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ABSTRACT: In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in
verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep
convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a
notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of
critical image details. These details are essential for the accurate detection and localization of image copy-move forgery.
To overcome the limitations of existing methods, this paper proposes a Transformer-based approach for CMFD and
localization as an alternative to conventional DCNN-based techniques. The proposed method employs a Transformer
structure as an encoder to process images in a sequence-to-sequence manner, substituting the feature correlation
calculations of previous methods with self-attention computations. This allows the model to capture long-range
dependencies and contextual nuances within the image, preserving finer details that are typically lost in DCNN-based
approaches. Moreover, an appropriate decoder is utilized to ensure precise reconstruction of image features, thereby
enhancing both the detection accuracy and localization precision. Experimental results demonstrate that the proposed
model achieves superior performance on benchmark datasets, such as USCISI, for image copy-move forgery detection.
These results show the potential of Transformer architectures in advancing the field of image forgery detection and offer
promising directions for future research.
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1 Introduction
The pervasive presence of graphic editing software in current society has allowed for the effortless and

inexpensive creation of many realistic counterfeit images. Maliciously manipulated images can have signifi-
cant adverse consequences, including their use in fraudulent activities, the dissemination of misinformation,
the fabrication of evidence, and the misguiding of public opinion. Consequently, it is imperative to develop
effective image tampering detection methodologies to assist individuals in determining whether an image
has been altered and identifying the specific areas of manipulation.

Among image tampering techniques, copy-move forgery [1] involves duplicating a region within an
image and relocating it elsewhere within the same image. In recent years, deep learning methods have
emerged as a prominent focus in copy-move forgery detection (CMFD) research due to their advantages
of reduced hyper parameters and increased versatility. However, applying these models to CMFD tasks
presents several challenges. These include significant loss of detailed information during the feature encoding
process through convolution, particularly for small targets. Additionally, the limited size of the convolution
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kernel restricts the receptive field of convolutional neural network (CNN) models, impeding their ability to
effectively capture long-range dependencies. These challenges, among others, continue to pose obstacles in
the field.

Recent research has demonstrated that the Transformer [2] model, widely utilized in natural language
processing, can be effectively applied to various downstream tasks in computer vision. This development
offers an alternative approach to the CMFD task beyond convolutional methods. Specifically, it maintains
spatial resolution during image feature encoding, performs direct sequence-to-sequence self-attention
calculations, and identifies task-relevant information from the global image context from the outset.

This paper introduces an innovative approach for detecting and localizing image copy-move tampering.
The encoding process utilizes a conventional transformer encoder. By implementing a one-to-one feature
matching module, it effectively distinguishes tampered features from similar background features, and
employs a multi-scale contextual decoder to achieve more precise detection of image copy-move tampering.
The primary contributions of this research are as follows:
1) A one-to-one feature matching module has been developed to mitigate the impact of similar back-

ground features on forged elements, while maintaining resilience to variations in image scale.
2) The multi-scale context decoder consolidates tampering feature information at various levels of gran-

ularity through straightforward element-wise addition. This approach incorporates a broader range of
potential tampering details, thereby enhancing the precision of tampered region detection.

2 Related Work
Contemporary approaches for detecting image copy-move tampering predominantly fall into two

categories: feature-based methods and deep learning-based methods [3]. Feature extraction-based methods
involve extracting characteristics that represent an image’s content or structure, and then utilizing the
similarities or differences among these features to identify tampered areas. These methods can be further
classified into block-based and key-point-based approaches [4]. The block-based method divides the image
into overlapping or non-overlapping small blocks for feature extraction and comparison [5], employing
techniques such as Zernike [6], DCT [7], and PCA [8]. The key-point-based method involves detecting
salient or invariant key-points from an image, followed by feature extraction and matching for each
key-point [9], using algorithms like SIFT [10], SURF [11], and FREAK [12]. While feature extraction-
based methods generally offer faster detection speeds, they have limitations including sensitivity to feature
selection and parameter settings, as well as limited adaptability to complex scenes and multiple tampering
instances [13].

In the domain of image copy-paste tampering detection, contemporary research primarily employs deep
learning techniques. Wu et al. [14] introduced BusterNet, an end-to-end deep neural network comprising
two branches: Mani-Det and Simi-Det. The Mani-Det branch identifies tampered regions, while Simi-Det
detects similarities between source and target areas, thus localizing them. However, Buster-Net’s Simi-Det
branch extracts only low-resolution feature information through convolutional networks, and both branches
must accurately locate the target area for correct source and target classification. To mitigate these limitations,
Chen et al. [15] advanced BusterNet by fusing CMSDNet with STRDNet. They utilized a single-branch dual-
network architecture for detecting similarities in source/target regions and incorporated mechanisms such
as spatial pyramid pooling, spatial attention and channel-wise attention to improve the model’s similarity
detection capabilities. Hu et al. [16] developed SPAN, which incorporates a spatial pyramid attention frame-
work to analyze image regions across various resolutions using localized self-attention mechanisms. While
SPAN leverages local correlations, it fails to comprehensively harness spatial correlations, thereby restricting
the model’s generalizability. DOA-GAN [17] employs a two-stage spatial attention mechanism to enhance the



Comput Mater Contin. 2025;82(3) 5223

capture of location information and discriminative feature information of copied and moved objects, refining
localization results through a generative adversarial network. However, its detection effectiveness for small
tampered regions remains suboptimal. Dong et al. [18] proposed MVSS-Net, comprising an edge supervision
branch and a noise-sensitive branch. These branches aim to capture subtle differences at the boundaries
between tampered and untampered regions, as well as noise inconsistencies. By extracting semantic-agnostic
features through multi-view feature learning, MVSS-Net obtains more generalized features, facilitating
tamper detection while reducing false positives for authentic images.

Presently, the majority of deep learning methods rely on Deep Convolutional Neural Network (DCNN)
models. While convolutional down-sampling serves to significantly lower the computational demands of
feature correlation processes, it also results in the loss of certain detailed information. This loss can lead to
suboptimal detection performance, particularly for small target regions.

There remains substantial potential for enhancing robustness against diverse attacks and augmenting
the proficiency in discriminating source regions from target regions within image forensics. Motivated
by the advancements in Transformer architectures and self-attention techniques within Natural Language
Processing (NLP), researchers have increasingly applied these concepts to Computer Vision (CV). This
approach aims to address the limitations of traditional passive forensic techniques and DCNN models,
potentially offering more effective solutions for detecting and localizing image manipulations.

The Vision Transformer (ViT) [19] pioneered the application of the standard Transformer model to
image classification in computer vision, demonstrating that despite the self-attention mechanism’s lack of
inductive biases inherent to DCNN, it can match or surpass DCNN performance in image classification
tasks with large-scale pre-training. Subsequent research has extended the application of self-attention and
Transformer models to other tasks, including object detection (DETR [20] and Deformable DETR [21])
and image segmentation (SETR [22] and TransUNet [23]), while also enhancing image classification
performance (DeiT [24] and Swin Transformer [25]). Wang et al. introduced ObjectFormer [26], successfully
incorporating Transformer into image tampering detection. However, this approach merely concatenates
CNN and Transformer sequentially without effectively integrating their strengths. Additionally, its use of
frequency domain features provides minimal benefit for CMFD. Addressing these limitations, our model
proposes that a standard Transformer module with a core self-attention mechanism can efficiently identify
regions within an image that have identical forms but differ in edge artifacts. This module, when paired with
an appropriate decoder, can be directly applied to feature encoding for CMFD tasks.

3 Methodology
To elucidate the model design in this paper, we first examine the CMFD methods within the DCNN

framework. This framework bears resemblance to the encoder-decoder structure of the Fully Convolutional
Network (FCN) [27] for semantic segmentation, comprising three primary modules: a feature extractor
based on CNN, a module for feature matching, and a decoder. These components are employed to extract
features, compute feature similarity, and generate tampering masks, respectively. To enhance detection
efficacy, the model may incorporate additional post-processing modules or advanced designs, such as edge
detection, feature pyramids, and multiple feature fusion techniques.

The model proposed in this paper adheres to the encoder-decoder framework, with a notable modifica-
tion. To preserve the original image resolution during feature extraction, a Transformer encoder is employed.
This design, centered on multi-head self-attention (MSA), effectively fulfills both feature extraction and
feature matching requirements. Fig. 1 presents the complete architecture of the model.
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Figure 1: Illustration of proposed CMFD transformer (CMFDTR) model

3.1 Feature Encoder
We represent the input image as X ∈ RH×W×3, with H and W representing its height and width,

respectively. The image X undergoes an initial preprocessing step to transform it into a one-dimensional
sequence suitable for input into a Transformer encoder. For feature extraction, a convolutional layer with
a kernel size of p × p and a stride of p is employed. This operation effectively partitions the image into N
blocks of size p × p. The number of blocks N is determined by the formula: N = H

p ×
W
p . Following this, the

image patches are flattened, and each vectorized patch is mapped to a latent d-dimensional embedding space
(set to 1024 in this study) using a linear projection layer E, resulting in a one-dimensional sequence of image
patch embeddings Sp.

To facilitate long-range modeling, encoding the spatial information of image patches is essential.
Consequently, a learnable position embedding Posi with identical dimensions is incorporated into the
embedding sequence S′ ∈ R(N+1)×d . This process can be expressed by the following equation:

S
′

i = Sp i + Posi (1)

Subsequently, the embedded sequence S′ is inputted into the global Transformer encoder. The Trans-
former encoder is constructed with 24 stacked Transformer encoding blocks, each comprising multiple
layers of MSAs and multiple layers of multi-layer perceptions (MLPs). The ultimate output produced by the
global Transformer encoder is referred to as Z24, while the features produced by each stacked layer of the
Transformer during the encoding process are represented as {Z1, Z2, ⋅ ⋅ ⋅ , Z24}, as depicted in Fig. 1.

3.2 Feature Decoder
The model presented in this paper adheres to the encoder-decoder framework, utilizing the Transformer

architecture for feature encoding in the encoder component. However, the extracted features encompass
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both similar backgrounds and forged regions. To mitigate interference from features of similar backgrounds,
a common approach involves dividing the Transformer features into several sets of feature blocks, computing
self-correlation scores for each set, and selecting the top k feature blocks with the highest scores. This
method aims to reduce interference caused by similar backgrounds [9,15]. However, this empirical approach
demonstrates sensitivity to variations in image size.

Considering the inherent nature of image copy-move tampering detection, which involves identifying
nearly identical forged targets based on the original source, a one-to-one matching result is preferable to
a one-to-many matching outcome. To address this, the proposed model integrates a one-to-one feature
matching module and utilizes a multi-scale context decoder to validate the method’s efficacy.

The feature matching module integrates the contextual information of each channel in the Transformer
features through global average pooling, thereby reducing the feature map’s dimensionality from K ×w × h to
K × 1 × 1. Subsequently, the channel information weights are calculated using one-dimensional convolution,
and the Sigmoid activation function is applied to constrain these weights within the range of (0–1). Lastly, the
feature weight information is derived through vector multiplication with the original Transformer features,
yielding the aggregated information of different channel weights.

The stacked architecture of the Transformer encoder enables each image patch’s feature representation
to incorporate information from other patches, allowing different encoding layers to capture forgery features
at various levels of granularity. To integrate these multi-granularity forgery features, we have designed a
CMFDTR-MLW decoder. As illustrated in Fig. 2, the CMFDTR-MLW decoder implements a unidirectional
feature fusion strategy, facilitating information integration through a top-down pathway. This approach
effectively enhances the flow of information within the Transformer encoder, thereby improving the model’s
ability to perceive and synthesize multi-level features. Specifically, we divide the 24 Transformer encoder
blocks evenly into four groups and extract the embedded features (Z6, Z12 , Z18 , Z24) from the final block of
each group as input. These features are then reshaped into 3D features (Z

′

6, Z
′

12 , Z
′

18 , Z
′

24) with dimensions
H
p ×

W
p × C. Subsequently, these reshaped features are processed through a feature matching module before

being input into the CMFDTR-MLW decoder.
Within the MLW decoder, the high-level feature maps are combined with the feature information of

the sub-high-level feature maps through element-wise addition. The resulting aggregated feature map is then
added element-wise to the next lower-level feature map. The fusion process maintains a copy of the highest
layer feature map Z

′

24 (denoted as P24), which is subsequently added to the next highest layer feature map.
This result is then added to the next feature map. After each addition, the resulting feature map is preserved
(i.e., P18, P12, P6). Subsequently, the four fused feature maps undergo processing through two successive 3×3
convolutions to halve the number of channels and reduce it to 3, as well as two 4x up-sampling operations.
This process yields four candidate three-class tampering masks (R6, R12, R18, R24) with different hierarchical
information and dimensions matching the original image. By obtaining four feature maps with distinct
mixed conditions through this approach, each of the four feature maps is decoded separately to produce four
decoding results. Finally, a union of the four decoding results is taken to enhance the detection accuracy of
tampered regions.
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Figure 2: Illustration of CMFDTR-MLW decoder

3.3 Loss Function
In the context of image copy-move tampering detection and localization, the model proposed in this

paper conducts binary classification at the pixel level and utilizes the binary cross-entropy loss function
(BCELoss) for network updates. The model’s prediction mask is guided by pixel labels from a ground-truth
mask, which corresponds to the original image’s dimensions. In this mask, pixels labeled as 0 are classified as
original, and those labeled as 1 are classified as tampered. The calculation formula for BCELoss is presented
as follows:

BCELoss = −(ylog (γ) + (1 − y) log (1 − γ)) (2)

where y denotes the label value of the ground-truth mask of the image.
The loss for the primary task of the proposed model is denoted as decode_loss. Furthermore, the model

includes an auxiliary decoding head designed to extract outputs from various layers of the Transformer
encoder. These extracted results are processed through a fusion module and a decoder, and the auxiliary loss
is computed by comparing the predicted mask with the ground-truth mask, represented as au_lossi , where
i denotes the i-th encoding block layer. Previous research has shown that incorporating auxiliary losses can
enhance model training convergence [28]. The total loss Loss of the model is calculated by combining the
main task loss decode_loss with the auxiliary loss au_lossi . The formula for computing the total loss Loss
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is presented as follows:

Loss = decode_loss +∑ au_lossi (3)

This study incorporated corresponding auxiliary decoding heads at the Z10, Z15, Z20, and Z24 layer of
the Transformer encoder.

The MLW decoder ultimately generates four candidate three-category tampering masks
(Z6, Z12 , Z18 , Z24), each containing hierarchical information and matching the original image in size, by
integrating the Z6, Z12 , Z18 , and Z24 features from the Transformer encoder. These masks are collectively
incorporated into the loss function during model training, where they undergo a weighted summation
to obtain a composite cross-entropy. This approach enables more effective model training through
back-propagation. The weighted summation process is expressed by the following formula:

decodel oss = αlossR6 + βlossR12 + γlossR18 + δlossR24 (4)

where α, β, γ, and δ are coefficients representing the proportional contribution of the four loss functions to
the total decoder loss. In this study, these coefficients are assigned values of 0.1, 0.2, 0.3, and 0.4, respectively.

4 Experiment
The experiments described in this paper were conducted using the following experimental setup:

Ubuntu operating system, Intel i7-11700K @3.60 GHz CPU, and an NVIDIA GeForce RTX 3090 GPU. The
implementation was developed using the PyTorch framework and the MMCV library.

4.1 Experimental Setup
Datasets: The performance of our model is evaluated on four widely-recognized datasets in the field

of image tamper detection: USCISI [14], CASIAv2.0 [29], DEFACTO [30], and COVERAGE [31]. These
datasets not only include images but also provide corresponding ground truth masks that distinguish source,
target, and background areas. The source, target, and background areas are denoted in green, red, and blue,
respectively. Table 1 presents the specific characteristics of these datasets.

Table 1: Condition of datasets

Datasets Total number of
tampered pictures

For training/
Verification/

Testing

GT mask that
distinguishes source/

Destination
USCISI [14] 100,000 80,000/10,000/10,000 Yes

CASIA CMFD [29] 1311 0/0/1311 Yes
DEFACTO CMFD [30] 7057 0/0/7057 Yes

COVERAGE [31] 100 0/0/100 Yes

The USCISI dataset, introduced by Wu et al. [14], is a synthetic compilation of digital image tampering
instances focusing on copy-move forgeries. It comprises 100,000 samples, each associated with a binary
classification mask that distinguishes between untampered and tampered areas for CMFD. In this study’s
experimental phase, 80,000 samples were randomly extracted from the USCISI dataset for training purposes,
while 10,000 samples were allocated for validation, and an additional 10,000 samples were reserved for
testing, adhering to an 8:1:1 division ratio.
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The CASIA v2.0 dataset [29] comprises 5123 digitally manipulated images, categorized into two types of
forgery: splicing and copy-move tampering. This dataset serves as a valuable resource for research in digital
image forgery detection. Wu et al. [2] conducted a manual verification of 1313 copy-move forged images
within the CASIA V2.0 dataset and generated corresponding binary classification masks, establishing the
CASIA-CMFD dataset. In the experimental phase of this study, all samples from the CASIA-CMFD dataset
are utilized as the test set to evaluate the efficacy of the proposed model.

DEFACTO [30] is a comprehensive dataset that employs public objects from a contextual database
to generate semantically meaningful counterfeit images automatically. This dataset encompasses three
categories of forged images: spliced forgeries, copy-paste forgeries, and repair forgeries. From this dataset, we
meticulously verified and selected 7057 images containing accurately labeled copy-move tampered images.
To enhance the precision of the annotations, we reprocessed the corresponding binary masks for these
images, thereby establishing the DEFACTO-CMFD dataset. In the experiments conducted for this paper, the
entire DEFACTO-CMFD dataset serves as the test set to evaluate the model proposed herein.

COVERAGE [31] is a dataset specifically designed for CMFD in digital images, consisting of 100 images.
The dataset employs a technique of superimposing similar objects onto original authentic images, presenting
a significant challenge to human visual recognition. The alterations are subtle and difficult to detect without
meticulous examination, as the forged objects are seamlessly integrated. The tampered elements in the dataset
encompass a diverse range of items, including merchandise, fruits, furniture, and signage. The intricacy
of the forgery details poses a substantial challenge to the generalization capabilities of various copy-move
tampering detection models. In this study’s experimental phase, all instances from the COVERAGE dataset
serve as the test set to assess the performance of the proposed model.

Model parameters: The parameters of the Transformer encoder were configured to match those of
ViT_Large, as detailed in Table 2. Additionally, batch normalization was implemented as the normalization
method for each decoding head.

Table 2: Parameter settings of transformer encoder

Transformer
encoder

Number of
superimposed

layers

Number of embedded
channels in image block

Number of
self-attention

heads

Image block size

ViT_Large 24 1024 16 16 × 16

For pre-training, this study utilizes the weights of vit_large_patch16_384 pre-trained on ImageNet,
provided by the MMSegmentation [32] project, to initialize the image preprocessing and Transformer
encoder modules. The decoder module, in contrast, is randomly initialized.

Training strategy: For the training data, we implement the following standard data preprocessing
techniques from MM-Segmentation: (1) Random scaling with a ratio range of 0.5 to 2.0. (2) Randomly
cropped to achieve dimensions of 256 × 256 pixels. (3) Random horizontal flipping. (4) Photometric
distortion. (5) Image normalization.

Training parameters: The training parameters are standardized across all models. The batch size is
consistently set to 8. We utilize the SGD optimizer, setting the momentum and weight decay parameters
to 0.9 and 0, respectively. The initial learning rate is established at 1e-3. For learning rate adjustment, we
implement a polynomial decay strategy, setting the polynomial power to 0.9 and the minimum learning rate
to 1e-4.
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Test index: Choosing suitable evaluation metrics is essential for accurately gauging model performance
in experimental studies. To quantify localization and other performance aspects, this study employs the
most widely used evaluation metrics in the CMFD field, as established in previous literature [26]. Precision
measures the ratio of correctly identified positive instances to the total instances predicted as positive. Recall
represents the proportion of actual positive instances correctly identified by the model out of all actual
positive instances. By merging precision and recall, the F1 score delivers an all-encompassing measure of
model effectiveness.

4.2 Variant Performance Comparison
To effectively assess the text model’s capability in distinguishing and locating source/target regions, we

evaluate the precision, recall, and F-score for each model across three distinct categories: background, source,
and target.

Table 3 presents the experimental results of various decoder variants of the text model on the USCISI test
set. The variants include CMFDTR-MLW (multi-layer weighting scheme), CMFDTR-Naïve (one-step up-
sampling), and CMFDTR-PUP (progressive up-sampling scheme). In the table, data presented in bold text
indicate the best performance of the corresponding experimental indicators in the comparative experiments.

Table 3: Test results of different variants of CMFDTR on the USCISI dataset

Methods Categories F1-score Precision Recall
Background 97.47 96.45 98.5

CMFDTR-MLW Source 74.39 84.17 66.64
Target 80.26 84.72 76.25

Background 97.38 96.22 98.57
CMFDTR-Native Source 73.07 84.5 64.36

Target 79.26 84.43 74.68

Background 97.74 96.86 98.64
CMFDTR-PUP Source 77.29 86.86 69.62

Target 82.94 84.39 81.55

The CMFDTR-Naive decoder utilizes a single-step up-sampling process. This process involves applying
a 3 × 3 convolution to the feature map Z24, followed by a 16-fold up-sampling and batch normalization. In
contrast, the CMFDTR-PUP decoder employs a step-by-step up-sampling strategy. This approach processes
the feature map Z24 through sequential 3 × 3 convolutions, gradual up-sampling, and batch normalization.
Each up-sampling step doubles the size of the feature map from the previous step, requiring four operations
to transform the feature map from size H/256 ×W/256 to full resolution.

The experimental findings demonstrate that the Transformer encoder exhibits adaptability to various
designed decoders, achieving comparable performance in source/target distinction tasks.

4.3 Comparative Analysis of Source and Target Differentiation in Advanced Technological Contexts
Comparative experiments were performed to demonstrate that the proposed model outperforms

current state-of-the-art methods in CMFD. The model was evaluated against four specialized CMFD models:
BusterNet, DOA-GAN, CMSDNet, and MVSS-Net. These comparative experiments were performed using
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four publicly available CMFD datasets: DEFACTO CMFD, USCISI, CASIA CMFD and COVERAGE. This
comprehensive approach aimed to thoroughly test and compare the performance of the proposed model
across diverse datasets in the Copy-Move forgery domain.

The USCISI dataset was employed by training the model on its training set and directly evaluating
it on the test set. In contrast, for the DEFACTO CMFD, CASIA CMFD, and COVERAGE datasets, all
samples were utilized as the test set for evaluation without any fine-tuning. This methodology enables a more
comprehensive assessment of the model’s generalization capabilities.

The pixel-wise localization performance of the compared models on the USCISI test set are shown
in Table 4. In the table, data presented in bold text indicate the best performance of the corresponding exper-
imental indicators in the comparative experiments. Owing to the substantial similarity in data distribution
between the USCISI test set and the training data, each model has achieved satisfactory three-class localiza-
tion performance. The results indicate that the CMFDTR proposed in this study outperforms BusterNet and
CMSDNet on most metrics in the USCISI dataset, although it slightly underperforms compared to DOA-
GAN and MVSS-Net. Notably, the USCISI dataset contains relatively few complex tampered samples. Most
tampered samples in this dataset involve simple manipulations where source regions are scaled by a certain
factor, subjected to minor random rotations, and then copied and moved to target areas. The DOA-GAN
model, employing an adversarial training mechanism through the competitive process between the generator
and the discriminator, captures the data’s distributional characteristics more effectively. Consequently, DOA-
GAN exhibits superior detection performance on the USC-ISI dataset, where the data distribution is largely
consistent. However, its performance in detecting complex tampered regions may decline, indicating limited
generalization capability. MVSS-Net jointly utilizes tampering boundary artifacts and noise views of the
input image to extract semantic-agnostic features, better capturing lower-level features. It enhances detection
specificity through multi-scale supervision, at the cost of reduced detection sensitivity, which is compensated
for through multi-view feature learning. While MVSS-Net demonstrates excellent detection capabilities on
datasets with highly consistent data distribution, its generalization performance may be relatively poor when
faced with data that diverges from the training data distribution. By analyzing the detection results from
the CASIA CMFD, DEFACTO CMFD, and COVERAGE datasets, it is evident that the CMFDTR’s detection
metrics generally surpass those of DOA-GAN and MVSS-Net, demonstrating that the proposed CMFDTR
exhibits stronger generalization capabilities compared to DOA-GAN and MVSS-Net. As shown in Fig. 3,
we compare the prediction results on the UISICI dataset using various methods, including BusterNet,
DOA-GAN, CMSDNet, MVSS-Net, and our proposed method.

Table 4: Source/target distinguishment test results of comparison model on the USCISI dataset

Methods Categories F1-score Precision Recall
Background 96.03 94.35 97.77

BusterNet [14] Source 60.33 65.86 55.66
Target 77.76 84.72 71.87

Background 97.94 96.89 99.0
DOA-GAN [17] Source 81.83 84.18 79.6

Target 86.27 84.08 88.57
Background 96.44 95.04 97.89

CMSDNet [15] Source 63.57 70.97 57.58
Target 34.82 59.70 24.75

Background 97.74 96.74 98.75

(Continued)
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Table 4 (continued)

Methods Categories F1-score Precision Recall
MVSS-Net [18] Source 80.42 81.6 79.27

Target 85.32 84.42 86.24

Background 97.47 96.45 98.5
CMFDTR-MLW Source 74.39 84.17 66.64

Target 80.26 84.72 76.25

Background 97.38 96.22 98.57
CMFDTR-Naive Source 73.07 84.5 64.36

Target 79.26 84.43 74.68

Background 97.74 96.86 98.64
CMFDTR-PUP Source 77.29 86.86 69.62

Target 82.94 84.39 81.55

Figure 3: Comparison of prediction results on the UISICI dataset using BusterNet, DOA-GAN, CMSDNet, MVSS-Net,
and the proposed method (Blue represents the background, green represents the source, and red represents the target)

Table 5 displays the pixel-wise localization results for the models evaluated using the CASIA CMFD test
set. In the table, data presented in bold text indicate the best performance of the corresponding experimental
indicators in the comparative experiments. The dataset incorporates samples with Copy-Move forgeries
in highly similar or semantically ambiguous background regions, as well as instances where copied and
pasted regions overlap. In contrast, the USCISI dataset seldom contains such intricate tampered samples.
Consequently, this disparity may result in suboptimal performance when a model trained exclusively on the
USCISI training set is evaluated on the CASIA CMFD test set.

The results of the experiments confirm that the CMFDTR proposed herein surpasses other models in
most performance metrics when evaluated on the CASIA CMFD dataset, surpassing the comparison models
BusterNet, CMSDNet, DOA-GAN, and MVSS-Net. This indicates enhanced generalization capability and
improved performance in detecting tampered regions. As shown in Fig. 4, we compare the prediction results
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on the CASIA CMFD test set using various methods, including BusterNet, DOA-GAN, CMSDNet, MVSS-
Net, and our proposed method.

Table 5: Source/Target distinguishment test results of comparison model on the CASIA CMFD dataset

Methods Categories F1-score Precision Recall
Background 94.58 90.64 98.89

BusterNet [14] Source 13.73 25.96 9.33
Target 1.32 20.76 0.68

Background 95.17 91.29 99.05
DOA-GAN [17] Source 20.17 45.02 13.0

Target 13.23 37.45 8.03

Background 94.72 90.52 99.34
CMSDNet [15] Source 10.74 43.52 6.12

Target 1.75 24.52 0.91

Background 94.65 90.41 99.32
MVSS-Net [18] Source 8.55 32.27 4.93

Target 6.19 33.42 3.41

Background 95.98 93.59 98.49
CMFDTR-MLW Source 24.55 32.68 19.66

Target 9.92 54.18 5.46

Background 95.97 93.55 98.51
CMFDTR-Naive Source 22.38 31.55 17.34

Target 11.93 47.85 6.82

Background 95.89 93.4 98.51
CMFDTR-PUP Source 21.61 31.73 16.39

Target 13.37 55.97 7.59

The pixel-wise localization performance for each benchmark model on the DEFACTO CMFD test
set is detailed in Table 6. In the table, data presented in bold text indicate the best performance of the
corresponding experimental indicators in the comparative experiments. Importantly, the DEFACTO CMFD
dataset exhibits substantial differences in data distribution compared to the USCISI dataset, including more
complex samples that are challenging for human visual perception, smaller target samples, and potentially
misleading instances. Additionally, the DEFACTO CMFD dataset is more extensive than the CASIA CMFD
dataset. The experimental results indicate that the CMFDTR proposed in this study outperforms the
compared models (BusterNet, CMSDNet, DOA-GAN, and MVSS-Net) on the DEFACTO CMFD dataset for
the majority of evaluation metrics. Notably, the recall is significantly higher than other comparison methods,
suggesting that the proposed method, through a one-to-one matching strategy, effectively filters out incorrect
matching features. This demonstrates that the CMFDTR possesses stronger generalization capabilities and
superior performance in detecting tampered regions. As shown in Fig. 5, we compare the prediction results
on the DEFACTO CMFD test set using various methods, including BusterNet, DOA-GAN, CMSDNet,
MVSS-Net, and our proposed method.
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Figure 4: Comparison of prediction results on the CAISA CMFD dataset using BusterNet, DOA-GAN, CMSDNet,
MVSS-Net, and the proposed method (Blue represents the background, green represents the source, and red represents
the target)

Table 6: Source/target distinguishment test results of comparison model on the DEFACTO CMFD dataset

Methods Categories F1-score Precision Recall
Background 95.11 91.53 98.99

BusterNet [14] Source 18.37 26.85 13.96
Target 1.23 28.72 0.63

Background 95.78 92.38 99.44
DOA-GAN [17] Source 28.2 48.52 19.88

Target 16.76 47.21 10.19

Background 95.22 91.51 99.25
CMSDNet [15] Source 11.29 32.7 6.82

Target 3.47 29.24 1.85

Background 95.12 91.27 99.32
MVSS-Net [18] Source 14.46 37.09 8.98

Target 11.19 49.39 6.31

Background 96.14 93.75 98.67
CMFDTR-MLW Source 31.07 36.67 26.96

Target 14.39 61.97 8.15

(Continued)
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Table 6 (continued)

Methods Categories F1-score Precision Recall
Background 95.99 93.48 98.64

CMFDTR-Naive Source 26.39 33.91 21.61
Target 16.72 59.06 9.74

Background 96.0 93.39 98.75
CMFDTR-PUP Source 25.5 35.6 19.86

Target 18.93 58.3 11.3

Figure 5: Comparison of prediction results on the DEFACTO CMFD dataset using BusterNet, DOA-GAN, CMSDNet,
MVSS-Net, and the proposed method (Blue represents the background, green represents the source, and red represents
the target)

Table 7 summarizes the pixel-wise localization performance of each comparative model evaluated
on the COVERAGE test set. In the table, data presented in bold text indicate the best performance of
the corresponding experimental indicators in the comparative experiments. The forged images in the
COVERAGE dataset are created by overlaying similar objects onto the original real images. This dataset poses
a significant challenge to human visual recognition due to its finely detailed forgeries, and it is particularly
demanding for image tamper detection and localization models to perform effectively. The experimental
results demonstrate that all detection metrics of the proposed CMFDTR in this study surpass those of the
compared models BusterNet, CMSDNet, and MVSS-Net, but are slightly lower than the DOA-GAN model.
Analysis of the visualization results suggests that the marginally lower detection performance of the method
proposed in this study compared to the DOA-GAN model is attributable to the misclassification of a portion
of the forged source and target regions. However, considering the comprehensive detection results across the
four test sets utilized in this study, it is evident that the proposed CMFDTR exhibits stronger generalization
capabilities and superior performance in detecting tampered regions for unknown tampered images. As
shown in Fig. 6, we compare the prediction results on the COVERAGE test set using various methods,
including BusterNet, DOA-GAN, CMSDNet, MVSS-Net, and our proposed method.
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Table 7: Source/target distinguishment test results of comparison model on the CAVERAGE dataset

Methods Categories F1-score Precision Recall
Background 87.29 78.33 98.57

BusterNet [14] Source 21.06 38.12 14.55
Target 1.44 34.37 0.73

Background 88.43 81.26 96.99
DOA-GAN [17] Source 33.84 49.08 25.83

Target 22.24 49.89 14.31

Background 88.02 80.14 97.63
CMSDNet [15] Source 23.21 36.63 16.99

Target 2.88 39.58 1.5

Background 87.14 77.61 99.32
MVSS-Net [18] Source 17.19 63.28 9.95

Target 13.15 62.77 7.35

Background 89.12 80.89 99.21
CMFDTR-MLW Source 33.26 60.22 22.98

Target 12.87 71.75 7.07

Background 88.59 80.12 99.07
CMFDTR-Naive Source 30.05 61.42 19.89

Target 10.78 63.81 5.89

Background 87.91 78.8 99.39
CMFDTR-PUP Source 19.31 66.18 11.3

Target 10.46 64.42 5.69

Figure 6: Comparison of prediction results on the COVERAGE dataset using BusterNet, DOA-GAN, CMSDNet,
MVSS-Net, and the proposed method (Blue represents the background, green represents the source, and red represents
the target)
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5 Conclusion
This paper introduces a Transformer structure based on sequence-to-sequence modeling and proposes

an end-to-end model called CMFDTR, specifically designed for the characteristics of the CMFD task.
In comparison to existing DCNN methods, CMFDTR eliminates the reliance on image down-sampling
throughout the feature encoding process, effectively mitigating the common issue of detail loss associated
with DCNN approaches. Furthermore, the multi-head mechanism of MSA enhances the model’s global
context modeling capabilities. The self-attention mechanism demonstrates greater suitability for copy-
move forgery characteristics than traditional feature correlation matching calculations. Experimental results
demonstrate that our model outperforms other advanced techniques on USCISI, DEFACTO CMFD, CASIA
CMFD, and COVERAGE datasets, indicating the high adaptability and promising potential of Transformer
for the CMFD task. Future research endeavors will concentrate on expanding the current work, enhancing
the Transformer encoder, and refining the model’s capabilities for more precise detection and localization of
copy-move forgery.
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