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ABSTRACT: This review paper provides a comprehensive introduction to various numerical methods for the phase-
field model used to simulate the phase separation dynamics of diblock copolymer melts. Diblock copolymer systems
form complex structures at the nanometer scale and play a significant role in various applications. The phase-field
model, in particular, is essential for describing the formation and evolution of these structures and is widely used as a
tool to effectively predict the movement of phase boundaries and the distribution of phases over time. In this paper,
we discuss the principles and implementations of various numerical methodologies for this model and analyze the
strengths, limitations, stability, accuracy, and computational efficiency of each method. Traditional approaches such as
Fourier spectral methods, finite difference methods and alternating direction explicit methods are reviewed, as well as
recent advancements such as the invariant energy quadratization method and the scalar auxiliary variable scheme are
also presented. In addition, we introduce examples of the phase-field model, which are fingerprint image restoration
and 3D printing. These examples demonstrate the extensive applicability of the reviewed methods and models.

KEYWORDS: Nonlocal cahn–hilliard; phase-field; diblock copolymer melts; Ohta–Kawasaki model; numerical meth-
ods; pattern formation

1 Introduction
In this review, we present an overview of the numerical methodologies for diblock copolymer melts. The

Ohta–Kawasaki equation, introduced by Ohta et al. [1], was originally developed to explain the microphase
separation patterns in diblock copolymer melts. A diblock copolymer is defined as a polymer composed of
two distinct subchains linked by a covalent bond, with each subchain composed of monomers that repel
each other. When a large number of such molecules aggregate, they form a structure known as a melt. These
diblock copolymer melts are of great interest in both scientific and engineering fields due to their unique
phase separation behavior. Their distinct constituent monomers separate to form nanoscale structures with
desirable properties [2]. This phase separation is a process known as spinodal decomposition, which enables
the formation of various microstructures such as lamellar, cubic, hexagonal, and gyroid configurations
depending on the synthetic conditions used [3]. These diverse structures can significantly influence the
mechanical properties of the material [4], and it is therefore essential to anticipate the structure that will be
formed experimentally.

Due to these unique characteristics, diblock copolymer melts have found applications across multiple
fields, such as materials science [5,6], nanotechnology [7–9], and biomedical engineering [10]. Controlled
pattern formation at the nanoscale can improve the mechanical, optical, and electrical properties of materials,
and enable the creation of advanced materials tailored for specific functions [11]. Several computational
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algorithms have been proposed to analyze the equilibrium state of diblock copolymers. Techniques such as
Monte Carlo methods [12–14], molecular dynamics [15], self-consistent field theory [16,17], cell dynamics
simulations [18], dissipative particle dynamics simulations [19–21] and the phase-field model [22–24] are
widely used for this purpose. The phase-field model, in particular, is a continuum model that describes the
interface using the order parameter. This model is advantageous because it bypasses the need to solve complex
boundary value problems, as it formulates the governing equations through the variation of an energy
functional. Consequently, the phase-field model has become a widely adopted approach for reproducing
various material structures, and it enables researchers to derive the governing equations in a relatively
straightforward manner [25–27]. Researchers also constructed new or modified phase field equations for the
diblock copolymer solutions for specific conditions and cases. Shen et al. [28] proposed a thermodynamically
consistent phase field equation for the simulation of diblock copolymers. The electric and magnetic field
is coupled in the proposed model. The authors constructed the phase field model based on the Onsager
principle. In order to solve the proposed model, the energy quadratization technique is applied, while the
thermodynamical consistency is preserved. Numerical simulations showed convergence rate of the proposed
algorithm and the effects of electric fields and magnetic field on the diblock copolymer system.

The Cahn–Hilliard (CH) equation is a fundamental governing equation in phase-field models and is
widely used to describe phase separation phenomena in binary systems. It effectively models the evolution of
the compositional concentration field and reveals the role of interface thickness in structure dynamics. The
Navier–Stokes equations can model the flow of phases, and various numerical methods have been developed
for their solutions [29]. When coupled with the CH equation, the Navier–Stokes equations can be used
to model the flow of polymer melts. Song et al. [30] introduced an innovative, unconditionally energy-
stable data assimilation algorithm for solving the Navier–Stokes–Cahn–Hilliard equations. Their approach
demonstrated robust performance in handling locally discrete observational data. Song et al. [31] proposed
an unconditionally energy-stable numerical method for the CH equation and validated its efficiency
and stability through numerical experiments involving complex initial conditions. The CH equation is
frequently coupled with other equations to capture additional characteristics. Martínez–Agustín et al. [32]
proposed coupling the CH equation with the Swift–Hohenberg equation in 3D to model phase transitions in
diblock copolymers. The proposed method is solved using the fast Fourier transform and a pseudo-spectral
implicit method. Since the model dynamics can produce various morphologies, the porous polymeric
materials obtained from numerical simulations have potential applications in 3D printing. As the Ohta–
Kawasaki model explains the microphase separation patterns in diblock copolymer melts, Barua et al. [33]
rescaled the Ohta–Kawasaki model, free energy, and boundary conditions for more efficient calculations
of sharp-interfacial symmetric diblock copolymer problem. They applied boundary integral formulation
and small-scale decomposition to solve the governing equations numerically. Their simulations illustrate
the evolution of the system from the initial to intermediate states and eventually to the steady. Meng
et al. [34] proposed a solution for the nonlocal CH equation with a nonlocal diffusion operator by using
a scalar auxiliary variable method. Their proposed methods are unconditionally stable and showed high-
order accuracy. Numerical solutions were efficiently obtained using the fast Fourier transform and gradient
approach to achieve low storage cost and calculation time. The nonlocal CH equation with degenerate
mobility was studied by Elbar et al. [35], where the additional nonlocal term accounts for the surface tension
to model long-range interactions.

The Ohta–Kawasaki model, defined on the domain Ω ∈ Rd for d = 1, 2, 3, is given by

∂ϕ(x, t)
∂t

= Δμ(x, t) − α(ϕ(x, t) − ϕ̄), (1)

μ(x, t) = F′(ϕ(x, t)) − ε2Δϕ(x, t), (2)
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where ϕ = ρA − ρB is a phase-field variable representing the local volume fraction of two monomers and
ϕ̄ = ∫Ω ϕ(x, 0)/ ∫Ω dx. The parameter α is the molecular chain length and ε is the suitably rescaled interfacial
thickness at the different two monomer intersections. The term F(ϕ) = 0.25(ϕ2 − 1)2 denotes the Helmholtz
free energy functional. If α > 0, the nonlocal Cahn–Hilliard (NCH) equation becomes the Ohta–Kawasaki
model. The total free energy E (ϕ) of the Ohta–Kawasaki model can divided into the short-range energy
Es(ϕ) and long-range energy El(ϕ), defined as follows:

Es(ϕ) = ∫
Ω
(F(ϕ) + ε2

2
∣∇ϕ∣2) dx, (3)

El(ϕ) = α
2 ∫Ω

∫
Ω

G(x − y)(ϕ(x) − ϕ̄)(ϕ(y) − ϕ̄)dydx, (4)

where G is a Green’s function [36]. We can rewrite the long-range energy by considering the periodic or zero
Neumann boundary conditions.

El(ϕ) = α
2 ∫Ω

Δxω(x)[∫
Ω

ΔyG(x − y)ω(y)]dx = α
2 ∫Ω

∣∇ω(x)∣2dx, (5)

where Δω = −(ϕ − ϕ̄) and ω is derived from Δω. The total free energy is obtained by summing the short-
range and long-range energies.

E (ϕ) = ∫
Ω
(F(ϕ) + ε2

2
∣∇ϕ∣2 + α

2
∣∇ω∣2) dx. (6)

We also obtain the following energy dissipation law and mass conservation property [37].

d
dt

E (ϕ) = ∫
Ω
[(F′(ϕ) − ε2Δϕ)ϕt − αωΔωt) dx

= ∫
Ω
(μ + αω)ϕtdx = −∫

Ω
∣∇(μ + αω)∣2dx ≤ 0, (7)

and

d
dt ∫Ω

ϕdx = ∫
Ω
[Δμ − α(ϕ − ϕ̄)] dx

= ∫
∂Ω

∂μ
∂n

ds − α∫
Ω
(ϕ − ϕ̄)dx = 0, (8)

where the integral by parts and periodic or zero Neumann boundary conditions are applied. Therefore,
the Ohta–Kawasaki model satisfies the energy dissipation law and mass conservation by Eqs. (7) and (8),
respectively. Because of these two fundamental properties of the Ohta–Kawasaki model, it is natural and
important to construct proper numerical schemes that still satisfy these two properties in discrete manners.
Singh et al. [9] developed a thermodynamically consistent nonlocal model for phase transformation and heat
transfer in block copolymer directed self-assembly using the continuum theory of mixtures. Their model
incorporates mass and energy balances, microforce balances, and constitutive relations to couple the phase
field and temperature.They developed a finite element solution incorporating stable time-stepping schemes
and performed computational tests to validate the equation’s effectiveness in simulating the self-assembly
behavior of block copolymers. Chen et al. [38] proposed an efficient leapfrog time-marching method for
the phase-field diblock copolymer equation, which significantly reduces the computational cost by requiring
only the solution of a linear algebra system at each time step, ensures unconditional energy stability for large
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time steps, and guarantees the existence and uniqueness of the computational solution at each step, ensuring
both reliability and accuracy. This method consists of the leapfrog integration scheme for time discretization
and the Fourier spectral method for spatial discretization. The authors analyze the energy dissipation and
mass conservation of the proposed numerical method for the Ohta–Kawasaki model and prove that the
numerical scheme satisfies both properties. Li et al. [39] developed a highly efficient computational method
for a flow-coupled phase-field equation for diblock copolymer melts. This model represents a complex
nonlinear system consisting of the Navier–Stokes equations coupled with the CH type equation with an
Ohta–Kawasaki potential. By combining decoupling techniques with the projection method, the authors
developed a fully decoupled, energy-stable, second-order time-accurate computational method for the
model. The decoupling technique is based on designing an auxiliary ordinary differential equation (ODE)
that plays a critical role in achieving a fully decoupled structure while maintaining energy stability. The
authors rigorously proved that the method satisfies unconditional energy stability. Diblock copolymers
under various conditions are studied by Wang et al. [40], authors simulated a hydrodynamically coupled
diblock copolymer in complex domains using a diffusion domain method which efficiently overcomes the
problems derived from complex boundaries. Therefore, the computational efficiency is highly increased.
In addition, 2D and 3D models are also considered using the second-order dimension splitting technique,
which allows multi dimension problems to be decomposed into a 1D problem. Various numerical simulation
tests in 1D, 2D and 3D verified the stability, accuracy and efficiency of the proposed method. The Hele–
Shaw cell simulates a flow in a narrow gap between two flat parallel plates, which can model interfacial
pattern formation in nonequilibrium systems [41]. Modeling a diblock copolymer melt in the Hele-Shaw
cell is a complicated nonlinear system. Cao et al. [42] studied this system using a combination of explicit-
invariant energy quadratization and projection methods. The proposed method is second order accurate in
time and energy stable. Due to the introduction of two auxiliary variables, high efficiency is also achieved.
Numerical simulations with random initial conditions confirmed various characteristics of the proposed
method such as accuracy, stability. The spinodal decomposition in the rotating Hele–Shaw cell is also
simulated using the proposed scheme. Xu et al. [43] studied the evolution of diblock copolymer in 2D
domain where the governing equation is the extended Ohta–Kawasaki model. The projection operator
is introduced to achieve mass conservation property of the proposed method. The projection method is
constructed with a small computational cost, therefore simplifying the numerical algorithm. Zhang et al. [44]
studied the microphase separation of diblock copolymers in three-dimensional space using a modified NCH
equation, which is a variant of the CH equation with a viscous term. The viscous term introduces viscous
effects to the governing equation. The integrating factor Runge–Kutta technique is adopted for large tie-
stepping. Numerical simulation of diblock copolymers in 3D shows that the proposed scheme is capable of
distinguishing different phase geometries. The maximum principle, mass conservation and energy stability
is also satisfied in this numerical test. Luo et al. [45] studied the 2D and 3D nonlocal Ohta–Kawasaki model
using the Fourier spectral method, where the nonlocal Ohta–Kawasaki model studies the pattern formation
for the diblock copolymer system. The second-order backward finite difference method (FDM) is applied
for Fourier collocation discretization. The asymptotic compatibility of the method is mainly discussed
in this paper, proving in both analytic and numerical approaches. Numerical simulations also confirmed
characteristics of the proposed method such as upper boundedness, effect of parameters, convergence rate
and energy stability. Iqbal et al. [46] introduced a cell dynamic simulation model that predicts simulation
outcomes through an examination of flow, deformation, and phase transitions in diblock copolymer systems
under curvilinear coordinate systems.

In this review, we focus on various numerical methods and applications for solving the NCH equation
for microphase separation patterns in diblock copolymer melts. The overall structure of the paper is as
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follows. Section 2 presents detailed explanations of the various numerical schemes for solving the NCH equa-
tion. Section 3 introduces the applications of the phase-field model for diblock copolymer melts. Section 4
presents the conclusion.

2 Numerical Methods
We describe the various numerical methods used to solve the NCH equation. We consider the

computational domain Ω = (Lx , Rx) × (Ly , Ry) in 2D space. Let Δt be time step. We define h = (Rx −
Lx)/Nx = (Ry − Ly)/Ny . The discrete domain is defined as Ωd = {(xi = Lx + ih, y j = Ly + jh) ∣ i =
0, 1, . . . , Nx , j = 0, 1, . . . , Ny} or Ωd = {(xi = Lx + (i − 0.5)h, y j = Ly + ( j − 0.5)h) ∣ i = 1, 2, . . . , Nx ,
j = 1, 2, . . . , Ny} depending on whether we use cell corner points or cell center points. Fig. 1 shows the
schematic illustrations of the cell corner points and cell center points on the computational domain. In
this review paper, when boundary conditions are not explicitly specified, a periodic boundary condition
is applied for a discrete domain with cell corner points, as shown in Fig. 1a, while a Neumann boundary
condition is applied for a discrete domain with cell center points, as shown in Fig. 1b. Let ϕn

i j be the
approximation of the ϕ(xi , y j , nΔt). The discrete l2-norm in is defined by

∥ϕ∥2 =

�
���� 1

Nx Ny

Nx

∑
i=1

N y

∑
j=1
(ϕi j)2.

Figure 1: Schematic illustrations of (a) cell corner points and (b) cell center points on the computational domain

We can easily reduce or extend to one-dimensional and three-dimensional spaces.
When reviewing the numerical methods, we mainly focus on the accuracy and stability of the reviewed

methods. High accuracy allows the user to predict phase separation dynamics in diblock copolymer systems
with relatively low computational cost, such as coarse spatial grid or large time step. Therefore, high accuracy
can lead to an effective numerical method. Stability is also concerned with time step and accuracy of the
numerical method. High stability, and sometimes unconditional stability allows a larger time step to be used
for the numerical simulation without the risk of blowing up. Therefore, we can obtain more freedom when
modifying the time step size for a desired accuracy.
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2.1 Finite Difference Method
The FDM is a widely employed numerical technique for solving partial differential equations, known for

its simplicity and broad applicability. A key advantage of this method is its ease of implementation for a range
of problems with regular grid structures, making it particularly effective for time-dependent simulations.
Although the accuracy of the method is influenced by grid resolution and step size, it can be refined to
achieve higher precision. Despite some limitations in handling complex boundaries or irregular domains, the
FDM remains a valuable tool due to its computational efficiency and straightforward implementation. Xiao
et al. [47] developed a space-time fourth-order method for two- and three-dimensional CH type equations.
The authors used the operator splitting method with auxiliary variables for spatial differentiation terms to
enable multi-thread computation. In addition, we extended the numerical scheme for the phase-field diblock
copolymer model. Numerical methods for solving systems of equations with nonlinear terms, such as the
NCH equation, are primal and difficult problems [48]. Jeong et al. [22] conduct a numerical investigation on
controlling local defectivity in self-assembled diblock copolymer patterns by designing suitable substrates.
The numerical solution algorithm is described as follows. Considering trench domain Ω with boundaries
∂Ω1 and ∂Ω2 shown in Fig. 2. For ϕ, we use the Dirichlet and periodic boundary conditions in ∂Ω1 and ∂Ω2,
respectively. For μ, we apply the Neumann and periodic boundary conditions in ∂Ω1 and ∂Ω2, respectively.

Figure 2: Schematic diagram of the computational domain Ω with boundaries ∂Ω1 and ∂Ω2

We discretize Ω using cell corner points. The NCH Eqs. (1) and (2) with non-linearly stabilized splitting
scheme [49] is rewritten as

ϕn+1
i j − ϕn

i j

Δt
= Δμn+1

i j − α (ϕn+1
i j − ϕ̄), (9)

μn+1
i j = (ϕn+1

i j )3 − ϕn
i j − ε2Δϕn+1

i j , (10)

where ϕ̄ = ∑x i j∈Ω ϕ0
i j/∑x i j∈Ω 1. To solve the NCH Eqs. (9) and (10), we apply the Gauss–Seidel iterative

scheme. Given ϕn
i j, let ϕn+1,0

i j = ϕn
i j be an initial guess. We calculate ϕn+1,m+1

i j and μn+1,m+1
i j from ϕn+1,m

i j and
μn+1,m

i j for m = 0, 1, . . . by

( 1
Δt

+ α)ϕn+1,m+1
i j + 4

h2 μn+1,m+1
i j (11)

=
ϕn

i j

Δt
+ αϕ̄ +

μn+1,m+1
i−1, j + μn+1,m

i+1, j + μn+1,m+1
i , j−1 + μn+1,m

i , j+1

h2 ,
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(−4ε2

h2 − 3(ϕn+1,m
i j )2)ϕn+1,m+1

i j + μn+1,m+1
i j (12)

= −ϕn
i j − 2(ϕn+1,m

i j )3 − ε2
ϕn+1,m+1

i−1, j + ϕn+1,m
i+1, j + ϕn+1,m+1

i , j−1 + ϕn+1,m
i , j+1

h2 .

We need to apply certain special formulas considering the boundary conditions. To facilitate under-
standing, we consider one example illustrated in Fig. 3. For the points ϕi j near the boundary within the
domain Ω, the values of ϕa and ϕb at ∂Ω1, as shown in Fig. 3a, are determined by the Dirichlet boundary
condition and correspond to the maximum values of the numerical equilibrium solution, ∥ϕeq∥∞. Moreover,
as shown in Fig. 3b, the values of μa and μb at ∂Ω1 are determined by the Neumann boundary condition
and correspond to μp and μq , respectively, which are obtained by the linear interpolation of neighboring
points. Thus, μa = μq and μb = μp. Here, μa and μp have the same values and are located at distinct positions.
Similarly, μb and μq also share identical values and are situated at separate locations. Other points near
the boundary are similar. We can obtain the values of ϕa and ϕb at the boundary ∂Ω1 using the Dirichlet
boundary condition. We define the numerical equilibrium solution as ϕk if ∥ϕk − ϕk−1∥2 ≤ 10−6 for k ≥ 1. The
discrete second derivatives near boundary for the Dirichlet boundary condition are defined by

ΔD
x x ϕi j = (

ϕa − ϕi j

αh
−

ϕi j − ϕi−1, j

h
)/(αh + h

2
),

ΔD
y y ϕi j = (

ϕb − ϕi j

βh
−

ϕi j − ϕi , j−1

h
)/(βh + h

2
),

where ϕa and ϕb are the maximum values of the numerical equilibrium solution and 0 < α, β < 1. Then, for
the Dirichlet boundary condition, we define the discrete Laplace operator as ΔD ϕn+1

i j = ΔD
x x ϕn+1

i j + ΔD
y y ϕn+1

i j .
Next, we define the discrete second derivatives near boundary for the Neumann boundary condition as

ΔN
x x μi j = (

μa − μi j

αh
−

μi j − μi−1, j

h
)/(αh + h

2
),

ΔN
y y μi j = (

μb − μi j

βh
−

μi j − μi , j−1

h
)/(βh + h

2
),

where μa = μp = pμi j + (1 − p)μi , j−1 and μb = μq = (1 − q)μi j + qμi−1, j by the linear interpolation. There-
fore, for the Neumann boundary condition, the discrete Laplace operator is defined by ΔN μn+1

i j = ΔN
x x μn+1

i j +
ΔN

y y μn+1
i j . We repeat the above iterations until the l2-norm error between numerical solutions at successive

time steps is smaller than a given tolerance tol : ∥ϕn+1,m+1 − ϕn+1,m∥2 < tol . We perform the numerical
simulations using the parameters L∗ = 0.375, h = L∗/10, Nx = 500, Ny = 300, Δt = 0.1h, ε = 1/(25

√
2), α =

100, the maximum values of the numerical equilibrium solution ∥ϕeq∥∞ = 0.6134. The initial condition on the
computational domain Ω = (−25L∗, 25L∗) × (−15L∗, 15L∗) is defined as ϕ(x , y, 0) = 0.01rand(x , y). Fig. 4
shows the numerical solution solved using the numerical method [22].
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Figure 3: Schematic representation of (a) Dirichlet boundary condition and (b) Neumann boundary condition

Figure 4: Snapshots of the numerical solutions with (a) θ = 30 and (b) θ = 60

Jeong et al. [24] developed a numerical method to investigate microphase separation patterns in diblock
copolymer melts on curved surfaces. This method employs a discrete narrow band grid adjacent to the
curved surface and applies a pseudo-Neumann boundary condition for the near boundary using the closest
point scheme. Therefore, the Laplace–Beltrami operator can be replaced with the standard Laplace oper-
ator. We define the σ-neighborhood band domain as Ωσ = {(x , y, z) ∣ (a, b, c) ∈ S , (x , y, z) = (a, b, c) +
θn(a, b, c) for ∣θ∣ < σ}, which includes the surface S. Here, n(a, b, c) is the unit normal vector at (a, b, c)
on the surface S. The global domain that includes the Ωσ is defined by Ω = (Lx , Rx) × (Ly , Ry) × (Lz , Rz).
Let Nx , Ny , and Nz be positive integers and let h = (Rz − Lz)/Nz = (Ry − Ly)/Ny = (Rx − Lx)/Nx be a size
of spatial step. The discrete global domain is defined as Ωd = {(xi = Lx + ih, y j = Ly + jh, zk = Lz + kh) ∣ i =
0, 1, . . . , Nx , j = 0, 1, . . . , Ny , k = 0, 1, . . . , Nz}. Let ϕn

i jk and μn
i jk be approximations of ϕ(xi , y j , zk , nΔt) and

μ(xi , y j , zk , nΔt), respectively. The discrete narrow band domain is defined by Ωd
σ = {(xi , y j , zk) ∶ ∣ψi jk ∣ <

σ}. To find the boundary points of discrete narrow band domain Ωd
σ , define Pi jk = 0 if (xi , y j , zk) ∈ Ωd

σ and
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Pi jk = 1 otherwise. Let ∂Ωd
σ = {(xi , y j , zk) ∶ Pi jk ∣∇Pi jk ∣ ≠ 0} be the boundary points of discrete narrow band

domain. Here, the gradient of P is defined by

∇Pi jk =
(Pi+1, jk − Pi−1, jk , Pi , j+1,k − Pi , j−1,k , Pi j ,k+1 − Pi j ,k−1)

2h
.

We define the discrete Laplace operator as

Δϕn
i jk =

ϕn
i j ,k+1 + ϕn

i j ,k−1 + ϕn
i , j+1,k + ϕn

i , j−1,k + ϕn
i+1, jk + ϕn

i−1, jk − 6ϕn
i jk

h2 .

Then, we discretization the NCH Eqs. (1) and (2) by applying the unconditionally stable scheme.

ϕn+1
i jk − ϕn

i jk

Δt
= Δμn+1

i jk − α(ϕn+1
i jk − ϕ̄), (13)

μn+1
i jk = (ϕn+1

i jk )3 − ϕn
i jk − ε2Δϕn+1

i jk . (14)

The numerical closest point of xi jk = (xi , y j , zk) on S is defined by

cp(xi jk) = xi jk −
∇∣ψi jk ∣
∣∇∣ψi jk ∣∣

∣ψi jk ∣.

We use pseudo-Neumann boundary condition on ∂Ωd
σ as

ϕn+1
i jk = ϕn+1 (cp(xi jk)) and μn+1

i jk = μn+1 (cp(xi jk)) .

Fig. 5a,b shows schematic illustrations of the narrow band domain for the cross section of the sphere
in three- and two-dimensions, respectively. Since cp(xi jk) is not included in the grid points above the
discrete narrow band domain, we compute ϕn(cp(xi jk)) using the trilinear interpolation. Then, we solve the
discrete NCH equation using the Jacobi iterative method [50], which iteratively updates the solution until
convergence. Given ϕn

i jk and μn
i jk on Ωd

σ , the initial guesses ϕn+1,0
i jk and μn+1,0

i jk are used as starting points for
the iterative process and are set to ϕn

i jk and μn
i jk , respectively. Specifically, ϕn+1,0

i jk = ϕn
i jk and μn+1,0

i jk = μn
i jk .

Then, we calculate the Eqs. (13) and (14) by the following Jacobi iteration for m ≥ 0.

Figure 5: Schematic illustrations of (a) the narrow band domain for surface S and (b) the closest points for the boundary
∂Ωσ of narrow band domain
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( 1
Δt

+ α)ϕn+1,m+1
i jk + 6

h2 μn+1,m+1
i jk =

ϕn
i jk

Δt
+ αϕ̄ + 1

h2 (μn+1,m
i+1, jk + μn+1,m

i−1, jk + μn+1,m
i , j+1,k)

+ 1
h2 (μn+1,m

i , j−1,k + μn+1,m
i j ,k+1 + μn+1,m

i j ,k−1 ), (15)

− (3(ϕn+1,m
i jk )2 + 6ε2

h2 )ϕn+1,m+1
i jk + μn+1,m+1

i jk = −ϕn
i jk + 2(ϕn+1,m

i jk )3 + ε2

h2 (ϕn+1,m
i+1, jk + ϕn+1,m

i−1, jk )

+ ε2

h2 (ϕn+1,m
i , j+1,k + ϕn+1,m

i , j−1,k + ϕn+1,m
i j ,k+1 + ϕn+1,m

i j ,k−1), (16)

Here, we iteratively compute Eqs. (15) and (16) until ∥ϕn+1,m+1 − ϕn+1,m∥2 < tol on Ωd
σ is satisfied for

given tolerance tol . Therefore, we obtain the ϕn+1
i jk on the narrow band domain Ωd

σ . For more details of the
numerical algorithm, the reader is referred to [24].

Fig. 6 displays the temporal evolution of the computational solution for the bunny surface with initial
conditions ϕ(x, 0) = −0.3 + 0.1rand(x), Nx = Ny = Nz = 138, h = 0.031, Δt = 0.1, ε = 1/(30

√
2), and α = 150,

where rand (x) is the random value from −1 to 1 at the point x.

Figure 6: Snapshot of the numerical solution using the numerical algorithm from [24] at time t = 20Δt, 25Δt, and
600Δt on the bunny surface

We observe that numerical simulation results form appropriate patterns in complex bunny surfaces.
Yang [23] presented a linear time-marching scheme for the Ohta–Kawasaki model coupled with incompress-
ible fluid flow, describing the phase-field model for diblock copolymers in fluid environments. The numerical
algorithm employs the scalar auxiliary variable (SAV) approach, which ensures energy stability, even with
large time steps. The 2D and 3D spatial discretizations are conducted using the FDM, providing a practical
and efficient framework for computation. Furthermore, the authors analytically demonstrated the existence
of unique solutions and proved the method’s energy stability.

2.2 Fourier Spectral Method
The Fourier spectral method is a technique for solving partial differential equations, that approximates

a solution using a sum of functions from a certain function space. To solve problems with periodic boundary
conditions, use Fourier transformation composed of sine and cosine functions, and to solve problems
with Neumann boundary conditions, use cosine transformation composed only of cosine functions. We
consider only two dimensions, and for one or three dimensions it is easily derived from this. The Fourier
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transformation satisfies the periodic boundary condition, thus we define the discrete domain using the cell
corner points. The discrete Fourier transform and its inverse transform are defined by

ϕ̂n
pq =

N y

∑
j=1

Nx

∑
i=1

ϕn
i je
−i(xi ξ p+y j ηq), (17)

ϕn
i j =

1
Nx Ny

N y/2

∑
q=1−N y/2

Nx/2

∑
p=1−Nx/2

ϕ̂n
pq e i(xi ξ p+y j ηq), (18)

where ξp = 2πp/(Rx − Lx) and ηq = 2πq/(Ry − Ly). Let ϕ(x , y, nΔt) be sufficiently smooth continuous
extension counterpart of ϕn

i j. The partial derivatives in Fourier space for the variables x and y are

∂ϕ(x , y, nΔt)
∂x

= 1
Nx Ny

N y/2

∑
q=1−N y/2

Nx/2

∑
p=1−Nx/2

(iξp)ϕ̂(ξp , ηq , nΔt)e i(ξ p x+ηq y), (19)

∂ϕ(x , y, nΔt)
∂y

= 1
Nx Ny

N y/2

∑
q=1−N y/2

Nx/2

∑
p=1−Nx/2

(iηq)ϕ̂(ξp , ηq , nΔt)e i(ξ p x+ηq y). (20)

Thus, Laplacian is defined using Eqs. (19) and (20) as

Δϕ(x , y, nΔt) = ∂2ϕ(x , y, nΔt)
∂x2 + ∂2ϕ(x , y, nΔt)

∂y2

= − 1
Nx Ny

N y

∑
q=1

Nx

∑
p=1

(ξ2
p + η2

q) ϕ̂(ξp , ηq , nΔt)e i(ξ p x+ηq y).

Then, the linearly stabilized splitting method is used to the NCH equation as

ϕn+1
i j − ϕn

i j

Δt
= Δ (2ϕn+1

i j + f n
i j − ε2(Δϕn+1)i j)i j

− α (ϕn+1
i j − ϕ̄), (21)

where f n
i j = (ϕn

i j)3 − 3ϕn
i j. Thus, we applied the discrete Fourier transformation to Eq. (21).

ϕ̂n+1
pq − ϕ̂n

pq

Δt
= −(ξ2

p + η2
q) (2ϕ̂n+1

pq + ε2(ξ2
p + η2

q)ϕ̂n+1
pq + f̂ n

pq) − α (ϕ̂n+1
pq − ϕ̄) . (22)

Hence, we obtain the numerical solution in the Fourier space from Eq. (22) as

ϕ̂n+1
pq =

ϕ̂n
pq + Δt (αϕ̄1̂pq − (ξ2

p + η2
q) f̂ n

pq)
1 + Δt (α + 2(ξ2

p + η2
q) + ε2(ξ2

p + η2
q)2)

.

Then, we use the inverse discrete Fourier transform to obtain the computational solution ϕn
i j for i =

1, 2, . . . , Nx , j = 1, 2, . . . , Ny .

ϕn+1
i j = 1

Nx Ny

N y/2

∑
q=1−N y/2

Nx/2

∑
p=1−Nx/2

ϕ̂n+1
pq e i(xi ξ p+y j ηq).

The Fourier spectral method based on discrete cosine transformation can be used to solve phase-field
models with Neumann boundary conditions [51]. We define the computational discrete domain using the
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cell center points to describe the Fourier spectral method with discrete cosine transform. The discrete cosine
transform and its inverse transform are defined by

ϕ̂n
pq = upvq

N y

∑
j=1

Nx

∑
i=1

ϕn
i j cos (ξpx̂i) cos (ηq ŷ j)

ϕn
i j =

N y

∑
q=1

Nx

∑
p=1

upvqϕ̂n
pq cos (ξpx̂i) cos (ηq ŷ j),

where x̂i = xi − Lx , ŷ j = y j − Ly , ξp = π(p − 1)/(Rx − Lx), ηq = π(q − 1)/(Ry − Ly), u1 =
√

1/Nx , v1 =√
1/Ny , up =

√
2/Nx for p = 2, 3, . . . , Nx , and vq =

√
2/Ny for q = 2, 3, . . . , Ny . Therefore, the partial

derivatives in the Fourier space for the variables x and y are defined by

∂ϕ(x , y, nΔt)
∂x

= −
N y

∑
q=1

Nx

∑
p=1

upvq ξpϕ̂(ξp , ηq , nΔt) sin (ξpx̂) cos (ηq ŷ)

∂ϕ(x , y, nΔt)
∂y

= −
N y

∑
q=1

Nx

∑
p=1

upvqηqϕ̂(ξp , ηq , nΔt) cos (ξpx̂) sin (ηq ŷ),

where x̂ = (x − Lx) and ŷ = (y − Ly). We get the Laplacian by using the partial derivatives in Fourier space:

Δϕ(x , y, nΔt) = ∂2ϕ(x , y, nΔt)
∂x2 + ∂2ϕ(x , y, nΔt)

∂y2

= −
N y

∑
q=1

Nx

∑
p=1

(ξ2
p + η2

q)upvqϕ̂(ξp , ηq , nΔt) cos (ξpx̂) cos (ηq ŷ) .

Hence, similar to the Fourier spectral method with discrete Fourier transform, we can solve Eq. (21)
using discrete cosine transformation. Xia et al. [52] employed a phase-field model within a Lagrange
multiplier framework to investigate crystal phase transitions and nucleation processes, demonstrating the
effectiveness of the Fourier spectral method in capturing complex phase dynamics. Li et al. [53] used the
Fourier spectral method to solve biological transport networks in complex domains, providing insights
into the optimization properties and adaptive mechanisms of network structures. Refer to [54] for detailed
information. Fig. 7 shows the schematic illustrations of the discrete Fourier transform, the discrete cosine
transform, and the discrete sine transform, from top to bottom. The dots on the x-axis represent the points
of the discrete domain, while the dashed lines connecting the dots indicate the corresponding values of ϕ(x)
and the solid line is the sum of the basis functions for each transformation that includes all the discrete
points. We can observe that the curves represent the sums of the bases of each discrete transform, satisfying
the respective boundary conditions.

Jeong et al. [55] investigated the energy-minimizing wavelength in the equilibrium state of diblock
copolymers in the hex-cylinder phase by solving the NCH equation using the Fourier spectral method
with the discrete Fourier transform. The boundary condition is a periodic boundary condition with the
discrete domain using the cell center point. The authors performed computations in rectangular domains
with an aspect ratio of

√
3 until a numerical equilibrium state was reached, and repeated the calculations in

progressively larger domains. Fig. 8 displays the schematic diagram of the hexagonal pattern and the domain
with aspect ratio 1 ∶

√
3 for the one-period hexagonal pattern.
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Figure 7: Schematic illustrations of (a) the discrete Fourier, (b) the discrete cosine, and (c) the discrete sine transforms

Figure 8: Schematic diagram of (a) the hexagonal pattern and (b) the domain with aspect ratio 1 ∶
√

3 for the one-period
hexagonal pattern

At time nΔt, the discrete total energy of the numerical solution for the NCH equation is defined by

E d(ϕn) =
Nx

∑
m=1

N y

∑
n=1

(h2F(ϕn
i j) +

ε2

2
[(ϕn

i+1, j − ϕn
i j)2 + (ϕn

i , j+1 − ϕn
i j)2]

+ α
2
[(ψn

i+1, j − ψn
i j)2 + (ψn

i , j+1 − ψn
i j)2] ).

We perform the numerical test for the discrete total energy. For numerical simulation, Ω = (0, Rx =
hx Nx) × (0, Ry =

√
3Ry) is used, where hx is spatial step size for x-axis. The parameters used hx = 0.0015,

Nx = 512, α = 100, Δt = 0.125, ε = 1/(20
√

2). The initial condition is ϕ(x , y, 0) = −0.3 + 0.2rand(x , y) on Ω.
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We perform simulations until the computational solution becomes a numerical equilibrium solution. Fig. 9
shows the discrete total energy dissipation and the snapshot of the numerical solutions at the time indicated
by the dot.

Figure 9: The discrete total energy with a snapshot of the numerical solutions

We observe the formation of a hexagonal pattern in the discrete equilibrium state and discrete total
energy dissipation from numerical results. Chen et al. [56] presented a hydrodynamically-coupled phase-
field model for diblock copolymer melts based on a conservative Allen–Cahn equation that preserves the
volume fraction of the two monomers. In addition, the authors developed the linear and second-order time-
marching method for the presented phase-field model. This method is easy to implement and can also be
applied to a variety of phase-field models, such as CH equation for the diblock copolymer melts.

2.3 Alternating Direction Explicit
Yang et al. [57] developed an explicit FDM for the Ohta–Kawasaki model to describe microphase

separation patterns in diblock copolymer melts. Their approach employs a Saul’yev-type scheme, which
is grounded in a linearly stabilized convex splitting method, to achieve effective discretizations of the
model equations. This method enhances the numerical stability of the simulations, allowing for more stable
predictions of the complex behavior exhibited by diblock copolymer melts. The discrete domain is defined by
using cell center points. The NCH Eqs. (1) and (2) are rewritten by applying the linear convex splitting-type
scheme [58] as

ϕn+1
i j − ϕn

i j

Δt
= Δ[(ϕn

i j)3 − 3ϕn
i j] + 2Δϕn+1

i j − ε2Δ2ϕn+1
i j − α(ϕn+1

i j − ϕ̄), (23)

where

Δϕi j =
ϕi−1, j + ϕi+1, j + ϕi , j−1 + ϕi , j+1 − 4ϕi j

h2 and Δ2ϕi j =
Δϕi−1, j + Δϕi+1, j + Δϕi , j−1 + Δϕi , j+1 − 4Δϕi j

h2 .

Then, we use the Saul’yev-type method [59]. There are a total of 8 cases considering the order of i and
j, and whether i is increasing or decreasing, as well as whether j is increasing or decreasing. One of these
cases is as follows, and the remaining 7 cases are derived similarly.

For j = 1, 2, . . . , Ny , for i = 1, 2, . . . , Nx , (24)
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ϕn+1
i j − ϕn

i j

Δt
= Δ[(ϕn

i j)3 − 3ϕn
i j] +

2
h2 (ϕn+1

i−1, j + ϕn
i+1, j − 2ϕn

i j − 2ϕn+1
i j + ϕn+1

i , j−1 + ϕn
i , j+1) (25)

− ε2

h4 [ϕ
n+1
i−2, j + ϕn

i+2, j + ϕn+1
i , j−2 + ϕn

i , j+2 + 2(ϕn+1
i−1, j−1 + ϕn

i−1, j+1 + ϕn+1
i+1, j−1 + ϕn

i+1, j+1)

− 8(ϕn+1
i−1, j + ϕn

i+1, j + ϕn+1
i , j−1 + ϕn

i , j+1) + 10ϕn
i j + 10ϕn+1

i j ] − α(ϕn+1
i j − ϕ̄).

We can simplify Eq. (25) as

ϕn+1
i j = 1

r
{

ϕn
i j

Δt
+ Δ[(ϕn

i j)3 − 3ϕn
i j] +

2
h2 (ϕn+1

i−1, j + ϕn
i+1, j − 2ϕn

i j + ϕn+1
i , j−1 + ϕn

i , j+1) (26)

− ε2

h4 [ϕ
n+1
i−2, j + ϕn

i+2, j + ϕn+1
i , j−2 + ϕn

i , j+2 + 2(ϕn+1
i−1, j−1 + ϕn

i−1, j+1 + ϕn+1
i+1, j−1 + ϕn

i+1, j+1)

− 8(ϕn+1
i−1, j + ϕn

i+1, j + ϕn+1
i , j−1 + ϕn

i , j+1) + 10ϕn
i j] + αϕ̄},

where r = 1/Δt + 4/h2 + 10ε2/h4 + α.
We consider the irregular domain Ω̂, which is depicted as the gray region in Fig. 10. The initial condition

on the full domain Ω = (−2, 2) × (−2, 2) is given by

ϕ(x , y, 0) =
⎧⎪⎪⎨⎪⎪⎩

ϕ̄ + 0.15rand(x , y) if (x , y) ∈ Ω̂,
−0.75 otherwise.

Figure 10: Schematic illustrations of the irregular domain Ω̂

For the numerical test, we used parameters Nx = Ny = 800, ε = 0.01, α = 800, ϕ̄ = 0, − 0.3, and Δt =
h2. Fig. 11 displays the temporal evolution of the numerical solution for the NCH equation on the complex
domain using the alternating direction explicit FDM for the phase-field equation.
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Figure 11: Pattern formations in irregular domain Ω̂. From the top to bottom, ϕ̄ = 0 and −0.3

Next, we perform numerical simulations to investigate how different boundary conditions, such
as Dirichlet and Neumann boundary conditions, influence the simulation results. The initial condi-
tion is given by ϕ(x , y, 0) = rand(x , y) on Ω = (−1, 1) × (−1, 1). For zero Dirichlet boundary condition,
the boundary values are set as ϕ−1, j = ϕ0, j = ϕi ,−1 = ϕi ,0 = ϕNx+1, j = ϕNx+2, j = ϕi ,N y+1 = ϕi ,N y+2 = 0 for i =
1, 2, . . . , Nx , j = 1, 2, . . . , Ny . For non-zero Dirichlet boundary condition, the boundary values are assigned as
ϕ−1, j = ϕ0, j = ϕi ,−1 = ϕi ,0 = ϕNx+1, j = ϕNx+2, j = ϕi ,N y+1 = ϕi ,N y+2 = −0.7 for i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny .
For Neumann boundary condition, the boundary values are set as ϕ−1, j = ϕ2, j, ϕ0, j = ϕ1, j, ϕNx+1, j = ϕNx , j,
and ϕNx+2, j = ϕNx−1, j for j = 1, 2, . . . , Ny , ϕi ,−1 = ϕi ,2, ϕi ,0 = ϕi ,1, ϕi ,Nx+1 = ϕi ,Nx , and ϕi ,Nx+2 = ϕi ,Nx−1 for
i = 1, 2, . . . , Nx .

Fig. 12 shows the numerical solutions obtained under different boundary conditions. From top to
bottom, the results correspond to ϕ̄ = 0 and ϕ̄ = −0.3. The numerical solutions using Dirichlet boundary
conditions with values of 0 and −0.7 are shown in Fig. 12a,b, respectively. The solution using the Neumann
boundary condition is presented in Fig. 12c. We observed that the Dirichlet boundary condition enforces
fixed values near the boundaries, influencing pattern formation. The non-zero Dirichlet boundary condition
with a boundary value of−0.7 produces a different pattern near the boundary compared to the zero Dirichlet
boundary condition. In contrast, the Neumann boundary condition maintains continuity at the boundaries,
resulting in smoother and more regular patterns.
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Figure 12: Numerical solutions at time t = 1000Δt with different boundary conditions. (a) zero Dirichlet, (b) non-zero
(−0.7) Dirichlet, and (c) Neumann boundary conditions. From the top to bottom, ϕ̄ = 0 and −0.3

2.4 Invariant Energy Quadratization Approach
The invariant energy quadratization (IEQ) method is a numerical method designed to ensure energy

stability when solving gradient flow problems. Originally proposed by Yang [60], the IEQ method transforms
nonlinear partial differential equations into a form that allows for constructing energy-stable time-marching
schemes. We simply describe an IEQ approach for the NCH equation. The auxiliary variable is defined as
q(ϕ) =

√
F(ϕ) + C. Then, the total free energy is rewritten as

E (q, ϕ) = ∫
Ω
( ε2

2
∣∇ϕ∣2 + α

2
∣∇ω∣2 + q2) dx − C .

We get

∂ϕ
∂t

= Δμ, (27)

μ = qH(ϕ) − ε2Δϕ + αω, (28)
dq
dt

= 1
2

H(ϕ)∂ϕ
∂t

, (29)
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where

H(ϕ) = F′(ϕ)√
F(ϕ) + C

.

Therefore, we can obtain the energy dissipation law of the system (27)–(29) by taking the L2 inner
product of Eqs. (27)–(29) with −μ, ϕt , and −2q, respectively.

d
dt

E (q, ϕ) = −∥∇μ∥2 ≤ 0.

The first-order time discretization IEQ method for the system (27)–(29) is defined by

ϕn+1 − ϕn

Δt
= Δμn+1

μn+1 = Sqn+1Hn − ε2Δϕn+1 + ωn+1

qn+1 − qn == 1
2

Hn(ϕn+1 − ϕn).

The solution algorithms for the CH equation using the IEQ scheme is studied by Chen et al. [61],
which are unconditionally stable. Two numerical methods, each first-order and second-order are reported.
Numerical simulations showed that a large time step can be adopted while maintaining the energy decrease,
therefore verifying the applicability of the proposed method.

2.5 Scalar Auxiliary Variable Approach
The SAV scheme was originally proposed by Shen et al. [62] and based on the IEQ approach, constructs

energy-stable and efficient time discretization methods for gradient flows. The SAV scheme is applicable
to different gradient flows and can be extended to higher-order by applying the backward differentiation
formula (BDF) and Adam–Bashforth methods. We describe an SAV scheme for the NCH equation. The
scalar auxiliary variable r(t) is defined by

r(t) =
√
∫

Ω
F(ϕ(x, t))dx + C ,

where C is a non-negative constant, which guarantees the value beneath the square root is not zero. Thus, we
have

E (r, ϕ) = ∫
Ω
( ε2

2
∣∇ϕ∣2 + α

2
∣∇ω∣2) dx + r2 − C .

Hence, we get

∂ϕ(x, t)
∂t

= Δμ(x, t), (30)

μ(x, t) = r(t)H(ϕ(x, t)) − ε2Δϕ(x, t) + αω(x, t), (31)
dr(t)

dt
= 1

2 ∫Ω
H(ϕ(x, t))∂ϕ(x, t)

∂t
dx, (32)
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where

H(ϕ) = F′(ϕ)√
∫Ω F(ϕ)dx + C

.

We take the L2 inner product of Eqs. (30) and (31) with −μ and ϕt , respectively, and multiply Eq. (32) by
2r. Next, we perform integration by parts for the obtained system, then obtain the time derivative for ω and
take L2 inner products with ω, and summing all the equations to get the total free energy dissipation law.

d
dt

E (r, ϕ) = −∥∇μ∥2 ≤ 0.

Zhang et al. [63] developed the stabilized SAV scheme for solving the CH phase field equation for
diblock copolymers. The authors applied BDF2 to the SAV method for the NCH equation. We discretize the
system (30)–(32) with respect to time.

3ϕn+1 − 4ϕn + ϕn−1

2Δt
= Δμn+1 , (33)

μn+1 = rn+1H∗ − ε2Δϕn+1 + αωn+1 + S(ϕn+1 − ϕ∗), (34)

3rn+1 − 4rn + rn−1 = 1
2 ∫Ω

H∗(3ϕn+1 − 4ϕn + ϕn−1)dx, (35)

where S is a positive stabilizing parameter, ϕ∗ = 2ϕn − ϕn−1, and H∗ = H(ϕ∗). To solved the Eqs. (33)–(35),
we need values of ϕ1, μ1, and r1. Thus, calculated the Eqs. (30)–(32) using the first-order method based on
the backward Euler method as

ϕ1 − ϕ0

Δt
= Δμ1 ,

μ1 = r1H0 − ε2Δϕn+1 + αω1 + S(ϕ1 − ϕ0),

r1 − r0 = 1
2 ∫Ω

H0(ϕ1 − ϕ0)dx,

where ϕ0, μ0, and r0 are initial conditions.

Theorem 1. Suppose that ϕn, rn, ϕn−1, and rn−1 are given. The discrete system (33)–(35) is unconditionally
energy stable which satisfies the discrete energy dissipation law.

E n+1 − E n ≤ −Δt∥∇μn+1∥2 ≤ 0,

where

E n+1 = ε2 ∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∇ϕn∥2

4
+ α ∥∇ωn+1∥2 + ∥2∇ωn+1 −∇ωn∥2

4

+ (rn+1)2 + (2rn+1 − rn)2

2
+ S ∥ϕn+1 − ϕn∥2

2
.

Proof. We take the L2 inner product of (33) and −2Δtμn+1.

−(3ϕn+1 − 4ϕn + ϕn−1 , μn+1) = 2Δt∥∇μn+1∥2.
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Then, we take the L2 inner product of (34) and 3ϕn+1 − 4ϕn + ϕn−1, and using integration by parts.

(μn+1 , 3ϕn+1 − 4ϕn + ϕn−1) = rn+1 (H∗, 3ϕn+1 − 4ϕn + ϕn−1) + ε2 (∇ϕn+1 , 3∇ϕn+1 − 4∇ϕn +∇ϕn−1)
+ S (ϕn+1 − 2ϕn + ϕn−1 , 3ϕn+1 − 4ϕn + ϕn−1)
+ α (ωn+1 , 3ϕn+1 − 4ϕn + ϕn−1) . (36)

From −Δω = ϕ − ϕ̄, we can derive following equation.

−Δ (3ωn+1 − 4ωn + ωn−1) = 3ϕn+1 − 4ϕn + ϕn−1 − (3ϕ̄n+1 − 4ϕ̄n + ϕ̄n−1) . (37)

Since ∫Ω ωn+1dx = 0, we can obtain following equation by taking the L2 inner product of (37) with
αωn+1.

α (3∇ωn+1 − 4∇ωn +∇ωn−1 ,∇ωn+1) = α (3ϕn+1 − 4ϕn + ϕn−1 , ωn+1) . (38)

By multiplying (35) with −2rn+1, we obtain the equation as

−2 (3rn+1 − 4rn + rn−1) rn+1 = −rn+1 ∫
Ω

H∗ (3ϕn+1 − 4ϕn + ϕn−1) dx. (39)

We consider two identities follows

2x(3x − 4y + z) = x2 + (2x − y)2 − y2 − y2 − (2y − z)2 + (x − 2y + z)2,
(3x − 4y + z)(x − 2y + z) = (x − y)2 − (y − z)2 + 2(x − 2y + z)2.

Next, we combine the Eqs. (36)–(39) and by using the above two identities to get

ε2

2
(∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∇ϕn∥2) + α

2
(∥∇ωn+1∥2 + ∥2∇ωn+1 −∇ωn∥2)

+ (rn+1)2 + (2rn+1 − rn)2 + S∥ϕn+1 − ϕn∥2

− ε2

2
(∥∇ϕn∥2 + ∥2∇ϕn −∇ϕn−1∥2) − α

2
(∥∇ωn∥2 + ∥2∇ωn −∇ωn−1∥2)

− (rn)2 − (2rn − rn−1)2 − S∥ϕn − ϕn−1∥2 + ε2

2
∥∇ϕn+1 − 2∇ϕn +∇ϕn−1∥2

+ α
2
∥∇ωn+1 − 2∇ωn +∇ωn−1∥2 + (rn+1 − 2rn + rn−1)2 + 2S∥ϕn+1 − 2ϕn + ϕn+1∥2

= −2Δt∥∇μn+1∥2.

We can rewrite the above equation using the definition of total free energy as

E n+1 − E n = −Δt∥∇μn+1∥2 − ε2

4
∥∇ϕn+1 − 2∇ϕn +∇ϕn−1∥2 − α

4
∥∇ωn+1 − 2∇ωn +∇ωn−1∥2

− 1
2
(rn+1 − 2rn + rn−1)2 − S∥ϕn+1 − 2ϕn + ϕn+1∥2.

In the right-hand terms of the above equation, the sum of all terms except −Δt∥∇μn+1∥2 is negative,
thus we obtain the following inequality.

E n+1 − E n ≤ −Δt∥∇μn+1∥2.
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Thus, the discrete system (33)–(35) satisfies the discrete energy emission law. ◻
Zhang et al. [64] expanded a magnetic-coupled diblock copolymer system by introducing a magnetic

field in the CH equation for diblock copolymers. The authors developed the second-order time marching
method using the stabilized SAV scheme to solve model. Wu et al. [65] developed a method with temporally
second-order accuracy and unconditional energy stability based on the SAV approach scheme for a coupled
CH system to simulate phase separation in the homopolymer and copolymer mixtures. In addition, the
authors used the Fourier spectral method for space to minimize errors in space. Huang et al. [66] establish
the error estimates of the SAV scheme for the coupled CH equation in the diblock copolymer. The numerical
method is based on the SAV approach for time and the Fourier spectral method for space. Li et al. [67]
applied the IEQ method to simulate anisotropic dendritic crystal growth with an azimuthal field, developing
a second-order unconditionally energy-stable numerical scheme validated through simulations of complex
growth processes. Jiang et al. [68] employed the SAV method to study fluid-surfactant systems on curved
surfaces, demonstrating the precision and efficiency of their second-order, unconditionally energy-stable
scheme. Lai et al. [69] extended the SAV method to analyze connected regions in digital models, proposing
a stable and efficient algorithm for complex structure analysis. In [70], the authors proposed a conservative
Allen–Cahn equation for diblock copolymers. They developed a numerical method based on the stabilized
SAV scheme to solve the developed model. Through numerical tests, they validated the effectiveness of the
new model by comparing it with the CH diblock copolymer model.

3 Applications of the Phase-Field Diblock Copolymer Model
The phase-field model for microphase separation patterns in diblock copolymer melts is widely

applicable to various applications. Its capability to describe complex behaviors and microstructural patterns
during phase separation makes it a valuable tool in materials science and polymer research. We present a
detailed discussion on several examples, including fingerprint image restoration and 3D printing. Beyond
these examples, the NCH equation has been widely applied in various fields, particularly in biology and
materials science. In biology, the Green’s functionG from Eq. (4) plays a critical role in modeling cancer cell
invasion [71] and solid tumor growth [72]. In materials science, the NCH equation has been particularly
successful in describing diverse phenomena. Notable examples include mesoscopic models of particle
dynamics for pattern formation [73] and phase transitions [74]. These examples highlight the versatility of
the NCH equation across multiple disciplines.

3.1 Fingerprint Image Restoration
Lee et al. [75] presented a semi-automatic fingerprint image restoration algorithm using the NCH

equation for the damaged fingerprint images. The developed fingerprint image restoration algorithm is based
on the alternating direction explicit scheme [57]. Let Ω be the global domain for the given fingerprint image
and let Ωk be the damaged area of the fingerprint image, where k is the number of the damaged areas. Fig. 13
shows the global domain for the given fingerprint image, the damaged area, and the computational discrete
domain for the damaged area. To restoration of the damaged fingerprint, we solved the NCH equation on
the Ω1 with Dirichlet boundary conditions. The initial conditions within the computational domain Ω1 are
obtained from a damaged fingerprint. Additionally, the points in the neighborhood outside of the damaged
area for the computation are derived from the given fingerprint image and are used as fixed values. This is
illustrated in Fig. 13b, where the points computed within the domain are represented as unfilled circles, while
the points outside Ω1 with fixed, non-computed values are represented as filled circles.
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Figure 13: Schematic illustrations of (a) the global domain Ω1 for the damaged fingerprint image and (b) the discrete
domain Ωd

1

We used the semi-automatic fingerprint image restoration algorithm based on the NCH equation to
restore the damaged fingerprints. The main idea of the algorithm proposed by the authors is to find a
spatial step size h, which is appropriately tuned to a given fingerprint data. This determines h using fixed
parameters α, ε, and Δt, based on pattern information close to the corrupted region. For more details,
please refer to [75]. Fig. 14 shows the given damaged fingerprint and the restored fingerprint using the
developed algorithm [75]. Here, we used the parameters α = 0.1, Δt = 0.1, and ε = 1.2. Fig. 14a shows the
initial condition, where the region inside the black line represents the damaged area assigned with a value of 0.
The red line indicates the 1D domain where pattern information near the computational domain was analyzed
to determine the appropriate spatial step size. Fig. 14b,c shows snapshots of the numerical solution at t =
100Δt and at the numerical equilibrium state, which is achieved at t = 29576Δt. The numerical solutions
obtained using the semi-automatic fingerprint image restoration algorithm effectively reconstructed the
damaged region by employing the boundary values and an appropriately chosen spatial step size h.

Figure 14: Numerical solution of the NCH equation using the semi-automatic fingerprint image restoration algorithm
at times t = 0, 100Δt, and 29576Δt



Comput Mater Contin. 2025;82(2) 1833

3.2 3D Printing
Lee et al. [76] proposed a numerical method to generate a porous structure of arbitrary shape for 3D

printing. The numerical method is based on the Fourier spectral method [55]. We used parameter Nx =
Ny = 100, Nz = 200, ε = 2h/(2

√
2 tanh−1(0.9)), Δt = 10h2, and α = 100, 700, 1500. The initial condition on

Ω = (0, 1) × (0, 1) × (0, 2) is given by ϕ(x , y, 0) = −0.3 + 0.1rand(x , y). Fig. 15 displays the computational
solutions solved by using the numerical algorithm [76] with α = 100, 700 and 1500 at t = 300Δt.

Figure 15: The 0-level isosurfaces of the numerical solutions for α = 100, 700, and 1500

Various distance functions can be utilized to generate porous structures within other solid geometries
that are not cubes. Please refer to [76]. The generation of porous structures has the advantage of controlling
the shape of the porosity through the space-dependent average concentration function ϕ̄, and the algorithm
is simple to implement.

Yoon et al. [77] presented a numerical algorithm to make uniformly distributed circular porous
patterns on curved surfaces for 3D printing structures in 3D space using the computational method for
the NCH equation [24]. The authors defined a narrow band domain including the surface to efficiently
and simply solve the NCH equation, enabling the generation of circular porous patterns on the surface.
Xia et al. [78] applied an unconditionally energy-stable numerical scheme to analyze the Swift–Hohenberg
equation on arbitrary surfaces, achieving stable, second-order accurate results. Li et al. [79] developed a
direct discretization technique to solve multicomponent CH systems on surfaces, yielding precise and stable
solutions. Additionally, Xia et al. [80] introduced an unconditionally energy-stable phase-field approach for
simulating binary thermal fluids on arbitrary surfaces with high accuracy. For numerical simulation, we
used parameters Nx = Ny = Nz = 152, ε = 4h/(2

√
2 tanh−1(0.9)), Δt = 100h, and α = 100,400,700. The initial

condition on Ω = (−1, 1) × (−1, 1) × (−1, 1) is defined by ϕ(x , y, 0) = −0.3 + 0.2rand(x , y). Fig. 16 shows
the computational solutions ϕ and the corresponding isosurface with ϕ = −0.3 at time t = 300Δt. Fig. 16a
shows the scalar field ϕ computed on a spherical surface, representing uniformly distributed circular porous
patterns. As the value of α increases, the number of pores grows significantly, while the size of individual
pores decreases. Fig. 16b presents the isosurface extracted at the level ϕ = −0.3, highlighting the three-
dimensional porous structures. For α = 100, the pores are relatively large and fewer in number. At α = 400,
the pore size decreases while their number increases. When α = 700, the pores become even smaller and
denser, forming a finer and more intricate pattern. These results demonstrate that the proposed numerical
method can precisely control the size and distribution of porous patterns by adjusting the parameter α. This
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capability is particularly useful for applications in 3D printing, where such porous structures can be employed
in fields like tissue engineering, biomaterials, and lightweight structural design.

Figure 16: (a) Numerical solutions on the surface and (b) isosurfaces at ϕ = −0.3 of the numerical solutions. From left
to right, α = 100, 400, 700

4 Conclusion
In this review paper, we extensively presented various numerical methods that model the phase

separation dynamics of diblock copolymer melts through the phase-field model. Many applications adopted
the diblock copolymer system to create and simulate the movement of phase boundaries of nanoscale
complex structures. We examined five state-of-the-art numerical methods that solve the nonlocal Cahn–
Hilliard equation. The finite difference method was simple to implement and broadly applicable. However, it
had limitations in complex domains. On the other hand, the Fourier spectral method is suitable for solving
models in complex domains, but is limited to specific boundary conditions and cell-centred grids. The
alternating direction explicit method allowed more stable predictions on complex domains, but had to handle
the error from splitting the governing equation. The invariant energy quadratization method proposed by
Yang and the scalar auxiliary variable approach by Shen et al. showed their strength in energy stability.
Furthermore, we introduce recent applications of the phase-field model such as Fingerprint image restoration
and 3D printing to illustrate its versatility in different fields. Overall, this analysis serves as a valuable resource
for researchers seeking to understand and apply numerical methods in the study of diblock copolymer melts.
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