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ABSTRACT: Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,
and data storage services which are required for several 6G applications. Artificial Intelligence (AI) algorithms will
be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their
performance and reliability. In this paper, the focus is on the scenario of Partial Offloading of a Task to Multiple
Helpers (POMH) in which larger tasks are divided into smaller subtasks and processed in parallel, hence expediting task
completion. However, using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks
based on many interdependent factors to ensure that all subtasks of a task finish simultaneously, preventing resource
wastage. Additionally, applying matching theory to POMH scenarios results in dynamic preference profiles of helping
devices due to changing subtask sizes, resulting in a difficult-to-solve, externalities problem. This paper introduces a
novel many-to-one matching-based algorithm, designed to address the externalities problem and optimize resource
allocation within POMH scenarios. Additionally, we propose a new time-efficient preference profiling technique that
further enhances time optimization in POMH scenarios. The performance of the proposed technique is thoroughly
evaluated in comparison to alternate baseline schemes, revealing many advantages of the proposed approach. The
simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing
methodologies in the literature, yielding a remarkable 52% reduction in task latency, particularly under high workloads.
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1 Introduction
The Internet of Things (IoT) is a profound and transformative phenomenon that seamlessly connects

physical devices with the digital world. It assigns everyday devices with remarkable capabilities, leading to
enhanced convenience, efficiency, and resource management across different industries [1]. The imapct of
IoT is evident in automated smart homes and wearable health devices that have become common in our lives.
Advancements in technologies like 6G, edge computing, and artificial intelligence (AI) drive IoT’s progress,
enabling transformative applications in healthcare, environmental conservation, and autonomous vehicles.
As IoT continues to evolve, its diverse implications on human life will thrive, shaping a future marked by
profound interconnectedness and unprecedented intelligence [2].
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The IoT ecosystem benefits from cloud computing, efficiently providing processing, storage, and other
services. This is particularly advantageous in speeding up AI algorithms by processing their operations
quickly, resulting in quicker application-related decision-making. Thus, reliability and trust in AI algorithms
can be enhanced by using cloud-assisted computing solutions. However, cloud computing might not always
meet the stringent real-time demands of IoT applications. To address this, fog computing has surfaced as
a strategic solution, extending cloud services to the network edge and leveraging local resources near IoT
devices for faster data processing [3]. Fog devices play a crucial role in reducing data transfer time and
volume, enabling quicker response times and lower latency for critical applications [4]. Rather than replacing
cloud computing, fog computing complements it by focusing on the “device” side, bridging the gap between
cloud and edge devices. It significantly enriches IoT scenarios by providing critical resources, including
computation, storage, and networking capabilities in proximity [5].

In the fog computing environment, effective task offloading from IoT devices to fog devices remains
a significant challenge. Qualitative parameters like cost, computation time, energy consumption, and
adherence to task deadlines must be carefully considered to optimise task assignment. As the IoT ecosystem
expands, fog computing’s strategic role contributes to seamless connectivity and intelligent data processing,
enhancing transformative applications in various domains.

Partial Offloading to Multiple Helpers (POMH) is an effective way to optimally utilize the computing
resources of available devices [6]. POMH enables collaboration among different computing devices, allowing
them to pool their resources and compute tasks collectively that might exceed their capacities. By subdividing
a task into subtasks and offloading them to multiple fog nodes simultaneously, POMH achieves parallel
task computation and efficiently optimizes task latency for faster completion [7]. However, implementing
POMH involves critical decisions related to task splitting and offloading, requiring coordination among
multiple stakeholders.

Matching theory is highly regarded for its simplicity and low computation complexity [8,9] and finds
extensive application in fog computing for many resource allocation problems [10]. When matching theory
is applied for resource allocation in the POMH scenario, it faces a notorious externalities matching problem.
This problem arises due to the dynamic and fluctuating subtask sizes of a task, leading to continuous changes
in preference profiles of the assisting fog devices. In such scenarios, assisting fog devices constantly adjust
their preferences for the tasks, forming and breaking matching pairs in an ongoing loop [11]. Consequently,
the intricacies involved have led to relatively limited research in this domain, highlighting the need for further
exploration to address the complex externalities problem effectively.

In previous work [12], the externalities matching problem for resource allocation in the POMH scenario
is solved using the novel Stable Matching Update Algorithm (SMUA). However, the findings show that
devising preference profiling techniques for assisting fog devices with continuously changing preferences is
a highly complex task to achieve the desired objective function. To optimize resource allocation further, we
propose the “Time Improvement Scheme,” which is more time-efficient than the technique in [12], though
it involves a trade-off with fairness.

The summarized contributions of this paper are:

1. The resource allocation problem is formulated as a many-to-one matching to achieve time efficiency by
enabling multiple devices to compute a task simultaneously.

2. A novel many-to-one Stable Matching Update Algorithm with a new profiling technique to enhance
time efficiency in the POMH scenario is proposed. Furthermore, the proposed technique also efficiently
resolves the externalities problem in POMH-based task offloading scenarios.
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The subsequent sections of this paper are organized as follows. Section 2 delves into prior research
concerning POMH. In Section 3, we present the system model and formulate the problem at hand. The
proposed solution, centered around the matching technique, is elucidated in Section 4. An evaluation of the
technique’s performance is conducted in Section 5. Finally, Section 6 concludes the paper by summarizing
the results obtained.

2 Related Works
This section discusses two categories of related works on POMH-based task offloading scenarios: non-

matching-based and matching-based approaches. The summary of the previous research work is shown
in Table 1.

Table 1: Related research on partial offloading of the tasks

Ref. System model Objective Adopted method Subtasks
[13] Mobile edge computing Minimize time & energy Heuristic Three
[14] Mobile computing Minimize time & energy Graph theory Many
[15] Fog computing Minimize time & energy Graph theory Many
[16] Fog computing Minimize time Heuristic Many
[17] Fog computing Minimize time “OR” energy Heuristic Many
[18] Vehicle-to-everything Minimize time Heuristic Many
[19] Aerial access IoT networks Minimize energy Reinforcement learning Many
[20] Fog computing Minimize energy Reinforcement learning Many
[21] Cloud-fog computing Minimize time Heuristic Many
[22] Cloud-fog computing Minimize delay Heuristic Many
[23] Fog computing Minimize energy Matching w/o externalities Many
[24] Fog computing Minimize time Matching w/o externalities Many
[12] Fog computing Minimize time Matching with externalities Many

This work Fog computing Minimize time Matching with externalities Many

2.1 Non-Matching Based Approaches
Chen et al. [13] used a heuristic technique to process a task simultaneously at the device, edge, and

cloud server, achieving significant reductions in time and energy consumption for Mobile Edge Computing
(MEC) systems. Chen et al. [14] investigated a collaborative mobile computing system, dividing tasks into
subtasks and processing them simultaneously on distributed mobile devices. They used a graph theory-based
heuristic to optimize time and energy efficiency. Deb et al. [15] studied fog computing with task offloading to
multiple neighboring fog nodes for simultaneous computation of tasks. They employed directed acyclic task
graphs to achieve efficient offloading, leading to reduced task completion time and energy consumption.

Liu et al. [16] considered a fog computing network comprising Helper Nodes (HNs) and Task Nodes
(TNs) to achieve time efficiency. They gathered global information through task advertisements from TNs
and proposals from HNs. By formulating the task splitting as a Generalized Nash Equilibrium Problem
(GNEP), they balanced task ratios to achieve similar finish times. Bozorgchenani et al. [17] proposed POMH
policies for fog computing, optimizing energy or time efficiency through task offloading to fog nodes or
access points with high residual power, using a heuristic technique.
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Feng et al. [18] performed partial task offloading in a Cellular Vehicle-to-Everything system. They
distributed tasks to both Road Side Units (RSUs) and neighboring vehicles based on successful transmission
probabilities, achieving time efficiency through a heuristic approach. Lakew et al. [19] explored aerial access
IoT networks with multiple unmanned aerial vehicles (UAVs) to achieve energy efficiency by computing
tasks simultaneously. They utilized a learning technique based on Markov decision processes (MDP) for task
optimization. Baek et al. [20] studied the online partial offloading and task scheduling problem for achieving
energy efficiency. They controlled both transmission and CPU energy consumption by employing an online
Deep Recurrent Reinforcement Learning (DRRL) approach.

Thai et al. [21] studied Collaborative Cloud-Edge Computing with a three-layered architecture. Tasks
can be offloaded to multiple helping devices within the same layer and higher layers. The authors utilized
a branch-and-bound algorithm based on graph theory to iteratively solve sub-problems and achieve the
optimal solution. Tran-Dang et al. [22] did POMH-based task offloading in a fog-cloud system, using both
horizontal and vertical task offloading to neighboring fog devices and the cloud. They introduced an adaptive
task offloading mechanism with a heuristic algorithm to balance task ratios and reduce computation time.

2.2 Matching Based Approaches
Zu et al. [23] investigated POMH-based task offloading in a fog computing system involving HNs and

TNs. They utilized a many-to-one matching technique to minimize energy consumption. However, they
did not consider externalities arising from changes in preference profiles due to varying subtask sizes. The
resizing of subtasks was performed based on the assigned matches after the process.

Tran-Dang et al. [24] investigated POMH-based task offloading in a fog computing system, aiming
for time efficiency. They used a many-to-one matching technique and considered interference at the HNs
as a source of externalities. The authors formulated a TN preference list based on the time efficiency
provided collectively by a group of HNs, rather than considering individual HNs. The authors employed swap
matching between TNs and groups of HNs to avoid explicitly addressing the externalities problem during
the matching process.

In [12], the focus is on POMH-based task offloading utilizing a many-to-one matching technique to
minimize task latency. This study specifically tackles the externalities problem that arises from changes
in task sizes during the matching process. A matching update algorithm is proposed to effectively handle
externalities and generate a stable matching assignment. This paper builds on [12] and introduces a new
preference profiling technique, demonstrating higher time efficiency.

3 System Model & Problem Formulation
This paper considers a fog computing network with a centralized architecture, where the Fog Node

Controller (FNC) makes all resource allocation decisions as shown in Fig. 1. The notations used in the paper
are shown in Table 2.

Fog nodes in the network can be categorized into three categories; Task Nodes (TNs), which require
additional computation resources to efficiently complete their tasks; Helper Nodes (HNs), capable of
performing a part of the TN tasks concurrently with their tasks; and Busy Nodes (BNs), occupied with
their computations.
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Figure 1: System model

Table 2: Notations used

H, k Set of HNs; Number of HNs
W, m Set of TN tasks; Number of TN tasks
Sm , q Set of subtasks of task Wm ; Quota of task Wm

αl Task percentage locally computed
αk Task percentage offloaded to HNk
n Number of subtask being transmitted

Creq CPU cycles needed to process a single bit of the task
Cm CPU speed of TN computing task Wm
Ck CPU speed of HN computing a subtask of Wm

Rmk , Bmk Transmission rate; Bandwidth between TNm and HNk
Pt

m , σ , gk Transmission power; White noise; Channel gain
T D

m , T l
m Task deadline time; Task local computation time

T tx
mk , Tseq Transmission time from TNm and HNk ; Sequence time
Tm , T c

k Total latency of task Wm ; Task computation time of HN
T m

k Total time of computing subtask at HN
≻H , ≻S Preference profiles of HNs and TNs

The set of HNs, denoted as H, consists of k HNs in the system H = {H1 , H2, ..., Hk}. Each Task
Node (TN) produces a single generically splittable task, denoted as W. Examples of generically split tasks
include image processing and face identification, which can be decomposed into any number and size of
subtasks [16]. The total number of TNs in the system is denoted by m, and the set of tasks can be represented
as W = {W1 , W2, ..., Wm}. The system employs POMH-based task offloading, where a task Wm is computed
concurrently with multiple HNs. The subtasks of Wm are denoted as Sm , and if q HNs are assisting with
the task Wm , then the set of subtasks can be represented as Sm = {Sml , Sm1 , Sm2, ..., Smq}, where Sml is the
subtask computed locally by TNm . The number of subtasks are:

∣ Sm ∈Wm ∣ = ∣ H ∈Wm ∣ + 1 (1)
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The subtask size is expressed as a percentage α of the original task size Wm , where αl is the size of the
locally computed subtask and αk is the size of subtasks computed by other HNs. The complete task execution
requires:

αl +
q

∑
k=1

αk = 1 and ∀α ∈ {0, 1} (2)

When a task Wm is generated, a tuple (Wm , Creq , T D
m ) is sent to the FNC. Here, Wm (in bits) indicates

the size of the task, Creq (cycles) denotes Central Processor Unit (CPU) cycles needed to complete a single
bit of the task, and T D

m (seconds) signifies the time limit within which the task must be completed.

3.1 Task Latency
A task Wm consists of multiple subtasks represented in the set Sm . One of these subtasks is computed

locally by the TNm , while the remaining subtasks are computed in parallel by a group of q HNs. Therefore,
the task latency of Wm depends on the time used in local and offload computation of the task.

3.1.1 Time for Local Computation of Task
If the computation resources (CPU cycles) of TNm are denoted as Cm , then the time for local

computation can be determined as follows:

T l
m =

αl WmCreq

Cm
(3)

3.1.2 Time for Computing Offloaded Subtasks
To compute a subtask at HN Hk , it must first be transmitted to Hk before processing. We consider

different fog nodes are connected using a 6G network. If we denote the transmission rate between TNm and
Hk as Rmk , then we can calculate the subtask transmission time T t

mk and Rmk as follows:

T tx
mk =

αk Wm

Rmk
(4)

Rmk = Bmk log2 (1 + gk Pt
m

σ 2 ) (5)

Here, Bmk is the bandwidth between TNm and HNk . In this paper, we assume that each TNm , HNk
communication link is provided with a dedicated bandwidth. gk represents the channel gain which decreases
with the increase in distance between TNm and HNk . Pt

m represents the transmit power of TNm , and σ is the
white noise power.

This paper uses fog nodes with a single antenna, limiting its transmission capability to only one other
fog node at a time. This arrangement does not pose any problem for the HNs since they only have to receive
a single subtask. On the contrary, each TN needs to transmit up to q subtasks to q HNs. Due to the single
antenna constraint with TNs, the communication of all sub-tasks occurs sequentially, with each sub-task
waiting its turn to be transmitted by the TN. In this paper, this waiting time is referred to as the sequence
time. The first subtask does not have any sequence time. For the nth subtask being transmitted, its sequence
time can be calculated as follows:

Tseq =Wm

n−1
∑
k=1

αk

Rmk
(6)
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In this paper, HNs perform concurrent computation of received TN subtasks alongside their tasks,
which eliminates the wait time for a subtask at HN. As a result, HNs can immediately start processing the
subtask upon receiving it. If Ck represents the CPU cycles of Hk computing the received subtask, then the
time taken by Hk to compute the received subtask can be calculated as:

T c
k =

αkWmCreq

Ck
(7)

The output size is considered to be negligible in this paper, and as a result, we neglect result download
latency [25].

From Eqs. (3), (6), and (7), the time used in computing nth subtask of Wm at Hk can be calculated as:

T m
k =Wm

n
∑
k=1

αk

Rmk
+

αnWmCreq

Cn
(8)

3.1.3 Total Task Latency
Task Wm is composed of subtasks that are processed simultaneously at multiple locations, each with

varying processing times. The overall task latency for Wm is determined by the subtask that finishes the last.

Tm = max {T l
m , T m

k } (9)

Eq. (9) emphasizes the need to complete all subtasks simultaneously; otherwise, the valuable compu-
tation resources of HNs that finish their subtasks early would be wasted. The ideal required scenario is:

Tm = T l
m = T m

1 = T m
2 = ... = T m

q (10)

By balancing task offloading percentages αl and αk , the same finish time can be achieved for all subtasks.
For successful completion of the task Wm , all of its subtasks must be completed before the task deadline:

Tm ≤ T D
m (11)

3.2 Problem Formulation
This paper focuses on the scenario where HNs have limited spare computation resources and aim to

assist neighboring TNs in computing their tasks in a time-efficient manner. To enhance network-level time
efficiency, we propose a POMH strategy, where multiple HNs collaborate to complete a TN task faster. The
optimization problem is formulated as follows:

Problem (P1):

min Tm

s.t. Tm ≤ T D
m (12a)

T l
m = T m

1 = T m
2 = ... = T m

q (12b)

αl +
q

∑
k=1

αk = 1 and ∀α ∈ {0, 1} (12c)

∣ Sm ∈Wm ∣ = ∣ H ∈Wm ∣ +1 (12d)
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Constraint (12a) ensures that all TN tasks are completed within their specified deadline time T D
m ,

while Constraint (12b) ensures effective utilization of allocated computation resources by synchronizing the
completion time of all subtasks. Constraint (12c) ensures the complete execution of the task Wm without
any part being left uncompleted. Furthermore, Constraint (12d) ensures that the number of subtasks of Wm
aligns with the number of HNs assisting in its computation. Specifically, the number of subtasks should be
one more than the number of assisting HNs, as one subtask will be locally computed by the TN itself. This
constraint guarantees the proper distribution and synchronization of subtasks among the participating HNs.

The problem presented in this paper belongs to the class of combinatorial optimization problems, which
are notoriously known to be NP-hard [26]. As the number of TNs and HNs grows, finding an optimal solution
becomes increasingly difficult. Additionally, each device’s goal to maximize its benefit may lead to an unstable
outcome, making it challenging to achieve a stable matching assignment.

4 Proposed Solution
Matching theory is a mathematical optimization technique known for its low computation complex-

ity and ease of use. It efficiently matches resources with users while considering their preferences and
constraints [27]. Categorizing devices into resource-demanding and resource-lending sets forms mutually
beneficial associations, leading to optimized resource-user pairings based on individual objectives.

In the POMH scenario, subtask sizes are continuously adjusted to ensure the same completion time for
all subtasks of the task Wm . However, this dynamic adjustment creates a changing preference profile among
HNs, leading to a difficult-to-resolve externalities problem. In this problem, the dynamically changing HN
preferences can trigger a domino effect, perpetuating a cycle of pair formation and breaking indefinitely. This
hinders the algorithm from converging and attaining a stable solution. As a result, the direct use of matching
theory for resource allocation in the POMH scenario is restricted.

To address this problem, we propose a two-step approach. In the first step, we use the standard
Deferred Acceptance Algorithm (DAA) [28] to obtain a stable matching assignment without considering
subtask changes, thereby avoiding externalities. For the second step, we propose the Stable Matching Update
Algorithm (SMUA) [12] which is based on the work of Ma [29]. SMUA allows HNs to reconsider their
matches of the first step based on the actual size of the subtask they will perform. The underlying assumption
in SMUA is that only a few players are likely to change their partners during the updating of the stable
matching assignment. This approach significantly reduces the search space, allowing for a quick and efficient
discovery of a stable matching decision. SMUA effectively resolves the externalities problem, leading to more
efficient resource allocation.

4.1 Matching Concepts
4.1.1 Definition 1 (Matching Assignment)

The matching assignment is a two-sided problem where players from sets H (representing HN com-
puting resources) and W (representing TN tasks) express their preferences for each other. The goal of the
matching assignment is to optimally pair players, based on their preference, to produce a stable matching
assignment. The matching assignment is established through a mapping function λ, such that:

λ(Hk) ⊆W and ∣ λ (Hk) ∣ ≤ 1 (13a)

λ(Wm) ⊆ H and ∣ λ (Wm) ∣ ≤ qm (13b)

Hk ∈ λ (Wm) ⇐⇒ Wm ∈ λ (Hk) (13c)
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Condition (13a) indicates that each HN is allowed to have a maximum of one match with tasks in the
task set W. In contrast, condition (13b) allows a task Wm to have multiple matches with different HNs from
the HNs set H, but the number of matches cannot exceed the quota q. This enables a task to be offloaded to
multiple HNs simultaneously, with a maximum of q HNs handling the same task. Moreover, condition (13c)
represents a bijective matching between tasks and HNs. It ensures that an HN is matched to a specific task
if and only if that task is also matched to the same HN. This bidirectional association guarantees that tasks
and HNs are uniquely and exclusively paired with each other.

4.1.2 Definition 2 (Preference Profile and Preference List)
“The preference relations ≻H and ≻W for two sets H and W allows each player (Hk ∈ H) to indicate

preference over all players (Wm ∈W) in the opposite set and vice versa [30].”
A preference profile indicates how each player in one set prefers the players in the other set based on a

utility function, which quantifies how well a player’s objective is met. Players create preference lists by ranking
others according to utility values. Players can have fixed or dynamic preference lists. Fixed lists lead to stable
outcomes, while dynamic lists adapt to changing factors, introducing uncertainty. Dynamic preference lists
create externalities, requiring special arrangements for stable matching.

Preference of Tasks: TNs use fixed priority lists with the transmission rate Rmk as their utility function
to prioritize HNs with higher rates, aiming to minimize task completion time:

Hk ≻ Wm Hk∗ ⇐⇒ Rmk > Rmk∗ (14)

Preference of HNs: In this paper, two HN preference profiling techniques are used for the two resource
allocation steps. In the first step, HNs use task computation time T m

k as their utility function to minimize
task completion time. Every Hk calculates its utility function T m

k considering subtask sizes as if Hk is the only
match for each task, prioritizing the shortest computation time. This preference list remains fixed during the
first step.

Wm ≻ Hk Wm∗ ⇐⇒ T m
k < T m∗

k (15)

In the second step, the matching assignment is updated to address externalities, and HNs adjust their
matches based on the actual subtask sizes. T m

k is directly proportional to subtask size (from Eq. (8)). As more
HNs assist with a task, subtask sizes, and completion time decrease. However, a utility function solely based
on T m

k may prioritize tasks with the most matches, potentially leaving many tasks unmatched. Thus, special
preference profiling techniques are needed to achieve the desired objectives in the POMH scenario.

In this paper, we propose the “Time Improvement” profiling technique for time-efficient task allocation.
Previously, we developed the “Percentage Improvement in Time” profiling technique [12], which was time-
efficient and fair. However, the new “Time Improvement” profiling technique may involve a trade-off with
fairness compared to the previous approach. The “Time Improvement” profiling technique calculates the
time saved by an HN when assisting a task, compared to not helping at all. It uses the difference in time
between both scenarios to prioritize tasks that benefit most from HN assistance, optimizing time efficiency
in the POMH scenario.

Wm ≻ Hk Wm∗ ⇐⇒ Tm − T m
k > Tm∗ − T m∗

k (16)

where, Tm and Tm∗ represent the task completion time without the help of Hk , while T m
k and T m∗

k represent
the task completion time with the assistance of Hk , respectively.
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4.1.3 Definition 3 (Quota of Players)
Quota refers to the maximum number of matches allowed for a player with players from the opposite

set [31]. In this paper, HNs can have a maximum of one match with a TN task, while a TN task can have a
maximum of q matches with q HNs.

4.1.4 Definition 4 (Block Pair)
A pair (a, b) is considered a block pair for a matching assignment λ if it satisfies the conditions λ(a) ≠ b,

b ≻a λ(a), and a ≻b λ(b) [32].
This implies that the pair (a, b) is a block pair when player a is not matched with player b in λ, and both

players prefer each other over their current matches in the matching λ.

4.1.5 Definition 5 (Stable Matching Assignment)
A matching assignment λ is considered to be pairwise stable, if there exists no block pair (x; y) within

it [33].
In matching assignments, the aim is stability rather than optimality, ensuring that no agents have an

incentive to change their current matched partners. Stability requires the absence of blocking pairs in the
matched pairs.

4.2 Two-Step Resource Allocation Scheme for Externalities
To efficiently address externalities, this paper employs a two-step approach. First, a stable matching

assignment is determined based on players’ initial preferences, maintaining their preference order through-
out the matching process. Next, the assignment is updated in the second step to handle potential block pairs
using the SMUA method, as described below.

4.2.1 Step 1 (Stable Matching Assignments without Considering Changes in Subtask Sizes)
In this paper, all algorithms run at the FNC. The utility function for TN tasks is based on the

transmission rate. The FNC uses known distances between fog nodes in the static network and periodically
updated Channel State Information (CSI) sent by all fog devices to calculate transmission rates. Using these
transmission rates, the FNC determines the preference list of all TN tasks. This preference list remains the
same for both steps of resource allocation.

On the other hand, the FNC prepares the preference list for HNs based on the method described for
HN preference profiling in the first step. The FNC then uses the DAA [28] to find an initial stable matching
assignment without considering the changes in subtask sizes.

4.2.2 Step 2 (SMUA)
SMUA effectively resolves externalities in matching by updating the initial stable assignment from step

1. This update process resolves any blocking pairs that arise due to the current matches of the TN tasks. This
approach ensures a more optimal and stable matching outcome in a shorter timeframe, making it an efficient
solution to the externalities problem. The update process is outlined below:

SMUA employs a “stability update room” as shown in Fig. 2 to update matches of a TN task one by one.
A TN task is randomly selected, and its current matches enter the room, while the rest of the HNs queue
outside the room, following the sequence ≺Wm . HNs inside the room cannot change their matching decision,
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but their match with the selected TN task can be terminated if any blocking pair is identified. HNs in the
queue can evaluate their matching decision and potentially form block pairs with the HNs inside the room.

Figure 2: SMUA employing stability update room

HNs in the queue enter the room one by one. The preference of each incoming HN with the selected
TN task is evaluated to determine if it can be accepted, considering the preference of the TN task’s current
matches and quota limitations. If the incoming HN is ineligible for acceptance, it promptly exits the room.
However, if it meets the criteria for acceptance, it undergoes further evaluation and processing.

If the incoming HN has no match, it will immediately decide to pair with the selected TN task. However,
if the HN already has a match, it will calculate its utility function for both its current match and the potential
match with the selected TN task to determine the priority order for the two matches. If the existing match
has higher priority, the HN keeps its original match and exits the room. Otherwise, it switches its match to
the TN task and stays inside the room.

When a TN task receives a new HN match, it evaluates its total number of matches in comparison to
its quota q. If the total matches are within the quota, all matches are retained. However, if the total matches
exceed the quota, the TN task drops the match with the lowest priority to ensure it stays within its capacity
while maintaining stability in the matching assignment.

The process is iteratively repeated until all blocking pairs are resolved and the initial pairing at the start
of the iteration remains unchanged throughout the loop.

The proposed SUA is an update mechanism to resolve block pairs in an existing stable matching
assignment. As a result, it always gives stable matching assignments.

4.3 Complexity Analysis
DAA used to find the initial stable matching assignment has a time complexity of O(m × k), whereas,

SMUA has a time complexity of O(m2 × k) making the total complexity of the mechanism O(m × k) +
O(m2 × k) (Algorithm 1).

Algorithm 1: SMUA
1. Input: λ(W)
2. Output: Externalities free assignment: λstabl e
3. λl oo p = λ(W)
4. while (λl oo p ≠ λl oo p) do
5. for all W ⊆W do
6. H ∈ λ(Wm) enters stability update room
7. for all H ∉ λ(Wm) following sequence of ≻Wm do
8. Hk enters the room

(Continued)
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Algorithm 1 (continued)
9. if Hk can be accepted in λ(Wm) then
10. if Wm ≻Hk Existing Match then
11. Hk leaves existing match to match with Wm
12. if ∣λ(Wm)∣ > q then
13. Delete H ∈ λ(Wm) that is lowest in ≻Wm

14. end if
15. end if
16. end if
17. end for
18. end for
19. end while

5 Numerical Results
The performance of the proposed profiling technique is evaluated through simulation scenarios in

MATLAB. These scenarios include different workload conditions to assess how well the technique performs
and adapts in various situations. The results are then compared against other established baseline schemes
to assess the degree of improvement achieved. The key parameters used in the simulations are summarized
in Table 3.

Table 3: Simulation settings

Total HNs k 30
Total TNs m 5–35

CPU frequency Cm of TN U [0.8, 1.2] GHz
CPU frequency Ck of HN U [0.4–0.6] GHz

Size of task Wm 4−5 ×103 KB
CPU frequency Creq required for single bit of task U [1000–3000] cycles

Bandwidth Bmk 5 × 106 Hz
Transmitting power Pt

m 100 mW

We consider a network with k = 30 HNs and m = [5, 35] TNs, where the number of TNs is increased
by 5 in each iteration to represent various workload scenarios. The computation capabilities (CPU cycles)
of all fog nodes are uniform, ranging from 0.8–1.2 GHz. However, as HNs are also performing their tasks,
they allocate only 50% of their computation resources to process TN-specific tasks. The remaining 50% of
their computation power is reserved for handling their local tasks. Moreover, the task sizes are uniformly
generated in the range W = [4000, 5000] KB, and a single bit of the task requires Creq = [1000, 3000] CPU
cycles of computation resources to process.

The fog nodes are evenly distributed within an area of 60 m × 60 m. This distribution ensures that each
TN has 8 to 10 neighboring HNs within an efficient communication range of 30 meters. These nearby HNs are
readily available to assist the TNs with their tasks whenever needed. All fog nodes are connected wirelessly,
with each node equipped with a single antenna. They have a dedicated active uplink channel of 5 MB and a
transmission power of 100 mW. However, due to the limitation of a single antenna, subtasks have to wait for
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their turn to be transmitted to their respective HNs, which introduces a sequence time constraint in the task
offloading process, impacting the overall task offloading latency. The noise power is set as σ 2 = 10−10, the free
space path loss is PLm ,k = 38.02 + 20 log10 dk ,m , and channel gain is gn = 10−PLm ,n/10.

For easy referencing, we will name the results of our proposed profiling technique as SMUA-T. We
compare the proposed approach with the following baseline schemes:

1. Our work at [12] (SMUA),
2. Tran et al. [24] (DISCO),
3. Zu et al. [23] (SMETO).
The baseline schemes are closely related to the proposed SMUA-T technique. SMUA-T introduces a new,

more time-efficient profiling technique compared to our previous work in SMUA [12]. All baseline schemes
employ the many-to-one matching technique to map HN resources to TN tasks. While both SMUA-T and
SMUA consider externalities arising from changes in subtask size, DISCO focuses on interferences at HNs
as the source of externalities. SMUA-T and SMUA address these externalities, whereas DISCO utilizes a
swap-matching algorithm to avoid considering externalities during the matching process. On the other hand,
SMETO completely ignores their existence. Notably, SMUA-T, SMUA, and DISCO aim to optimize time,
while SMETO prioritizes energy efficiency in the task-offloading process.

We evaluate the performance of all schemes based on three parameters: delay reduction ratio (%),
average task latency (seconds), and the TN tasks locally computed (numbers), i.e., the tasks that failed to find
any matching HN. Preference profiling in matching theory defines the extent to which desired objectives can
be achieved. To highlight the significance of “Time Improvement” and “Percentage Improvement in Time”
preference profiling techniques, we present results in two sections. First, we compare results after resolving
externalities (SMUA-T and SMUA) with baseline schemes. Then, we explore results when externalities
remain unresolved, comparing the first step assignments (SMUA-T Step1 and SMUA Step1) with baseline
schemes. This approach underscores the distinct impact of preference profiling techniques on optimizing
matching outcomes.

5.1 Results with SMUA-T and SMUA
The delay reduction ratio experienced by all baseline schemes with TN task quota q set to 3 is shown

in Fig. 3. This ratio represents the percentage reduction in task computation time achieved by offloading TN
tasks to available HNs, compared to the scenario where no task was offloaded, and all TNs had to compute
the tasks locally. These results demonstrate the superiority of the proposed SMUA-T scheme in terms of
the delay reduction ratio compared to all other schemes. This highlights the effectiveness of the proposed
preference profiling technique in the way externalities are solved in the proposed scheme. The matching
update process enables HNs to intelligently select the best TN task with complete knowledge of all other
matches, significantly enhancing the delay reduction ratio and leading to such time-efficient outcomes.

Our other preference profiling technique, SMUA, is both time-efficient and fair, prioritizing fairness
over time efficiency. Despite having a lower delay reduction ratio compared to SMUA-T, it still achieves a
significant delay reduction compared to all other baseline schemes. DISCO prioritizes time efficiency, leading
to a higher delay reduction ratio compared to SMRETO, which focuses on energy efficiency. The results
demonstrate how each scheme’s specific objective impacts its performance, with DISCO excelling in delay
reduction ratios over SMRETO delays.
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Figure 3: Delay reduction ratio, q = 3

The results in Fig. 4 show the average task latency achieved by all baseline schemes, indicating their time
efficiency. This metric serves as an extension of the delay reduction ratio and offers further insights into the
performance of each scheme concerning task completion time. SMUA-T stands out as the most time-efficient
scheme, delivering the lowest average task latency across all workload scenarios, while SMUA, employing
different preference profiling but a similar resource allocation method, also demonstrates commendable
performance in reducing task latency, albeit with slightly higher average task latency values compared to
SMUA-T. On the other hand, DISCO, designed primarily for time efficiency, performs well in reducing task
latency but exhibits higher average task latency values than SMUA and SMUA-T. SMRETO, which is aimed
at achieving energy efficiency, has the poorest average task latency among all the schemes evaluated.

Fig. 5 illustrates the number of TN tasks that couldn’t find any matches from the available HNs. This
evaluation criterion provides valuable insights into the fairness of the schemes used based on the ability to
serve the maximum number of TN tasks. In an ideal fair scheme, one would expect 30 HNs to be able to
serve 30 TN tasks, making this observation particularly interesting.

These results demonstrate that our preference profiling techniques, SMUA and SMUA-T, are the fairest
among all baseline schemes. However, SMUA-T sacrifices some fairness to achieve better time efficiency,
as can be seen in Fig. 3. These results support our claim that our preference profiling techniques effectively
achieve their set objectives while also avoiding convergence towards TN tasks with more matches in a
greedy pursuit of their objectives. The results reveal that DISCO and SMETO leave many TN tasks unserved.
However, it’s important to note that their preference profiling was not designed with fairness in their
resource allocation. Instead, these schemes prioritize other optimization criteria that could be advantageous
in specific scenarios.
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Figure 4: Average task latency, q = 3

Figure 5: TN tasks not served. q = 3

5.2 Results with SMUA-T Step1 and SMUA Step1

The initial matching assignments in step 1 lack stability, as they overlook the real preference profiles of
HNs, especially about the sizes of the subtasks they will compute. However, comparing these initial unstable
outcomes with other baseline schemes can provide valuable insights into the preference profiling techniques
of “Time Improvement” and “Percentage Time Improvement.”
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In Fig. 6, looking at the delay reduction ratio, we can see that DISCO performs the best under very
low workloads, followed closely by SMETO. However, SMUA-T Step1 and SMUA Step1 show the lowest
performance levels. Interestingly, as the workload increases, SMUA-T Step1 takes the lead as the most effective
scheme. Notably, DISCO, designed for time efficiency, remains efficient, closely trailing behind SMUA-T
Step1. SMUA Step 1, which aims for both time efficiency and fairness, follows suit in performance. In contrast,
SMETO prioritizes energy efficiency and displays the lowest time efficiency among the schemes.

Figure 6: Delay reduction ratio, q = 3

Transitioning to the average task latency results in Fig. 7, we witness a continuation of the consistent
trend observed in the delay reduction ratio outcomes from Fig. 6. DISCO stands out in very low workload
scenarios, while SMUA-T Step1 takes the lead as the workload intensifies. Notably, the innovative “Time
Improvement” profiling technique proposed in this paper consistently demonstrates impressive time effi-
ciency, even when externalities are not resolved. Importantly, the results become even more pronounced and
time-efficient when externalities are addressed, as illustrated in Figs. 3 and 4. This emphasizes the robustness
of the “Time Improvement” profiling technique in elevating time-related performance metrics across diverse
operational scenarios.

Analyzing the count of TN tasks unable to find suitable matches from the pool of available HNs, as
depicted in Fig. 8, reveals an intriguing facet of the comparison. It’s noteworthy that DISCO, despite leaving
a considerable number of TN tasks unserved, still emerges as the fairest among the schemes. Surprisingly,
the results unveil that SMETO, SMUA-T Step1, and SMUA Step1 all yield an identical level of fairness in
this context. This observation emphasizes a crucial point: the “Time Improvement” and “Percentage Time
Improvement” profiling techniques attain fairness only after resolving the externalities. In the absence of
resolving these externalities, the effectiveness of these proposed profiling techniques in achieving fairness
is limited.
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Figure 7: Average task latency, q = 3

Figure 8: TN tasks not served. q = 3

6 Conclusions

The work in this paper proposes a task computation technique for 6G networks is proposed. The idea is
to use parallel task offloading with many-to-one matching for allocating resources of fog computing nodes.
The novel aspect of the developed technique is a new preference profiling technique that improves the time
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efficiency of the task computation which is necessary for 6G applications. Analysis of the proposed technique
based on simulations shows improved task delay at different network densities. Moreover, this work also
highlights the importance of using externalities-based solutions when using matching-based allocation
of computing resources in the POMH-based task offloading scenario. Developing new and improved
preference profiling techniques to consider multiple objectives in light of externalities remains an essential
and interesting challenge for future work. Such advancements can lead to fairer and more efficient resource
allocation outcomes in dynamic environments. In the future, we will further explore the performance of
the proposed technique as the network size is increased. Moreover, we will also consider different type IoT
workloads and develop machine learning techniques for dynamic task offloading.
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