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ABSTRACT: Towards optimal k-prototype discovery, k-means-like algorithms give us inspirations of central samples
collection, yet the unstable seed samples selection, the hypothesis of a circle-like pattern, and the unknown K are still
challenges, particularly for non-predetermined data patterns. We propose an adaptive k-prototype clustering method
(kProtoClust) which launches cluster exploration with a sketchy division of K clusters and finds evidence for splitting
and merging. On behalf of a group of data samples, support vectors and outliers from the perspective of support vector
data description are not the appropriate candidates for prototypes, while inner samples become the first candidates for
instability reduction of seeds. Different from the representation of samples in traditional, we extend sample selection
by encouraging fictitious samples to emphasize the representativeness of patterns. To get out of the circle-like pattern
limitation, we introduce a convex decomposition-based strategy of one-cluster-multiple-prototypes in which convex
hulls of varying sizes are prototypes, and accurate connection analysis makes the support of arbitrary cluster shapes
possible. Inspired by geometry, the three presented strategies make kProtoClust bypassing the K dependence well with
the global and local position relationship analysis for data samples. Experimental results on twelve datasets of irregular
cluster shape or high dimension suggest that kProtoClust handles arbitrary cluster shapes with prominent accuracy
even without the prior knowledge K.

KEYWORDS: Prototype finding; k-means++; convex hull; support vector data description; geometrical information

1 Introduction
Clustering is to discover natural data groups with maximal intra-cluster similarity yet minimal inter-

cluster similarity. As one of the most well known algorithms, k-means adopts an iterative strategy with
conditional termination, in which labeling each data sample to the nearest cluster centroid and recalculating
the centroids are alternately conducted. Due to insufficient prior knowledge, discovering data groups is an
exploration procedure toward the target data. First, a predefined K is frequently impractical before we judge
the exact distribution pattern, e.g., customer segmentation, and anomaly detection [1,2]. Second, k-means
ultimately does input space partition insensitive to the data distribution boundary. Therefore, a data set can
be partitioned differently, and the random selection of initial cluster centroids can aggravate ineradicable
instability. Third, under the K constraint, partitioning input space in terms of circle-like patterns requires
further exploration to deal with arbitrary cluster shapes.

Considering the challenges above, many insightful works can be found in the literature. Without the
prior knowledge of K, two representative methods are distance-based and vote-based analysis after running
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k-means for a range of K values (e.g., 5–20). For the former, elbow curve and silhouette coefficient analysis [3]
are two typical methods. For each K, elbow curve analysis calculates average distances to the centroid
across all data samples and finds the point where the average distance from the centroid falls suddenly.
Unlike elbow curve analysis, silhouette coefficient analysis measures how similar a data sample is within
a cluster (cohesion) compared to other clusters (separation). An average score on each K will be obtained
before making a judgment. Besides, authors in [4] introduce enhanced gap statistic (EGS) to measure the
standardized difference between the log-transformed within-cluster sums of squares from a reference dataset
of exponential distribution. A better K should reduce the variation. For the latter, Fred et al. [5] suggest
evidence accumulation (EAC) to combine multiple results under a vote strategy. It works well in identifying
arbitrarily shaped cluster, particularly on low-dimensional data with clear boundaries. Since the initialization
phase strongly influences the obtained accuracy and computational load, a common sense of coping strategy
is to restart k-means several times under one of seeding strategies and keep the final result with the lowest
error. Besides the random seeding strategy employed by the classic k-means, the other popular strategies
include Forgy’s approach [6], probabilistic-based strategy [7,8], and the most recent split-merge approach [9].
For k-means and its variants, the circle-like pattern hypothesis is preserved. Therefore, split-merge [5,9],
multiprototype [10], and multiple kernels-based strategy [11] are mainly adopted for imbalanced clusters.
In addition, the outlier removal matching k-means is getting more attention for accuracy. Despite the
above representative methods making improvements on accuracy, efficiency or adaptability for k-means,
the requirement of K approximating the ground truth is almost kept. Furthermore, even if K is given, the
intrinsic input space division strategy and the circle-like pattern hypothesis also can not match irregular
cluster shapes [9], since they should be considered along with the exploration of unknown K clusters.

Despite challenges, k-means inspires us for its simplicity, intuition, and efficiency. In this paper, an
adaptive k-prototype clustering namely kProtoClust is designed to cast off the K dependence, optimize seeds
extraction, and reduce the influence from circle-like pattern description. The discovered clusters can change
in number and shape and become apparent along with the global and local position relationship analysis.
The main contributions of this work lie in:

(1) Inspired by the concept of support vector data description (SVDD), convex hulls of variable sizes
described by boundary patterns [12] are employed as prototypes. Discarding the circle-like pattern assump-
tion, kProtoClust is never an input space division method but a boundary discovery-based clustering method
with a convex decomposition strategy that prefers one-cluster-multiple-prototypes. Thus, arbitrary-shaped
clusters can be well discovered and described.

(2) K is no longer an objective for input space division but a starting point for cluster exploration. Based
on a union analysis of the global and local position relationship for data samples, we find solid evidence
for split and mergence. Begin with an initial K for a sketchy division of input space, kProtoClust discovers
optimal clusters in accord with data distribution. The prior knowledge K is bypassed due to giving no
constraint on the final cluster number Kf.

(3) To reduce redundant computations, we propose a careful seeding strategy with position analysis
(S2PA) in which a lightweight data grouping algorithm and logical inner analysis are carefully introduced.
It gets two critical yet intuitive features: K seeds selection must evade outliers and boundaries and should
not be limited to existing samples in the target data. As an assistant of kProtoClust in an early collection of
cluster centers, k-means++ with S2PA contributes to accurate prototype analysis in stability and efficiency.

(4) By integrating the aforementioned designs, kProtoClust is proposed to achieve a better under-
standing of clusters from the basic component of convex hull. For efficiency, complete cluster exploration
is conducted in input space. Furthermore, to reduce the impact of sparse data space on separability, a near
maximin and random sampling (NMMRS) [13] is recommended for large and high dimensional dataset.
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More exploration spirits with the descriptive ability can be found in kProtoClust that motivates it to discover
the accurate data distribution, not to divide the input data space under an inflexible rule. Compared with
k-means-like algorithms [14], the cost of a slight efficiency drop is acceptable in practical data analysis.

The remainder of this paper proceeds as follows. Section 2 gives preliminaries of k-means++, SVDD,
shrinkable edge pattern selection, and NMMRS. Section 3 describes the proposed kProtoClust with its
critical components, e.g., S2PA, evidence of split and mergence, and convex decomposition based prototypes
extraction. Section 4 evaluates the performance of kProtoClust. In Section 5, we discuss related work.
In Section 6, we conclude this work.

2 Preliminaries

2.1 k-means++
Consider a data set X with N samples {x1 , x2, ⋅ ⋅ ⋅ , xN}, C = {c1 , c2, ⋅ ⋅ ⋅ , cK} is the set of expected K

cluster centers where xi , cv ∈ Rd with i = 1, ⋅ ⋅ ⋅ , N ; v = 1, ⋅ ⋅ ⋅ , K and the integer d is the dimension. Let Z =
[ziv]N×K , where ziv ∈ {0, 1} indicates whether xi belongs to the v-th cluster. Then, we formulate the objective
function of k-means by

min
Z ,C

N
∑
i=1

K
∑
v=1

ziv ∣∣xi − cv ∣∣2. (1)

Generally, k-means++ selects the first center c1 at random from X , and repeatedly collects the next
center ci = x′ ∈X with probability D(x′)2

∑x∈X D(x)2 until a total of K centers are initialized. Here, D(x) is the
shortest distance from x to the closest center we have already chosen. Then, the solver of k-means++
iteratively updates the cluster centers and memberships formulated by the following equations:

cv = ∑
N
i=1 ziv x i j

∑N
i=1 ziv

ziv = {
1 if ∣∣xi − cv ∣∣2 =min1≤v≤K ∣∣xi − cv ∣∣2
0 otherwise.

(2)

Here, ∣∣xi − cv ∣∣ is the Euclidean distance between xi and the cluster center cv . Apparently, to conduct
the iterative procedure, the initial K centers are pivotal and the root of instability. Meanwhile, K is also the
prior knowledge because the iteration will end with K clusters.

2.2 Support Vector Data Description

Giving a nonlinear function Φ(⋅), SVDD maps data samples into the feature space and obtains the
minimum sphere which contains most of the data samples. Let α and R denote its center and radius,
respectively, the objective function is

min
R ,α ,ξi

R2 + C∑
i

ξi

s.t. ∣∣Φ(xi) − α∣∣2 ≤ R2 + ξi ,
(3)
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where ξi is a slack variable, and C makes the trade-off between simplicity and error [15]. Its dual problem
can be formulated by

min
β j

∑
i , j

βi β jK(xi , x j)

s.t. ∑
j

β j = 1, 0 ≤ β j ≤ C , j = 1, . . . , N (4)

with α = ∑ j β jΦ(x j) if the Gaussian kernel K(xi , x j) = e−q∣∣x i−x j ∣∣
2

with kernel width q is adopted. α is a
linear combination of data samples in feature space with weight factors β j. Similar to k-means, only a part
of data samples with β j > 0 contribute to the center. Those with 0 < βi < C located on the sphere’s boundary
are support vectors (SVs), which are essential for describing the sphere, clusters’ shapes, and connectivity.

2.3 Shrinkable Edge Pattern Selection
As depicted by Fig. 1, in geometrical, a cluster’s boundary consists of an edge and a border [16]. An edge

belongs to one cluster, while a border appears in an overlapping region and is shared by two adjacent clusters
which are generally considered as two components with the same cluster label. However, in unsupervised
learning, it is difficult to find the border. Therefore, similar to SVDD, the edge contains the most informative
samples that accurately describe the distribution structure. From this perspective, it can be considered a
superset of SVs. In line with [12], the critical steps of shrinkable edge pattern selection (SEPS) for a given xi
with its ke nearest neighbors x j( j = 1, 2, . . . , ke) are described as follows:

• Setting two thresholds γl and γu (0 < γl < γu ≤ 1) to respectively control the curvature and the shrinkage
degree of the aforementioned surface.

• Generating the normal vector n i = ∑ke
j=1 ui j, where ui j = x j − xi .

• Calculating li = 1
ke
∑ke

j=1 g(nT
i ⋅ ui j), where (⋅) means inner product and the function g(x) returns 1 if

x ≥ 0, otherwise it returns 0.
• Cluster boundary identification. If li ∈ [γl , γu], then xi is considered as one of the boundary patterns.

Figure 1: Edge patterns and border

2.4 Near Maximin & Random Sampling
Desired from the maximin sampling rule, NMMRS focuses on accurately portraying the distribution of

X in the q-dimensional downspace by maximin and random sampling (MMRS) where q ≤ d. Let Xds ⊂ Rq
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be a downspace data of X ⊂ Rd which is obtained by employing a random projection (RP). Following [13],
NMMRS conducts three steps as follows:

• Step 1: Collect k′ maximin samples. NMMRS finds the k′ maximin samples in Xds, which are furthest
from each other. Begin with a random data sample, it chooses the second maximin sample which is
furthest from the initial one with respect to a chosen distance measure. The third one should have the
maximum distance from the first two. This process continues until k′ maximin samples are collected.

• Step 2: Group each data sample with its nearest maximin sample. By grouping each data sample in
Xds with its nearest maximin sample, we get k′ groups of data {Gi}k′

i=1 associating to k′ maximin
samples, respectively.

• Step 3: Randomly select data near each maximin sample to obtain n samples. The final data Xs of size
Ns(Ns ≪ N) is built by selecting random samples from each group Gi(i = 1, . . . , k′). The number ni of
samples collected from Gi is proportional to the number of data samples in Gi , i.e., ni = ⌈Ns × ∣Gi ∣/N⌉.

3 The Proposed kProtoClust
Towards discovering clusters without the ground truth, kProtoClust adopts edge-based cluster analysis

since edges describe clusters and contribute to the connectivity analysis. Therefore, split analysis with S2PA
given random seed K is designed to collect all the edge patterns forming convex hulls in local view. Mergence
analysis tries to find the connectivity evidence of two neighboring convex hulls from a global view. In this
section, we successively present the designs of edge collection, split and mergence analysis strategy, and
finally give the algorithm description of kProtoClust.

3.1 Edges in Global and Local View
In kProtoClust, convex hulls with variable sizes are employed as the prototypes to support one-cluster-

multiple-prototypes. From the perspective of SVDD following [12,17,18], the boundary is critical for convex
hull extraction since the latter can be decomposed from the former. Even though a border is shared by
two neighboring and connected convex hulls in the local view, it should be removed to accurately describe
a cluster comprised of these two convex hulls in the global view. Therefore, although commonality exists,
different perspectives frequently lead to very distinguished results. Without considering the border, the edge
becomes the primary focus for kProtoClust.

Towards accurately and visually describing the difference between edges discovered in the global and
local view, we consider one cluster with two prototypes (convex hulls) denoted by A and B in Fig. 2. A and B
are centers of the respective convex hulls. Generally, the global view is important to recognize edge patterns
and make correct cluster judgments. As shown in Fig. 2a, we theoretically expect edge patterns in the global
view to be a minimum set of data samples traveling along the cluster boundary. Due to the existence of non-
convex turning points p1 and p2, we have to accept the fact that there are two convex hulls. In the following
context, we call these turning points split points since they are edge patterns in a cluster yet do not satisfy
convexity [17] as the others. Apparently, p3 and p4 are inners, and SEPS can not extract them due to the
balanced normal vectors radiating all around in their ke nearest neighboring (KNN) regions.

Due to inaccurate data grouping or input space division, in the process of cluster exploration, inners
like p3 and p4 may be chosen as edge patterns when A and B are split from a cluster. As depicted in Fig. 2b,
in a local view, edge patterns p3 and p4 may have distinct convergence directions n3 and n4 such that they
belong to different clusters A and B. This phenomenon is the same as what has been discussed in [18]. Even
so, we can fortunately expect that those edge patterns collected in the global view (Fig. 2a) are still here and
will not be missed (at least most of them) by SEPS in the local view with the same ke. This is the commonality
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of edge pattern collection from global and local perspectives. Naturally, the only difference is the occurrence
of extra edges, which are the borders, if we finally get the evidence that A and B belong to the same cluster.
Undoubtedly, sampled from the extra edges, p3 and p4 keep their correct roles of inners when we switch the
edge analysis from their KNN regions back to the global view from the local view. That means, for the edge
selection rule of � ∈ [γl , γu], p3 and p4 are violating samples that exist in local analysis yet disappear from
the perspective of global analysis.

Figure 2: Edge analysis of two connected components in global and local view. In b), the two components are assigned
with different labels after k-means++

Taking two irregularly shaped clusters Chameleon [19] as an example, edge patterns collected in a
local view after k-means++ with K = 5 and in the global view (K = 1 equivalently) are shown in Fig. 3a,c,
respectively. Obvious violating samples exist between adjacent clusters or convex hulls with connection
relationships, e.g., cluster pairs {3, 5}, {5, 1}, and {1, 4}. A similar result with respect to the difference
between Fig. 3c,d when we change K to 3 further confirms that the existence of violating samples is related
to the connectivity determination of any two neighboring clusters or convex hulls.

3.2 Split Analysis with S2PA
The input space division strategy of k-means+ + allows us to efficiently observe data distribution

patterns in a local view. Besides the separation of components of one cluster, components from different
clusters can also be mistakenly grouped due to the circle-like hypothesis. As shown in Fig. 3a, cluster 2 covers
two components that should be assigned with different labels. A similar result occurs in cluster 4. Before
discovering the disconnection evidence, we first retrospect the convex hull definition following [17,20].

Definition 1 (convex hull). In Euclidean space, the convex hull of a data set Xh with Nh data samples
{x1 , x2, ⋅ ⋅ ⋅ , xNh} and xi ∈ Rd(i ∈ [1, Nh]) is defined to contains all the line segments connecting each pair of
Xh . Let CH(Xh) be the convex hull, it can be formulated by

CH(Xh) = {x∣x =
Nh

∑
i=1

λi xi ,
Nh

∑
i=1

λi = 1, 0 ≤ λi ≤ 1}. (5)

In CH(Xh), a vertex x is the data sample which does not satisfy x = λxi + (1 − λ)x j with any two distinct
samples xi , x j ∈Xh and i , j = 1, . . . , Nh if λ ≠ {0, 1}. Following the circle-like hypothesis, ideally, each cluster
obtained by k-means++ should be a convex hull. Therefore, based on the Definition 1, the center of each
circle-like cluster formulated by Eq. (2) must be located in the corresponding convex hull. That means each
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center is an inner from the perspective of SVDD. However, the center of cluster 2 in Fig. 3a goes against this
rule that motivates us to reconsider the cluster’s reasonability. In other words, the current center of cluster 2
even should not be a good seed for data regrouping.

Figure 3: Edge analysis on two classes of Chameleon in global and local view with Ke = 30, γl = 0.85, γu = 1. Each
cluster is marked with the cluster index on its center

Proposition 1. For a convex hull CH(Xh)with vertices Xv , the included angle between the normal vector
nv of any vertex xv(∈Xv) and its direction pointing to the cluster center x c is less than 90○.
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Proof. Based on Definition 1, there are Nh data samples in the convex hull CH(Xh) with center xc. As
an inner of the convex hull, xc can be formulated by xc = ∑Nh

i=1 λixi with 0 < λi < 1. The vector between xc and
xv is ∑Nh

i=1 λi xi − xv . Following Section 2.3, the normal vector nv of any vertex xv is ∑Nh
i=1(xi − xv). We can

formulate the cosine value of the included angle between the normal vector of xv and its direction pointing
to the cluster center xc as

cos∠xcxv nv =
��→xv xc ⋅ nv

∣∣��→xv xc∣∣ × ∣∣nv ∣∣
. (6)

The numerator of Eq. (6) is

��→xv xc ⋅ nv = (
Nh

∑
i=1

λi xi − xv) ⋅ (
Nh

∑
i=1
(xi − xv)) ∑

λi=1==== (
Nh

∑
i=1

λi xi −
Nh

∑
i=1

λixv) ⋅ (
Nh

∑
i=1
(xi − xv))

= (
Nh

∑
i=1

λi(xi − xv)) ⋅ (
Nh

∑
i=1
(xi − xv))

x i=x i−xv===== (
Nh

∑
i=1

λi xi) ⋅ (
Nh

∑
i=1

xi)

< (
Nh

∑
i=1

1 ⋅ xi) ⋅ (
Nh

∑
i=1

xi) = ∣∣
Nh

∑
i=1

xi ∣∣2.

Meanwhile, due to ∃λi > 0 for i = 1, . . . , Nh, we have ��→xv xc ⋅ nv > (∑Nh
i=1 0 ⋅ xi) ⋅ (∑Nh

i=1 xi) = 0. Thus, we
get cos∠xcxv nv ∈ (0, 1) and the included angle has arccos∠xcxv nv ∈ (0, 90○). ◻

Based on the properties of convex hull and convex hull based decomposition [17], experimental result
on Chameleon shown in Fig. 3b confirms the aforementioned two features.

• First, the center xc2 of cluster 2 violates the convex hull’s property. The center should be an inner of a
convex hull. A similar situation can be found in cluster 4. They are not appropriate centers or suitable for
acting as seeds for k-means++. To reduce redundant computations, the proposed S2PA strategy is quite
simple and intuitive: to avoid non-inner samples becoming seeds for k-means++ based on the position
analysis of SEPS.

• Second, xc2 is also a violating sample of the Proposition 1. x21 and x22 are two randomly selected data
samples in cluster 2 judged by k-means++ with normal vectors n21 and n22, respectively. Obviously,
both∠n21x21xc2 and∠n22x22xc2 are greater than 90○. It means that cluster 2 either contains at least two
convex hulls from different clusters or has two prototypes of convex hulls due to irregular cluster shapes.
Therefore, a cluster is suggested to be split if it violates the rule of the Proposition 1. On the contrary, xc1
follows the Proposition 1 well with a randomly chosen∠n11x11xc1 < 90○.

Based on the aforementioned S2PA strategy and violating sample analysis, an essential cluster split
for mistake correction can be briefly illustrated in Algorithm 1. Given a set of edge pattern groups Xe =
{Xe1 , Xe2, ⋅ ⋅ ⋅ , XeK} with the corresponding normal vector set Ne = {Ne1 , Ne2, ⋅ ⋅ ⋅ , NeK}, and the set of
centroids C = {c1 , c2, ⋅ ⋅ ⋅ , cK}, the algorithm SplitAnalysis checks each cluster’s reasonability, conducts
iterative split analysis with irrefutable evidence, and outputs an updated set of edge pattern groups Xe =
{Xe1 , Xe2, ⋅ ⋅ ⋅ , XeKp} with centroids C = {c1 , c2, ⋅ ⋅ ⋅ , cKp} where Kp ≥ K. Notice that the working set Xw ⊆
Xei selection in line 2 is employed for efficiency while avoiding missing sufficient evidence of cluster split.
To avert excessive split, we suggest an accumulated analysis by

pd =
1
∣Xw∣

∣Xw ∣

∑
j=1

sign(− cos∠c i x jn j), (7)
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where ∣Xw∣ is the size of Xw, x j ∈ Xw, and n j ∈ Nei . The function sign(x) returns 1 if x > 0, otherwise it
returns 0. The other function isInner (c i , ke) is to check whether the data x is an inner (true) or not (false)
by employing SEPS. Following Proposition 1, isInner (c i , ke) can also be simplified by checking the included
angle∠c i xi ni where xi is the nearest neighbor of c i in the same cluster. The replacement and update works in
lines 6–8 are simple, e.g., line 6 does Xe ← {Xe/{Xei}}⋃{X 1

ei , X2
ei}. Apparently, through the recursive call of

SplitAnalysis in line 9, we transfer the flaw of the circle-like pattern hypothesis into its advantage of forming
convex hulls with different sizes. These convex hulls are the cornerstone of multiple prototype support in
cluster analysis. Meanwhile, following the previous discussion and [12,17] we can check the included angle
declared in Proposition 1 for the evidence of cluster split or mergence in stead of direct constructing convex
hulls for simplicity.

Algorithm 1: SplitAnalysis
Require: Set of edge groups Xe with its normal vector set Ne, the set of centroids C, and thresholds τd , ke
Ensure: Updated sets of edge groups Xe, normal vectors Ne and centroids C

1. for all c i in C do
2. Uniformly select a working set Xw from Xei

3. pd = 1
∣Xw ∣
∑∣Xw ∣

j=1 sign(− cos∠c i x jn j)
4. if !isInner(c i , ke) ∣∣pd ≥ τd then
5. {X 1

ei , X2
ei ; c1

i , c2
i } ← k-means++(Xei , 2)

6. replace Xei by {X 1
ei , X2

ei}
7. update Nei by {N 1

ei , N2
ei} along with Xei ’s change

8. replace c i by the set Ci = {c1
i , c2

i }
9. SplitAnalysis (Xei , Nei , Ci , τd )

10. end if
11. end for

3.3 Mergence Analysis
According to the analysis in Section 3.1, violating samples exist in the overlapping region of two adjacent

clusters or convex hulls. Therefore, as shown in Algorithm 2, the mergence analysis of convex hulls extracted
by SplitAnalysis is quite intuitive: find out violating samples and merge the associated convex hulls to add
prototypes for the corresponding cluster.

Algorithm 2: MergenceAnalysis
Require: Dataset Xs, the set of edge groups Xe with its normal vector set Ne, the set of centroids C,
thresholds γl , γu , τm, τim and integer ke
Ensure: Set of prototype groups P and their labels LP

1. ΔXe ← ∅, ΔNe ← ∅, A = IK //Adjacent matrx A
2. {Xge, Nge} ←EdgeSel(Xs , ke , γl , γu) // global view
3. {ΔXe , ΔNe} ←DiffSet(Xe , Xge, Ne , Nge)
4. for i = 1, 2, ⋅ ⋅ ⋅ , Kp do
5. if ∣ΔXei ∣ == 0 then
6. {xi , x j} ← find the nearest point-pair from Xe i , Xe j with Ai j == 0, respectively
7. if cos∠ni n j > τm then
8. Ai j ← 1, A ji ← 1 //connected prototypes i, j

(Continued)
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Algorithm 2 (continued)
9. end if

10. else
11. b = {0}1×Kp , cnt = {0}1×Kp //imbalance degree
12. for v = 1, 2, ⋅ ⋅ ⋅ , ∣ΔXei ∣ do
13. {nv , n j , L j} ← KNNRegion(xv , ΔXe , ΔNe , ke)
14. if AiL j == 1 then
15. continue // skip, go to v + 1
16. end if
17. bL j ← bL j +

nv+n j
2×min{nv ,n j}

18. cntL j ← cntL j + 1
19. end for
20. b ← b./cnt // Division
21. for j = 1, 2, ⋅ ⋅ ⋅ , Kp do
22. if b j ≠ 0 and b j ≤ τim then
23. Ai j ← 1, A ji ← 1 //connected prototypes i, j
24. end if
25. end for
26. end if
27. end for
28. LP ← find the connected prototypes using A
29. P ← get the set of prototype groups where Pi = ⋃ j c j and label(c j) = i

Algorithm 2 of MergenceAnalysis invokes EdgeSel(⋅) firstly, which implements SEPS to collect edge
patterns Xge in the global view. Then, DiffSet(⋅) gets the difference set ΔXe between Xge and Xe. Here, Xe
are edge patterns collected in local view, and ΔNe in line 3 is the set of normal vectors corresponding to
ΔXe. Based on ΔXe and ΔNe, lines 4–27 try to check the connectivities among k-prototype obtained by
SplitAnalysis. Each prototype is represented by its center c i ∈ C for simplicity.

If the current convex hull has no violating samples, lines 5–9 find two nearest edge patterns xi and x j
separately from it and the remaining unconnected convex hulls. As a specific case extended from the KNN
region, the normal vectors ni and n j keep similar directions, although they are mistakenly divided into
different groups. Thus, lines 7–9 set the adjacent matrix with Ai j = 1 and Ai j = 1 to declare the connection
while cos∠ni n j > τm. Here, τm is the threshold for this judgment.

Line 10 starts a series of distinguished works with violating samples in the current convex hull. Each
KNN Region around the violating point will be carefully checked to obtain an accumulated imbalance for
each adjacent prototype pair. When KNNRegion(⋅) checks the nearest ke neighbors of xv from ΔXe, we
have introduced a specific constraint that every considered neighbor x j should have different convergence
direction with xv unless it has the same label with xv . That means the included angle∠nv xv n j must be greater
or equal to 90○ if L j ≠ i; otherwise we skip this neighbor and let ke ← ke − 1 in this round. The constraint
is to avoid excessive sampling beyond the overlapping area. Thus, KNNRegion(⋅) returns the number of
neighbors nv in the convex hull of xv , the number of neighbors n j from the largest class with label L j and L j ≠
i. The complete procedure is presented by Algorithm 3. To assist the connectivity analysis, we accumulate
all the imbalance degrees of KNN Regions by considering all the data samples in the overlapping region
between each adjacent prototypes-pair. Following [21], the imbalance degree of the KNN Region around xv
is formulated by
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Algorithm 3: KNNRegion
Require: A data sample xv , a set of edge patterns ΔXe and the corresponding normal vector set ΔNe, and an
integer ke
Ensure: The number of neighbors nv in the convex hull of xv including itself, the number of neighbors nj
from the largest class with label Lj and L j ≠ i.

1. nv ← 1, n j ← 0, S ← ∅ // S stores <label, count>
2. XkNN ← select the ke nearest neighbors from ΔXe/xv
3. for all x j in XkNN( j = 1, 2, ⋅ ⋅ ⋅ , ke) do
4. if label(x j) == label(xv) then
5. nv ← nv + 1 //neighbor from the same convex hull
6. else if cos∠nv xv n j < 0 then
7. s ←< label(x j), 1 >
8. if ∃ label = label(x j) ∈ S then
9. increase 1 on count with label(x j)

10. else
11. S ← S⋃{s}
12. end if
13. end if
14. end for
15. < n j , L j >← find the item with the largest count in S
16. return nv , n j , L j

b =
nv + n j

2 ×min{nv , n j}
, (8)

where only two different labels {i , L j} are considered. The greater the gap between nv and n j is, the larger
the imbalance is in the KNN Region. The imbalance degree is 1 for a balanced region when we have nv = n j.
Consequently, as shown in lines 18–22 of Algorithm 2, an accumulated imbalance lower than or equal to τim
suggests that the two adjacent prototypes are connected. Finally, we find all the standalone and connected
prototypes based on A. The former means a cluster with one prototype, whereas the latter suggests multiple
prototypes in a cluster. The finally discovered cluster number Kf is the number of subsets in P.

3.4 Implementation of kProtoClust
Based on the split and mergence analysis, the proposed kProtoClust is detailed by Algorithm 4.

Algorithm 4: kProtoClust
Require: Dataset X , initial cluster number K, ratio ρ, thresholds γl , γu , τd , τm, τim, integers q, ke
Ensure: The set of prototypes P with labels LP and LAll

1. Xds ← generate downspace dataset of X using RP
2. Xs ← select Ns = ρN samples from Xds using MMRS
3. {X ′

s , C} ← k-means++ (Xs, K) // partition Xs into K clusters saved in X ′
s with centroids in C

4. {Xe , Ne} ←EdgeSel(X ′
s , ke , γl , γu) // select edge patterns from each cluster to set Xe

5. {Xe , Ne , C} ← SplitAnalysis(Xe , Ne , C , ke , τd ) // decompose every divisible clusters into convex hulls
6. {P, LP} ←MergeAnalysis(Xs , Xe , Ne , C , ke , γl , γu , τm, τim) //group all the connected convex hulls
7. LAll ←LabelAssignment(Xds, P, LP) //label each data sample with its nearest prototype in P
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On the basis of keeping data distribution patterns, data sampling and dimension reduction are effective
ways for efficiency. As data preparation works, however, they are frequently optional since only some of the
data sets to be analyzed are large-scale with high dimensions. Therefore, Algorithm 4 prefers NMMRS [13]
in lines 1–2 to make the following analysis done in the downspace if the target data is large-scale with high
dimensions. Then, a standard k-means++ is employed to partition data into K clusters for further edge
pattern selection in the local view. Since the difference of edge patterns collected in terms of local and
global views mainly lies in the border patterns, which are also inners in the perspective of SVDD. K is not a
decisive prior knowledge. How to init the K value in the first round of line 3 only depends on the efficiency
requirement from EdgeSel(⋅) (using SEPS) in line 4. By introducing the global analysis, SplitAnalysis(⋅) in line
5 will try to find all the divisible ones from K clusters and decompose them into different numbers of convex
hulls. In general, the number of decomposed convex hulls Kp is greater than or equal to K. As prototypes,
all the convex hulls’ connection relationships are determined by MergeAnalysis(⋅) in line 6, which groups all
the convex hulls with the same label together. By now, each group of connected convex hulls Pi ∈ P forms a
cluster. So, the final cluster number discovered is not limited to K or Kp. The last phase is to assign all the
data samples with appropriate labels based on their distance to prototypes. In this step, kProtoClust prefers
each prototype to be represented by its center, i.e., the mean of the convex hull’s vertices. For ease of reading,
we summarize all the notations in Algorithm 4 in Table 1.

Table 1: Notations in kProtoClust

Notation Description
X The original data set X with N data samples {x1 , x2, ⋅ ⋅ ⋅ , xN} and each one in R

d .
Xds The downspace dataset of X using RP with each sample in R

q and q ≤ d.
Xs Dataset with Ns = ρN samples selected from Xds using MMRS.

X ′
s , C Cluster set X ′

s has K clusters X ′
s1 , X ′

s2 , ⋅ ⋅ ⋅ , X ′
sK and their centroids {c1 , c2, ⋅ ⋅ ⋅ , cK}

form C.
ke The ke nearest neighbors is considered by EdgeSel(⋅) using SEPS.

γl , γu Thresholds γl and γu(0 < γl < γu ≤ 1) control the curvature and the shrinkage degree.
Xe , Ne Set of edge groups Xe with its normal vector set Ne.

τd A threshold to determine whether a cluster is divisible.
τm A threshold to determine whether two adjacent data samples are in a cluster.
τim A threshold to determine whether two adjacent prototypes (clusters) are connected.

P, LP Set of prototype groups P and their labels LP.
LAll Labels of all the N data samples in X .

3.5 Time Complexity
As shown in Algorithm 4, kProtoClust comprises six critical tasks. NMMRS consists of the first two lines

yet optional data preparation works, as discussed in [13], which are suggested to be invoked if X ⊂ Rd is a
large-scale and high dimensional dataset. RP is a simple computation work that consumes O(dqN)where q
is the final dimension reduced from d following the Johnson-Lindenstrauss Lemma [22]. With an appropriate
ρ to keep data distribution pattern, MMRS requires O(qk′N) to divide data into k′ groups and extract a
subset Xs(⊂Xds) which has Ns(≪ N) samples for the following analysis and prototypes extraction.
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Leaving NMMRS, k-means++ [7] costs O(qKNs) to divide Xs into K clusters. Then, EdgeSel(⋅) takes
O(N2

s ) to collect edge patterns in local view. The following two phases are critical for K rectification because
kProtoClust does not consider K a prior knowledge for k-means++. First, SplitAnalysis(⋅) is a recursive
algorithm. For each round, the worst situation is that k-means++(Xei , 2) with O(2qNe i) cannot be avoided,
whereas the best situation is no further division required. Consider a K centers’ traversal on average,
invoking k-means++ K times means that all the edge patterns take part in the division, i.e., Ne = ∑K

i=1 Nei .
So the cost for each round can be approximated to O(2qNe). Assume that there are � rounds of recursion,
SplitAnalysis(⋅) may be finished in O(2q�Ne). Second, MergeAnalysis(⋅) is conducted based on the Kp convex
hulls discovered by SplitAnalysis(⋅). Due to ∣ΔXe∣ = ∑Kp

i=1 ∣ΔXei ∣, lines 4–27 consume O(∣ΔXe∣2) if we have
to invoke KNNRegion(⋅). It is the same as the requirement of line 28. However, we find that EdgeSel(⋅) in
line 2 is the most time-consumption work for edge patterns extracted from Xs in global view since ∣ΔXe∣ ≪
Ns. Therefore, MergeAnalysis(⋅) costs O(N2

s ). Hereto, all the k-prototype unevenly distributed in different
clusters are collected. So the last task LabelAssignment(⋅) can be finished in O(KpN).

The overall computational complexity of kProtoClust is O(dqN + qk′N + qKNs + 2N2
s + 2q�Ne +

KpN). Simply stated, it ranges from O(N2
s ) to O(N2) corresponding to employing the sampling strategy

or not.

4 Experimental Results

4.1 Datasets and Experimental Settings
Inspired by a union analysis in the local and global view, kProtoClust provides adaptive multiple

prototypes support while guaranteeing the fundamental principle of k-means. We conduct the following four
series of experiments on various datasets to achieve a complete performance analysis.

• Do parameter sensitivity analysis on clustering accuracy and the discovered cluster number with respect
to parameters K, τd , τm and τim, even though the last three are suggested to be derived from the human’s
basic cognition of cluster discrimination. That means τd , τm and τim can be either fixed values for
universality or may vary with each individual because different peoples can have distinct connectivity
assertions of weak connection. The remaining parameters {γl , γu} and ke were respectively discussed
by [12] and [16].

• Perform descriptive ability analysis for kProtoClust, in terms of accuracy, on classic datasets (type I
in Table 2) with known cluster numbers. Since the foremost design of kProtoClust is to collect and well
utilize the difference captured by local and global analysis, for fairness, we consider a compact version
of kProtoClust including only lines 3–7 of Algorithm 4. Eight state-of-the-art algorithms are baselines:
k−means, k−means++, Ball k−means [2], deep k−means with pretraining [23], coordinate descent based
k-means (CDKM) [24], t-k-means, t-k-means++ [25], and a hybrid method of k-means with split-merge
strategy (SMKM) [9]. Besides, k-median [26], k-medoid [27], a clustering method from the t-mixture
model (TMM) [25], and EAC [5] are also introduced.

• Check the cluster discovery ability of the compact kProtoClust on datasets of type I in Table 2 without
the prior knowledge of cluster number Kc. The selected baselines are those methods with relatively better
performance in the second experiment.

• Explore some applicable suggestions by verifying the effectiveness of kProtoClust with NMMRS (lines
1–2 of Algorithm 4) denoted by kProtoClust (RS) on datasets of type II in Table 2 which have either large
number of samples or high dimensionality.
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Table 2: Description of the benchmark data sets

Data sets Data set description Data sets Data set description

(Type I) Size Dims # of classes (Kc) (Type II) Size Dims # of classes (Kc)
Chameleon 7670 2 8 movement_

libras
360 90 15

glass 214 9 7 Twonorm 7400 20 2
wisconsin 683 9 2 uspst 2007 256 10
abalone 4177 7 29 Ohsumed 13,929 23 23
WebKB 4199 4 4 shuttle 43,500 9 7

P2P traffic 9206 4 4 kddcup99 494,021 9 5

Table 2 lists the twelve employed datasets’ statistical information. Type I denotes small data with very
irregular cluster shapes, while type II means more samples or higher dimensionality. They will be considered
separately in different experiments to achieve a clear analysis. glass, wisconsin, abalone, movement_libras,
Twonorm, uspst, and shuttle are from UCI repository [28]. WebKB [29] and Ohsumed [30] are pre-processed
versions from [12]. Chameleon is provided by [19], and P2P traffic has 9206 flows’ features extracted by [31].
kddcup99 is a 9-dimensional data set extracted from KDD Cup 1999 Data [32] which is typical for intrusion
detection. All the datasets are listed in the sequence of complexity NdKc from lowest to highest, where Kc
corresponds to “# of classes” in Table 2.

To evaluate the accuracy, adjusted rand index (ARI) [33], normalized mutual information (NMI) [34],
and F-measure [35] are preferred. All the compared algorithms are implemented by MATLAB 2021b on
a mobile workstation with Intel I9-9880H and 128 GB DRAM running Windows 10-X64. Since the main
objectives are to verify the descriptive and cluster discovery abilities of the proposed kProtoClust, we do not
pursue the maximal efficiency and the run-time is for limited reference.

4.2 Parameter Sensitivity Analysis
4.2.1 Initial Cluster Number K

Generally, unsupervised learning faces the critical challenge of lacking sufficient prior knowledge, such
as the cluster number Kc. For instance, along with various variants of intrusion behavior appearing, we can
not simply consider Kc being equivalent to the number of categories. Different perspectives of the bounds
for data grouping frequently lead to distinct clustering results. By fixing τd = 0.3, τm = 0.1 and τim = 1.2,
Chameleon [36] with eight irregular clusters is adopted to make an intuitive analysis of the influence
from the initial cluster number K on accuracy and the final cluster number Kf. Fig. 4a depicts the results
in which ARI’s mean and standard variance and the discovered Kf are separately collected for each K. As
K increases, kProtoClust gets stable accuracies whose mean values fluctuate in a range [−5.10%, 8.86%]
around 0.4994. In contrast, accuracies achieved by k-means++ have a relatively large fluctuation from 0 to
0.4982. Particularly, the best accuracies obtained by k-means++ are 0, 0.1229, and 0.4025 when K is set to
1, 2, and 4, respectively. In theory, kProtoClust may fail when K is set to 1 since edge patterns collected in
terms of local view and global view are the same. However, lines 5–10 of Algorithm 2 bring a chance to
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reconsider the connectivity of prototype-pairs split by Algorithm 1 under a human basic cognition parameter
τm. Even so, K = 1 should be avoided to get the utmost out of union analysis. The mean value of the discovered
Kf ranges from 6.0 to 13.2. Even though it is a relatively large fluctuation around the ground truth 8, the
majority falls within [6.8, 9.8], and the dramatic change begins with K ≥ 16. This phenomenon gives us a
notice about the choice of cluster number, i.e., the voting strategy also works even though we begin with
different K. Therefore, kProtoClust can benefit from further data analysis for reducing the constraint from
the prior knowledge of cluster number.

Figure 4: Sensitive analysis by means and standard variations of accuracy (ARI) and the cluster number (Kf) discovered
by the compact version of kProtoClust on Chameleon along with the change of K , τd , τm and τim while γl = 0.85, γu = 1
and ke = 30. These four parameters are fixed to K = 8 (the same as Kc), τd = 0.3, τm = 0.1 and τim = 1.2 when we do
sensitivity analysis for each of them



4964 Comput Mater Contin. 2025;82(3)

4.2.2 Hyperparameters τd , τm and τim

τd is defined in Algorithm 1. It is an upper bound for the allowed proportion of edge patterns in a cluster
yet has a distinct convergence direction rather than pointing to the cluster center. The smaller the chosen
value of τd is, the more confidence kProtoClust emphasizes cluster splitting. As shown in Fig. 4b, given K = 8,
the discovered Kf with τd < 0.3 is obviously greater than that of found with τd ≥ 0.3. Due to imbalanced
data distribution, we also reach greater ARIs with more clusters decomposed from the given data space in
these cases. As τd increases, only a few changes in the discovered Kf are naturally determined by the data
distribution structure. Therefore, in this study, we accept τd = 0.3 as the reference line for checking whether
a cluster is worthy of being split. Notice that one can fix τd to any other value to meet his personal decision
although kProtoClust has relatively stable performances with τd > 0.3.

Due to imbalanced distribution, non-accurate parameter settings in SEPS may miss some border
patterns even though the nearest neighboring convex hulls are split from one cluster. To deal with this case,
τm is introduced in lines 5–10 of Algorithm 2. It should be considered a relatively extreme condition but not
always exists. Results shown in Fig. 4c confirm that both of the accuracy and discovered Kf have relatively
high stability as τm increases. Because, Chameleon without noise has a relatively clear boundary in which an
edge pattern can hardly have its nearest neighbor from another cluster. Therefore, without loss of generality,
based on Proposition 1, we prefer τm = −0.3 (i.e., 107.5○) not τm = 0.0 (i.e., 90.0○) or τm = −0.2 (i.e., 101.5○) to
tolerate uncertainty of convergence direction although the latter two has smaller variance values. In another
way, based on the observation, τm can be set flexibly if the target data has a clear boundary.

In KNN region, the more balanced the edge patterns from different clusters are, the cumulative
imbalance degree is close to 1. Theoretically, the bound τim in line 22 of Algorithm 2 should be greater than
or equal to 1. We add a range of [0.1, 1) to τim to make the analysis more comprehensive. Apparently, the
trends of the accuracies and the discovered Kf in Fig. 4d show sufficient evidence. Along with the increase
of τim, many more extremely weak-connected convex hulls are considered connected, leading to continuous
reduction of Kf. In this study, we take τim = 1.2 as the bound for connection.

4.3 Performance Contrast with the Prior Knowledge Kc

The prior knowledge of cluster number is critical for k-means and its variants. Although kProtoClust
is also derived from k-means, the design strategy of multiple prototypes support is to break through this
constraint by emphasizing the descriptive ability. To verify the effectiveness, we compare it with twelve state-
of-the-art methods on datasets of type I in terms of three accuracy metrics after thirty times of evaluations.
The achieved mean and mean-square deviation (std) for each metric is illustrated in Table 3. Since descriptive
ability is a common concern for all the methods considered from different perspectives, such as initialization
strategy, data distribution description, or voting analysis, we omit efficiency comparisons for insignificant
differences in low-complexity data despite having irregular clusters.

Table 3: Accuracy comparisons in terms of ARI, NMI and F1 on Datasets of Type I with Known Kc

Methods/Dataset Chameleon Glass

ARI NMI F1 ARI NMI F1
k-means 0.3953 ±

0.0252
0.6213 ±
0.0132

0.5767 ±
0.0110

0.2793 ±
0.0032

0.4323
±0.0099

0.5646 ±
0.0107

(Continued)
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Table 3 (continued)

Methods/Dataset Chameleon Glass

ARI NMI F1 ARI NMI F1
k-means++ 0.3996 ±

0.0298
0.6315 ±
0.0182

0.5848 ±
0.0244

0.2913 ±
0.0036

0.4589 ±
0.0348

0.5935 ±
0.0187

Ball k-means 0.3953 ±
0.0252

0.6213 ±
0.0132

0.5767 ±
0.0110

0.2774 ±
0.0041

0.4236 ±
0.0111

0.5619 ±
0.0127

Deep k-means 0.3324 ±
0.1671

0.4641 ±
0.2332

0.2956 ±
0.1311

0.0910 ±
0.0290

0.1662 ±
0.0371

0.3714 ±
0.0413

CDKM 0.3956 ±
0.0197

0.6005 ±
0.0176

0.5393 ±
0.0170

0.2799 ±
0.0007

0.4215 ±
0.0175

0.5537 ±
0.0047

SMKM 0.4423 ±
0.0064

0.6095 ±
0.0291

0.6048 ±
0.0197

0.2606 ±
0.0127

0.4059 ±
0.0353

0.5571 ±
0.0305

t-k-means 0.3915
±0.0000

0.5946
±0.0000

0.5444
±0.0000

0.2868
±0.0000

0.4348 ±
0.0110

0.5681
±0.0018

t-k-means++ 0.3915
±0.0000

0.5946
±0.0000

0.5444
±0.0000

0.2820 ±
0.0065

0.4305 ±
0.0144

0.5667 ±
0.0038

k-median 0.4054 ±
0.0237

0.6003 ±
0.0174

0.5681 ±
0.0172

0.2016 ±
0.0350

0.3248 ±
0.0440

0.4992 ±
0.0427

k-medoid 0.4294 ±
0.0402

0.6257 ±
0.0378

0.5874 ±
0.0223

0.2666 ±
0.0129

0.3888 ±
0.0183

0.5561 ±
0.0124

TMM 0.5576 ±
0.0692

0.6147 ±
0.0426

0.6600 ±
0.0518

0.2429 ±
0.0150

0.4298 ±
0.0172

0.5546 ±
0.0088

EAC 0.5562 ±
0.0745

0.6811 ±
0.2395

0.5817 ±
0.2045

0.0106 ±
0.0000

0.0951 ±
0.0000

0.4139 ±
0.0000

kProtoClust 0.5689 ±
0.0352

0.7265 ±
0.0055

0.6771 ±
0.0339

0.2881 ±
0.0047

0.4293 ±
0.0256

0.5869 ±
0.0212

Methods/Dataset wisconsin abalone

ARI NMI F1 ARI NMI F1
k-means 0.8487 ±

0.0030
0.7519 ±
0.0037

0.9612 ±
0.0008

0.0469 ±
0.0012

0.1813 ±
0.0009

0.1707 ±
0.0024

k-means++ 0.8498 ±
0.0030

0.7549 ±
0.0021

0.9644 ±
0.0005

0.0525 ±
0.0012

0.1981 ±
0.0031

0.1934 ±
0.0065

Ball k-means 0.8487 ±
0.0030

0.7519 ±
0.0037

0.9612 ±
0.0008

0.0469 ±
0.0012

0.1813 ±
0.0009

0.1707 ±
0.0024

Deep k-means 0.8391 ±
0.0102

0.7421 ±
0.0130

0.9542 ±
0.0030

0.0544 ±
0.0027

0.1374 ±
0.0051

0.0646 ±
0.0073

CDKM 0.8546
±0.0000

0.7478
±0.0000

0.9603
±0.0000

0.0449
±0.0009

0.1820 ±
0.0010

0.1717 ±
0.0025

SMKM 0.8587 ±
0.0108

0.7722 ±
0.0199

0.9637 ±
0.0030

0.0549 ±
0.0014

0.1786 ±
0.0051

0.2002 ±
0.0063

(Continued)
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Table 3 (continued)

Methods/Dataset Chameleon Glass

ARI NMI F1 ARI NMI F1
t-k-means 0.8546

±0.0000
0.7478
±0.0000

0.9603
±0.0000

0.0458 ±
0.0027

0.1775 ±
0.0013

0.1724 ±
0.0041

t-k-means++ 0.8546
±0.0000

0.7478
±0.0000

0.9603
±0.0000

0.0460 ±
0.0013

0.1783
±0.0008

0.1735 ±
0.0026

k-median 0.7566 ±
0.2670

0.6688 ±
0.2292

0.9190 ±
0.1259

0.0409 ±
0.0039

0.1729 ±
0.0048

0.1741 ±
0.0060

k-medoid 0.8410
±0.0000

0.7412
±0.0000

0.9588
±0.0000

0.0446 ±
0.0017

0.1791 ±
0.0014

0.1778
±0.0013

TMM 0.3120 ±
0.1852

0.3070 ±
0.1416

0.7684 ±
0.0776

0.0238 ±
0.0246

0.0862 ±
0.0821

0.2029 ±
0.0209

EAC 0.0072 ±
0.0214

0.0226 ±
0.0364

0.5542 ±
0.2921

0.0449 ±
0.0226

0.1577 ±
0.0573

0.2187 ±
0.0784

kProtoClust 0.8603 ±
0.0245

0.7747 ±
0.0413

0.9580 ±
0.0122

0.0665 ±
0.0038

0.1766 ±
0.0090

0.2243 ±
0.0119

Methods/Dataset WebKB P2P Traffic

ARI NMI F1 ARI NMI F1
k-means 0.2766 ±

0.0427
0.4432 ±
0.0238

0.6802 ±
0.0350

0.3514 ±
0.0431

0.4925 ±
0.0503

0.7132 ±
0.0228

k-means++ 0.4581 ±
0.0313

0.4725 ±
0.0131

0.7023 ±
0.0235

0.3605 ±
0.0549

0.4981 ±
0.0668

0.7290 ±
0.0645

Ball k-means 0.2766 ±
0.0427

0.4432 ±
0.0238

0.6802 ±
0.0350

0.3514 ±
0.0431

0.4925 ±
0.0503

0.7132 ±
0.0228

Deep k-means 0.0443 ±
0.0272

0.2235 ±
0.0891

0.3223 ±
0.0790

0.4260 ±
0.1211

0.5512 ±
0.0680

0.5683 ±
0.0670

CDKM 0.2816 ±
0.0245

0.4261 ±
0.0092

0.6532 ±
0.0167

0.4286 ±
0.0277

0.5796 ±
0.0510

0.7524 ±
0.0248

SMKM 0.5616 ±
0.0854

0.4496 ±
0.0436

0.7177 ±
0.0207

0.4355 ±
0.0181

0.5340 ±
0.0415

0.7668 ±
0.0271

t-k-means 0.2728
±0.0000

0.4376
±0.0000

0.6764
±0.0000

0.4228 ±
0.0943

0.5640 ±
0.0651

0.7498 ±
0.0937

t-k-means++ 0.2728
±0.0000

0.4376
±0.0000

0.6764
±0.0000

0.4228 ±
0.0828

0.5640 ±
0.0644

0.7498 ±
0.0770

k-median 0.3705 ±
0.0815

0.4697 ±
0.0414

0.7192 ±
0.0391

0.3809 ±
0.1256

0.4862 ±
0.0550

0.7087 ±
0.0740

k-medoid 0.2643 ±
0.0245

0.4434 ±
0.0201

0.6673 ±
0.0018

0.4289
±0.0000

0.5797
±0.0000

0.7530
±0.0000

TMM 0.2590 ±
0.0203

0.4150 ±
0.0150

0.6412 ±
0.0063

0.7044 ±
0.0753

0.6486 ±
0.0894

0.8828 ±
0.0412

(Continued)
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Table 3 (continued)

Methods/Dataset Chameleon Glass

ARI NMI F1 ARI NMI F1
EAC 0.0001

±0.0000
0.0058
±0.0000

0.4387
±0.0000

0.0598 ±
0.0597

0.1172 ±
0.0960

0.4875 ±
0.3365

kProtoClust 0.3878 ±
0.0936

0.4846 ±
0.0461

0.6857 ±
0.0497

0.7909 ±
0.0379

0.6702 ±
0.0322

0.9003 ±
0.0251

Note: The first rank of each metric is highlighted by boldface and the second uses italics while the best std gets underline.

Consider data description in Table 2, we can get the following observations:

• Performances related to ARI, NMI, and F1 have similar trends for most cases. In terms of ARI,
kProtoClust reaches the first rank on Chameleon, wisconsin, abalone, and P2P Traffic while performing
the second on glass and the third on WebKB. Similarly, kProtoClust also reaches the best performance
on four datasets in terms of NMI and on three data sets in terms of F1. Even though kProtoClust is
not ranked first, it frequently gets into the first three ranks or obtains comparable accuracies. Relatively,
kProtoClust has a significant advantage on datasets with small dimensions but more samples, e.g.,
Chameleon and P2P Traffic. Generally, in these cases, the more irregular the cluster shape is, the greater
advantage it achieves.

• Besides kProtoClust, SMKM and k-means++ perform better than the others. They separately have the
best ARI on glass and WebKB. Compared with k-means, coincidentally, they both achieve improvement
by introducing the initialization strategy of centroid selection. k-means++ selects K centroids far away
from each other, whereas SMKM introduces a cheap split-merge step to re-start k-means after reaching
a fixed point. Compared with k-means++, SMKM has advantages on all the other five datasets. What
follows is CDKM, which achieves comparable accuracies with SMKM and k-means++ yet performs
more stable with much lower mean-square deviations.

• Unfortunately, there are no obvious advantages for Deep k-means, t-k-means, t-k-means++, and TMM,
even though they tend to build distribution models for these datasets with extremely irregular cluster
shapes. Similar performance can be found in k-means, Ball k-means, k-median, and k-medoid. Like
CDKM, t-k-means and t-k-means++ have significant stability advantages due to pursuing the global
optimization of Eq. (1). However, limited by the circle-like pattern hypothesis, global optimization
usually does not mean the best cluster description for irregular shapes and imbalance distribution.
Among these methods, EAC outperforms most of the others on low-dimensional datasets with clear
shapes, e.g., Chameleon. However, noises and higher dimensions frequently make it fail, e.g., glass,
wisconsin, WebKB, and P2P Traffic.

To further confirm the effectiveness of kProtoClust, we give results of pair comparisons in Table 4
following [37]. Taking kProtoClust as the control method, a typical nonparametric statistical test of
Friedman test is adopted to get the average ranks and unadjusted p values. By introducing the Bergmann-
Hommel procedure [38], the adjusted p-value denoted by pHomm corresponding to each comparison
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is obtained. Obviously, kProtoClust reaches the best performance. Since the Bergmann-Hommel procedure
rejects those hypotheses with p-values ≤ 0.0167, together with the values of pHomm, kProtoClust performs
better than SMKM, k-means++ and CDKM, and outperforms the others. The weakness is that several
rounds of invoking k-means++ (i.e., lines 3 and 5 of Algorithm 4) may cause accumulative instability. Thus,
kProtoClust frequently has greater mean-square deviations than that achieved by k-means++ and CDKM.

Table 4: Comparison results under non-parametric statistical test

Methods Average ranks Unadjusted p pHomm

Control method: kProtoClust, average rank = 1.5000
k-means 7.7500 0.0054 0.0272

k-means++ 5.0000 0.1195 0.2391
Ball k-means 7.9167 0.0043 0.0216

Deep k-means 9.3333 4.9422E-4 0.0054
CDKM 5.9167 0.0495 0.1485
SMKM 3.5000 0.3737 0.3737

t-k-means 6.9167 0.0160 0.0640
t-k-means++ 7.7500 0.0054 0.0272

k-median 8.8333 0.0011 0.0102
k-medoid 7.6667 0.0061 0.0305

TMM 8.3333 0.0024 0.0142
EAC 10.5833 5.3495E-4 6.4194E-4

4.4 Exploration Contrast without the Prior Knowledge Kc

For many real-world problems, e.g., intrusion behavior analysis, data owners can not have the prior
knowledge Kc. Due to polymorphism, the expected class number Kc (column 5 in Table 2) is sometimes
not the same as the real cluster number, which generally corresponds to the actual distribution pattern.
Therefore, we conduct experiments to check the cluster discovery ability of kProtoClust on datasets of Type I
without the prior knowledge Kc. Based on results in Tables 3 and 4, we take k-means, SMKM, k-means++, t-
k-means++, CDKM, and k-median as baselines. On datasets of type I, the reserved methods either reach close
accuracies with kProtoClust or have significant stability advantages. Fig. 5 shows the accuracies achieved by
all the compared methods and the obtained cluster numbers Kf with respect to different initialized K by
kProtoClust.

Intuitively, without enough attention to the actual distribution, k-means, k-means++, and k-median
try to do data division under different initialization strategies or distance measures. Although CDKM
researches instability reduction by perusing the global optimization, t-k-means++ pays more attention to
data distribution by introducing t-mixture distribution model, and SMKM adopts split-merge strategy to
adjust clusters, they have to ensure the input space is divided into K clusters. Therefore, they can not avoid
a severe deviation from the truth cluster number if we get an incorrect assumption of K. In contrast, the
objective of split and merge analysis in kProtoClust is to dynamically generate an unfixed number of convex
hulls of different sizes. Considering these convex hulls as prototypes, kProtoClust can better profile clusters
with arbitrary shapes. Even though the discovered cluster number may not be equal to Kc, it is located around
the expected value in a relatively small error range on Chameleon, glass, and P2P Traffic. In general, data
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separability reduces for high dimensional data with inadequate samples. Therefore, the discovered cluster
numbers on wisconsin and abalone show increasing trends when K becomes much greater than the actual
number. Even so, these deviations are still much smaller than those discovered by the other variants.

Figure 5: Accuracy (ARI) for all the compared methods and the cluster number found by kProtoClust without Kc

Regarding ARI, the obtained accuracies show evidence of imbalanced distribution and irregular cluster
shapes. For instance, accuracies obtained on Chameleon by the baseline methods are not falling off a cliff
along with the increase of K, and the best accuracy on P2P Traffic is achieved when K = 2, not K = Kc (i.e., 4).
Besides k-means++ reaches the best accuracy with K = 12 on Chameleon while Kc = 8, the baselines share
a common characteristic of a downtrend as K increases, especially when K is far from the ground truth.
Fortunately, we can find that kProtoClust has remarkable performances in stability which outperform the
others for most cases, e.g., Chameleon, wisconsin, abalone, WebKB, and P2P Traffic. k-means++ and SMKM
have comparable performances which rank only second to kProtoClust, whereas CDKM and t-k-means++
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have similar performance. Although k-means does cluster analysis well, it frequently gets greater std than
k-median. Therefore, we believe that kProtoClust outperforms the others when we can not have the actual
cluster number as the prior knowledge.

Additionally, several other cues may be found from Fig. 5. First, for most cases, performances of
baselines have specific decreases in accuracy when K is far from Kc. Similar trends happened to kProtoClust
on glass and wisconsin. It means that a small cluster number assumed by k-means++ (line 3 of Algorithm 4)
is unsuitable for convex decomposition towards prototype finding. Although the discovered cluster number
by kProtoClust is frequently close to the ground truth. One can try several times and then avoid making
K fall into a range where the discovered cluster numbers have large fluctuations. However, an appropriate
assessment method for accurate cluster numbers may benefit from finding an optimal K for all the methods.
Second, although the cluster discovery ability of kProtoClust on datasets of type I has been confirmed,
too few samples in a dataset is also a challenge for kProtoClust, e.g., the 9-dimensional dataset glass with
only 214 samples in 7 clusters. For a dataset like this particular case, CDKM, k-means, and k-means++ are
recommended for simplicity if we get a K value close to the ground truth.

4.5 Necessity Analysis of NMMRS for kProtoClust
Based on the analysis in Sections 3.5 and 4.4, when we fix the data size N, a greater dimensionality d

not only increases its complexity but also reduces the separability. However, if d is fixed, the increase of N
increases the complexity but will not permanently change (either increase or reduce) the separability. There-
fore, we introduce NMMRS (lines 1–2 of Algorithm 4) into kProtoClust and denote it by kProtoClust(SR) in
the following necessity analysis.

As discussed in Section 3.5, EdgeSel consumes O(N2)which may be the most time-consumption phase
in kProtoClust. By employing the “Run and Time” analysis provided by MATLAB, we separately list all the
time-consumptions required by each phase of kProtoClust and kProtoClust(SR) on Chameleon in Table 5.
Obviously, the first two significant time-consuming phases are MergeAnalysis and EdgeSel which occupy
54.95% and 30.27% of kProtoClust, respectively. Furthermore, EdgeSel is one of the main phases invoked by
MergeAnalysis in line 2 of Algorithm 2. In kProtoClust(SR), their time-consumptions are separately reduced
to 43.52% and 9.32%, and the total occupation is reduced to 52.84% from 85.22%. Relatively, LabelAssignment
has been increased to 26.75% from 5.81%. Unlike experiments in Section 4.3, we restrict the max iteration
of k-means++ to 10 for all the invocations (i.e., lines 3 and 5), and do not consider any parallel strategy for
each phase.

kProtoClust(SR) is a variant of k-means++ with split and mergence strategy. Meanwhile, SMKM also
prefers a split-merge strategy and performs closely to kProtoClust(SR) in terms of accuracy on datasets of
type I. In this section, we take k-means++ and SMKM as the baselines for further comparative analysis
with kProtoClust and kProtoClust(SR). Results of accuracies in terms of ARI are depicted in Fig. 6 in which
run-time costs required by kProtoClust and kProtoClust(SR) are also given. Due to dKc > N , NMMRS is
employed by kProtoClust(SR) to make dimensionality reduction for movement_libras and uspst, while data
reduction is preferred for the other four datasets since dKc ≪ N . As shown in Fig. 6, kProtoClust(SR) and
kProtoClust consistently achieve the first two ranks of accuracy except for uspst. Obviously, the advantage
usually rises along with N increases, e.g., results corresponding to kddcup99. On uspst, kProtoClust and
k-means++ have comparable results while kProtoClust(SR) and SMKM perform similarly. Furthermore, a
greater d frequently influences the std of accuracy for kProtoClust(SR) and SMKM, particularly for SMKM.
It means that dimensionality reduction may not be the best choice if the dimensionality d of a dataset is
high and dKc > N . Because the ability of structure kept of NMMRS reduces significantly if we want to do
distance-based analysis among data samples more than the nearest neighbors.
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Table 5: Time-consumption analysis of algorithms in kProtoClust

Algorithm kProtoClust kProtoClust(SR)

Run-time (s) Ratio (%) Run-time (s) Ratio (%)
NMMRS (lines 1–2) — — 0.016 1.49%
k-means++ (line 3) 0.209 4.60% 0.161 15%

EdgeSel (line 4) 1.375 30.27% 0.100 9.32%
SplitAnalysis (line 5) 0.198 4.36% 0.042 3.91%

MergeAnalysis (line 6) 2.496 54.95% 0.467 43.52%
LabelAssignment (line 7) 0.264 5.81% 0.287 26.75%

Note: k-means++ restricts the max iterations to 10 for all the invocations.

Figure 6: Performance analysis for kProtoClust with or without sampling and dimensionality reduction by taking k-
means++ and SMKM as baselines. Ns = N and q = 10≪ d are set for movement_libras and uspst while Ns = 5000≪ N
and q = d are preferred for the other datasets

In terms of efficiency, kProtoClust(SR) has a significant advantage over kProtoClust due to the intro-
duction of NMMRS. On Twonorm, Ohsumed, shuttle and kddcup99, kProtoClust(SR) finish cluster analysis
in 2.5, 40.7, 233.5 and 49.7 s, respectively. The run-time required by shuttle is greater than kddcup99 because
the iterative analysis is more complex in SplitAnalysis (line 5 of Algorithm 4) due to extremely imbalanced
distribution. Furthermore, results corresponding to all the datasets of type II confirm the contributions from
NMMRS and suggest that the reduced dataset should have N > dKc or keep Ns > qKc to avoid affecting
data separability.
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5 Related Works
k-means is the inspiration source of kProtoClust. Due to some intrinsic flaws inherited from the

partition-based clustering strategy, the literature mainly focuses on further efficiency improvements,
initialization strategy, stability optimization, and specific data types and patterns support.

The classical k-means selects K samples at random as the initial centroids and iteratively conducts
the assignment and refinement until all the centroids do not change. For efficiency, besides hardware
parallelization, fast convergence [7], result approximation [39], and distance computation reduction [14]
are mainly focused. The last one receives the most attention for its generalization ability of computation
optimization. Those representative works include avoiding unnecessary membership analysis by storing the
different number of bounds for either centroids or data samples [40], and introducing group pruning and
centroids regrouping strategy in the iteration [41]. For efficiency, Ryšavý et al. [42] makes a tighter centroid
drift bound by employing the distance between the origin sample and the corresponding centroid, Bottesch
et al. [43] adopts the Hölder’s inequality and norms, while Broder et al. [44] introduce a pre-assignment
search around each centroid which greatly reduces distance computations. Recently, to optimize cluster
assignment, Ball k-means [2] utilizes centroid distance. Besides, k-median [26] and k-medoid [27] can also be
considered variants of k-means since the former introduces the Manhattan distance while the latter chooses
existing data samples as centroids.

Many valuable solutions [45] corresponding to the initialization strategy, the main works are to estimate
an appropriate K for centroids initialization. For the former, the mainstream way is parameter tweaking or
evaluating models with different K settings [46] before finding out the usable K. Meanwhile, combining
multiple clustering results with some voting strategies like EAC [5] or introducing some extensions of
criterion such as Elbow index [47] are also considered. For the latter, besides pre-analysis of a set of
potential centroids, Peña et al. [48] suggest that dividing a data set into K clusters and iteratively collecting
K representative instances are practical. Furthermore, k-means++ [7] is a representative adopting the latter
strategy since it chooses K centroids far away from each other.

Stability optimization is strongly related to the initialization strategy because the random initialization
increases the instability. Recently, Capó et al. [9] present a split-merge strategy to restart k-means after
reaching a fixed point. Therefore, their variant of k-means, namely SMKM, improves stability. However,
multiple rounds of invocations to k-means and the split-merge strategy make it more suitable for dealing
with clusters with irregular shapes. Another typical work in the most recently is CDKM [24], which designs
a coordinate descent method for k-means to reach the global optimization of Eq. (1).

Different data types frequently relate to different application domains and distinct data patterns. In the
literature, most works prefer doing special designs of k-means for a specific application. For instance, privacy-
preserving k-means is presented for encrypted data analysis [49], global k-means based neural network
performs well on sound source localization [50], while k-means with bagging neural network is suitable for
short-term wind power forecasting [51]. Consider those mixed data types, the major attentions prefer fuzzy
method [52], distance calculation mechanism [45], and hybrid framework [14]. Towards challenges from
arbitrary cluster shapes, Li et al. [25] present t-k-means and t-k-means++ by assuming data sampled from
the t-mixture distribution. Besides, Khan et al. [53] consider an exponential distribution to standardize data
and propose EGS to estimate the optimal number of clusters. Fard et al. [23] present a joint solution namely
deep k-means by integrating k-means and deep learning, while Peng et al. [54] adopt deep learning to re-
describe k-means. Given the cluster number K, another exciting work [55] introduces k-means into SVDD
such that it supports K groups of submodel of SVDD to describe different clusters in a data set. Lacking
the prior knowledge of cluster number, EAC [5] clusters data with k-means based evidence accumulation. It
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conducts result combination with a specific vote strategy that well support low-dimensional data with clear
and simple shape.

Despite many insightful works, they treat clusters fairly in size due to the limitation of the distance-
based data partition. Few works change the initialized K in the clustering procedure. However, arbitrarily
shaped clusters are very common in practice which motivates us to break the restriction of inaccurate
prior-knowledge K and partition data into clusters with different sizes and connection relationships. Even
though an optimal K is estimated by [53], utilizing K fixed clusters and K data samples as prototypes for
label assignments can not match the human’s cognition of discovering clusters from their shapes, sizes,
and connection relationships well. Therefore, kProtoClust takes convex hulls of varying sizes as prototypes
following [17] and allows the change of K to support multiple prototypes in one cluster to improve cluster
description ability.

6 Conclusion
With a specific distance measure, k-means find K data samples as prototypes to partition data space

into clusters. However, not only the cluster number is unknown, but many practical datasets do not have a
balanced and regular distribution as what k-means expected. To discover clusters following a general human
cognition (corresponding to {γl , γu , τd , τm, τim}), we propose kProtoClust to replace prototypes with convex
hulls of varying sizes. Given K selected at random, k-means++ divides the input space into K clusters.
Regarding the local geometry view, edge patterns of each cluster are collected and split into subgroups if they
can not construct a single convex hull. In terms of the global geometry view, all the violating samples existing
in the overlapping region of two adjacent convex hulls are located. Since violating samples are not the actual
edge patterns, removing violating samples means the mergence of the associated convex hulls increases the
number of prototypes for the corresponding cluster. Finally, one-cluster-multiple-prototypes are supported
by kProtoClust in which the adaptive prototype size contributes to the ability of arbitrary cluster shape’s
description. As the composite indicators for a specific human cognition, the five additional thresholds are
relatively insensitive to the clustering result. They can be preset fixedly following either the recommendations
in Section 4.2 or user preferences.

Although kProtoClust achieves accuracy improvement with fair efficiency on datasets of imbalanced
distribution and irregular cluster shapes, some shortcomings still exist, e.g., a certain instability inherited
from k-means++. Meanwhile, the ways of handling high dimensional data with low separability and making
the cluster number assessment more accurate are worthy of further investigation, as well as further improving
the generalizability and adaptability across different scenarios, including semi-supervised clustering and
clustering data streams.
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