewpoint, and so on.

Table 1: Introduction to the datasets

Datasets Query Database Scene Day-Night chage

Pittsburgh30k-test 6816 10,000 City + Suburb ×
Pittsburgh250k-test 8280 83,952 City + Suburb ×
Aachen Day-Night 191 6697 City

√
TokyoTM 7186 49,056 City ×

Evaluationmetrics. In all experiments, we use Recall@1 (herea�er R@1) as the evaluationmetric, which

indicates the fraction of query images that are correctly located the �rst time. Speci�cally, the geographical

location represented by the query image is taken as the center of the circle, and the reference image within

the radius of 25 m is considered to be in the same position as the query image.�erefore, if at least one of the

previous predicted images is within the threshold of the true geolocation of the query image, this query is

considered to be correctly retrieved. In this paper, in order to be consistent with other advanced algorithms,

the threshold value of Aachen dataset is set to 0.2 m, and the default value of other datasets is 25 m.
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4.3 Ablations

(1) Module Validation

As shown in Table 2, we successively add DIMM and MJT Loss on baseline (BL) NetVLAD to verify

their e�ectiveness, respectively. Among them, the Loss functions used by “BL” and “BL +DIMM” are Triplet

Loss by default, and “BL + DIMM +MJT loss” is our overall model DIEONet.

Table 2: Ablation experiments for the modules

Models Pitts30k Pitts250k Aachen TokyoTM

R@1 (%) R@1 (%) R@1 (%) R@1 (%)

NetVLAD (BL) 84.48 84.40 45.55 90.48

BL + DIMM 84.54 84.58 56.02 90.95

BL +MJT Loss 85.50 86.76 52.88 92.76

BL + DIMM +MJT Loss (Our DIEONet) 85.72 87.15 62.30 92.89

Table 2 shows that our designed DIMM and MJT Loss improve the performance of the model to

varying degrees on the four test benchmarks. Although the performance of DIMM is weak on Pittsburgh

and TokyoTM, the performance of DIMM is signi�cantly improved on Aachen, which is 10.47% higher than

the baseline, which fully verizes the ability of DIMM to extract domain invariant information. ForMJT Loss,

it shows a great improvement over the baseline on all datasets. Speci�cally, the introduction of MJT Loss,

which respectively improves 1.02% and 2.36% on Pitts30k and Pitts250k, and 7.33% and 2.28% on Aachen

and TokyoTM, emphasizes the necessity of global optimization. In addition, we found through the last set

of experiments that the improvement of the model by these two schemes is not con�icting, and both show a

positive accumulative e�ect. At this point, our DIEONet even achieves 62.30% on Aachen, which is 16.75%

higher than the baseline.�is phenomenon shows that the two schemes generate a good couplingmechanism

inside the model, and especially show strong robustness against the challenge of day-night variation.

Further, in order to demonstrate the e�ectiveness of the proposed model more intuitively, we show

several attentional heatmaps of NetVLAD (BL) and DIEONet, which are randomly selected from the chosen

dataset. As shown in Fig. 5, compared with NetVLAD (BL), our DIEONet pays more attention to strongly

discriminative static-like objects and regions in the scene images, which fully re�ects that DIEONet can

e�ectively construct global associations of environmentally invariant location features.

Figure 5: Attention heatmaps of NetVLAD (BL) and our DIEONet
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(2) Hyperparameter Validation

In Section 4.1, wementioned four hyperparameters, which are the number of convolution unitsN in the

middle layer of the weight generation module in DIMM, the convolution dimension L of each convolution

unit, the embedding stage position stagen of DIMM in VGG16, and m′ in the Loss function MJT Loss. We

follow the control variables approach and verify each hyperparameter one by one based on the best model,

by keeping the best default setting for each of the remaining parameters when verifying one hyperparameter.

To compare the comprehensive performance of the proposed model on all datasets, we averaged the results

on these datasets.

As shown in Table 3, in DIMM, we similarly �nd that the variation of DIMM hyperparameters mainly

a�ects the performance of the model on the Aachen dataset. Firstly, for the change of hyperparameterN, the

recall rate of the model on the Aachen dataset �rst increases and then decreases, which is just the opposite

of the performance on the Pitts30k and Pitts250k datasets. In this regard, we infer that DIMM has strong

applicability for day-night scenes where the image style changes signi�cantly. Secondly, when verifying the

hyperparameter L, DIMM also shows the opposite monotonicity of themodel on the two Pittsburgh datasets

and the Aachen dataset. However, unlikeN, the ability of DIMM tomine domain-invariant features weakens

as L increases; therefore, we chose L= 4 as the best parameter. In particular, we �nd that nomatterwhat values

ofN andL are taken, the impact on the performance of themodel on theTokyoTMdataset is negligible. stagen
represents the stage at which DIMM is embedded into the VGG16 network, and in order to take into account

the computational cost, we sequentially choose the deeper positions stagen = 3, 4, and 5 for veri�cation.

Speci�cally, the exact location of DIMM embedding is before Maxpool in each stage of VGG16. From the

last three rows of Table 3, we can see that embedding DIMM in the third stage directly causes the model

to collapse on all datasets. With the deeper position of DIMM embedded, the e�ectiveness of DIMM is

gradually exerted. �erefore, we draw the following conclusion: DIMM completes the extraction of domain

invariant descriptors in high-level abstract information.

Table 3: Parameter veri�cation experiments for DIMM

Hyper-params Pitts30k Pitts250k Aachen TokyoTM Average

R@1 (%) R@1 (%) R@1 (%) R@1 (%) R@1 (%)

N

1 86.96 88.13 49.21 93.35 79.41

2 86.24 87.68 52.88 93.36 80.04

4 85.72 87.15 62.30 92.89 82.02

8 86.80 87.56 40.84 93.56 77.19

16 87.56 88.83 41.36 93.68 77.86

L

4 85.72 87.15 62.30 92.89 82.02

8 86.06 87.67 53.93 93.46 80.28

16 85.99 86.88 53.93 93.06 79.97

32 87.13 88.49 48.69 93.82 79.53

64 87.25 88.35 48.49 93.74 79.46

stagen

3 6.37 2.61 10.47 4.98 6.11

4 84.65 85.18 40.84 89.31 75.00

5 85.72 87.15 62.30 92.89 82.02
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In addition, m′ in MJT Loss is further veri�ed by us, and we adopt an interval of 0.25. As shown

in Table 4, the overall performance of the model on each of the other datasets, except Aachen, slightly

decreases as m′ increases. When m′ = 1.65, the trained model has the strongest ability to combat day-night

variation. �erefore, we choose m′ = 1.65 as the best parameter choice for our proposed loss function.

Table 4: Parameter validation experiments for MJT loss

Hyper-param Pitts30k Pitts250k Aachen TokyoTM Average

R@1 (%) R@1 (%) R@1 (%) R@1 (%) R@1 (%)

m′

0.90 86.14 87.14 59.16 93.47 81.48

1.15 86.09 87.26 59.16 92.57 81.27

1.40 85.92 87.13 55.50 92.53 80.27

1.65 85.72 87.15 62.30 92.89 82.02

1.90 85.89 86.80 42.93 92.85 77.12

4.4 Comparison with State of the Art

In order to verify the overall performance of the proposed algorithm, we compare 9 cutting-edge works

in the �eld of VPR from 2017 to 2024, which are basically implemented based on the classical NetVLAD. In

addition, to further ensure a fair comparison, we tried our best to reproduce these algorithms on the same

experimental equipment and environment con�guration. For the experimental results that were not reported

in the original paper and we had insu�cient reproduction conditions, we indicated by “/”.

As shown in Table 5, overall, the test results of our work on each benchmark data set surpass the vast

majority of algorithms, and are close to the state-of-the-art work on each benchmark data set. Speci�cally,

for two Pittsburgh datasets, Pitts30k and Pitts250k, Our DIEONet outperforms the recent works DW-T

(2024) [22] andRes2Net-SE-NetVLAD (2023) [23] tested on themby signi�cantmargins of 3.08% and 3.05%,

respectively. However, for the state-of-the-art works Patch-NetVLAD (2021) [24] and CosPlace (2022) [18]

presented on Pitts30k and Pitts250k, our DIEONet still has a gap of 2.98% and 2.55%, respectively. It is

worth explaining that Patch-NetVLAD and CosPlace are two-stage re-ranking algorithms, which achieve

the purpose of improving accuracy at the cost of sacri�cing time cost. In addition, CosPlace introduces a

classi�cation algorithm as an aid in the �rst stage. �erefore, taken together, our end-to-end DIEONet is a

more optimal solution, and at the same time contains more “potential”.

Table 5: Performance comparison with state of the art algorithms

Algorithms Pitts30k Pitts250k Aachen TokyoTM

R@1 (%) R@1 (%) R@1 (%) R@1 (%)

NetVLAD (2017) [4] 84.48 84.40 45.55 90.48

VGG16-GeM (2018) [25] 78.54 76.98 37.70 88.44

HSCNet (2020) [26] / / 32.70 /

Patch-NetVLAD

(2021) [24]

88.70 / / /

CosPlace (2022) [18] 88.50 89.70 / /

(Continued)
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Table 5 (continued)

Algorithms Pitts30k Pitts250k Aachen TokyoTM

R@1 (%) R@1 (%) R@1 (%) R@1 (%)

DeAttention (2023) [27] 85.04 86.07 34.55 91.90

Res2Net-SE-NetVLAD

(2023) [23]

/ 84.10 / /

DW-T (2024) [22] 82.64 / / /

NocPlace (2024) [28] / / 68.60 /

DIEONet (Ours) 85.72 87.15 62.30 92.89

In particular, on the TokyoTM dataset, our DIEONet achieves the best performance so far, with R@1

outperforming the recent DeAttention (2023) [27] algorithm by 0.99%. As two feature mining schemes,

DeAttention emphasizes the use of spatial-like attention mechanism to eliminate dynamic information in

scene images, while ourDIEONet focuses on designing cascaded interaction layers to directly recalipay static

objects in scene images. It turns out that our scheme is more e�cient, since direct elimination of dynamic

objects may lead to the loss of part of the high-value discriminative information.

Finally, on the Aachen dataset, our algorithm shows absolute advantages. In the challenge of combating

the day-night change, ourmodel exceeds the landmarkNetVLAD algorithm by 16.75%, and exceeds the 2023

DeAttention algorithm by 34.05%. Although there is a 6.3% di�erence compared with the state-of-the-art

NocPlace (2024) [28], NocPlace is a specialized algorithm against day-night variation, and its training set is

a self-made dataset with day-night variation, which is the lack of the training set of Pitts30k. �us, it shows

that our DIEONet can e�ectively cope with the task challenge with obvious domain variation style, that is, it

has a stronger ability to mine salient static information in scene images.

5 Conclusions

�is paper proposes a new feature enhancement module DIMM and a new semantic metric function

MJT Loss, which are dedicated to mining domain-invariant information in scene images and enhancing

the discrimination between positive and negative samples of the model. On the one hand, DIMM implicitly

models the interdependencies between di�erent spatial regions of the feature map by cascading specially

designed convolutional unit groups, which e�ectively relabeling the salient information and non-salient

information in the feature. On the other hand, MJT Loss combines the “joint processing of multiple

samples” mechanism with the original triplet loss, and introduces a new distance constraint term, so that

the optimization path of the model stably proceeds in the direction of the global optimum. A�er extensive

comparative experiments and analysis, we demonstrate the superiority of the proposed schemes. In future

work, we will explore the lightweighting of DIMM and the clustering of homogeneous samples in MJT Loss,

with a view to further improving the generalisation of the VPR model while controlling the complexity of

the proposed model.
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