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ABSTRACT: Due to the necessity for lightweight and efficient network models, deploying semantic segmentation
models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training
performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when
deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above
challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the
ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid pooling blocks
are utilized to decode multi-scale feature maps, creating a complete semantic map inference. The student model not
only preserves the strong segmentation performance from the teacher model but also improves the inference speed of
the prediction results. The proposed method exhibits a clear advantage over conventional convolutional neural network
(CNN) models, as evident from the conducted experiments. Furthermore, the proposed model also shows remarkable
improvement in processing speed when compared with light-weight models such as MobileNetV2 and EfficientNet
based on latency and throughput parameters. The proposed KD-SegNet model obtains an accuracy of 96.3% and a
mIoU (mean Intersection over Union) of 77%, outperforming the performance of existing models by more than 15%
on the same training dataset. The suggested method has an average training time that is only 0.51 times less than same
field models, while still achieving comparable segmentation performance. Hence, the semantic segmentation frames
are collected, forming the motion trajectory for the system in the environment. Overall, this architecture shows great
promise for the development of knowledge-based systems for MR’s navigation.

KEYWORDS: Mobile robot navigation; semantic segmentation; knowledge distillation; pyramid scene parsing; fully
convolutional networks

1 Introduction
Predominantly, autonomous navigation seeks to circumvent obstacles with high precision and efficiency

requirements [1]. Due to the significant computational demands of complex environments, navigation
systems are prohibitively expensive. Notwithstanding their diminutive size, low cost, and significant com-
putational requirements, cameras deliver comprehensive scene information. Fundamentally, path planning
entails guiding MRs through environments that are dynamic and complex, all the while balancing the
primary requirement for safety with the shortest route possible [2]. By means of semantic segmentation, MRs
acquire copious amounts of data from the camera. Semantic segmentation (SS) is anticipated to enhance
the ability of sensor and camera systems to differentiate between area and object classifications as imaging
technology advances [3].
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Recently, numerous vision-based applications have encountered a substantial challenge in the imple-
mentation of deep learning (DL) for SS [4]. Nevertheless, SS’s remarkable development is still impeded by
several obstacles. First, there is a dearth of information essential for SS operations, particularly in industrial
sectors. Furthermore, the data collection system is expensive and labor-intensive, which constitutes the
second issue. Further essential criteria for the camera-based SS system include resource optimization,
processing speed acceleration, and output quality assurance [5]. Recent segmentation models that require
immense amounts of computation have achieved remarkable performance, including DenseASPP [6],
DeepLab V3 [7], fully convolutional networks (FCNs) [8], PSP-Net [9], DANet [10], CCNet [11], and OCR-
Net [12]. Nonetheless, real-time mobile devices and online systems with constrained processing resources are
incompatible with these intricate models. ENet [13], ICNet [14], DFANet [15], ESP-Net [16], and BiSeNet [17]
are shown as specialised lightweight architectures. Subsequently, other researchers endeavoured to substitute
significant backbones with networks that were either more efficient or shallower, including EfficientNet [18],
MobileNet [19], and ShuffleNet [20]. Nonetheless, it is essential to acknowledge that these methods have
specific inherent limitations. Primarily owing to the cost-effectiveness and availability of the technique, image
segmentation utilising monocular cameras.

The paper proposes the SS architecture, which integrates the pyramid scene parsing (PSP) model with
the knowledge distillation (KD) process. In the proposed KD, the teacher model employs ResNet152 for
general extraction tasks, while the student model utilises the smaller ResNet18 network. Both advocate the
utilisation of pyramid pooling modules as distinct analytical components at varying scales. Subsequently,
the data is synthesised to produce the final prediction map. The authors instruct the student model with
data derived from the features of the teacher model. Moreover, the suggested network preserves the teacher
model’s superior accuracy while ensuring the student model’s swift reasoning capability.

Main contributions are as follows:

• KD-SegNet: Combining pyramid pooling blocks with a ResNet network as an encoder block into an
efficient semantic segmentation model.

• Apply KD to train student model with backbone as ResNet18 network under support from ResNet152-
PSPNet as teacher model.

• By implementing the Adam optimizer, performance and computational efficiency can be further
enhanced. Data preprocessing is further enhanced through the implementation of Gaussian filters.

• Based on fours datasets of Cityscapes, Kitti, Cifar10 and self collected TQB-dataset, the proposed model
has shown superiority over the state-of-the-art SS based on monocular camera.

• Empirical findings confirm the feasibility of MR’s navigation based on KD-SegNet in both simulated and
real-world scenarios.

Continue as follows with the following sections of the article. Related works are shown
in Section 2. Section 3 presents the architecture of the proposed KD-SegNet. Section 4 contains experimental
results and comparisons. Section 5 presents the final conclusions.

2 Related Works
Most of the current research focuses on the development of lightweight networks to increase perfor-

mance in practical situations. In addition, compact segmentation models are also utilized in the domain
of model compression, which can be broadly categorized as follows: pruning, quantization, and KD [21].
Shelhamer et al. introduced original FCN employing convolution and upsampling to classify each pixel
within an image [8]. However, the efficacy of FCN is significantly limited due to its fundamental architecture.
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Distillation of knowledge has been implemented extensively to compress semantic segmentation models.
The “dark knowledge” is transferred from a teacher to a student model.

2.1 Semantic Segmentation
Significant progress has been made in recent years in computer vision as a whole and in SS in

particular [2,3]. The FCN framework has witnessed recent developments such as FCN [8], PSP-Net [9],
ESP-Net [22], DeepLabv3 [23], RefineNet [24], and LRR [25]. In contrast to the current CNN-based
semantic segmentation frameworks, our approach incorporates the subsequent modifications to enhance its
performance. As the backbone network, Chollet employed Xception to adjust the stride size and channel
counts to attain an optimal equilibrium between efficiency and effectiveness [26]. Furthermore, low-level
features provide boundary information to employ suitable skip connections. In contrast to U-Net [27],
Rajamani et al. implemented up-convolution by combining features from multiple layers, resulting in
improved accuracy. Drawing inspiration from the DenseNet [28], the precision of the present block was
augmented by utilizing the output from the preceding one. Side prediction referred to the segmented results
whose features are derived from multiple blocks. Moreover, this cross-module structure allows transmitting
information between contiguous modules.

Prominent attributes encompass the model’s aptitude for employing the Graphics Processing Unit
(GPU) while simultaneously optimizing its operation and avoiding parameter reductions. U-Net [27],
FCN [8], and PSP-Net [9] are illustrative CNN-based models constructed using an encoder-decoder
architecture. For the purpose of reducing image size and increasing characterization size, the encoder is
composed of numerous convolution layers and max pooling layers (e.g., VGG16 [2], ResNet18 [29], etc.). In
conjunction with upsampling, the decoder employs convolutional layers to enlarge the image and provide
semantic prediction for every pixel.

2.2 Knowledge Distillation
Recent research has made extensive use of KD-based techniques to enhance the precision of lightweight

SS networks [30]. In 2015, Lu et al. presented KD’s concept [31]. To improve the performance of a compact
model, KD framework would transfer knowledge from complex teacher model. In [32], Liu et al. introduced
the KD technique for training small SS based on the structured prediction. Then, two structural KD
schemes (SKD) were constructed as follows: firstly, pair-wise distillation found similarities; secondly, holistic
distillation was carried out by using GAN. Hence, the student model learned more structured information
to operate as effectively as the teacher model. SSTKD [33] added statistical texture knowledge to efficiently
transfer the inter-class distance from the teacher model. In contrast to SKD, Wang et al. proposed the intra-
class feature variation KD method (IFVD) based on intra-class feature (IF) [34]. While still maintaining the
passed-through features of the teacher model, robust IF variation enhanced the correctness of the student
model. To provide more information to teacher model, Shu et al. suggested employing a channel-wise
distillation technique (CWD) to acquire the soft probability mapping by normalizing each channel [35].
By minimizing the Kullback-Leibler divergences between the teacher and student models, the KD process
can concentrate more significantly on each channel. In combination with incremental learning to improve
accuracy, Arnaudo et al. utilized contrastive regularization knowledge distillation (CRKD), in aerial image
processing [36]. A cross-image relational KD (CIRKD) was developed for student segmentation network
of urban road [37] by examining the pixel relationships in global pictures. In light of the widespread
use of transformers in the visual MR perception, Sampath et al. introduced the Transformer-based KD
architecture (TransKD) [38]. Simultaneously on the teacher and student model, TransKD performed the
transformer-to-transformer strategy of feature maps and patch embeddings.
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In contrast to the above approaches, our paper places greater emphasis on the rapid inference speed
of the student model and the high accuracy of the teacher model. Teacher models demonstrate enhanced
inference capabilities when compared to student models due to the more complex data representation and
more profound architecture of the former.

2.3 Limitations
For SegNet, limitations arise from the inherent characteristics of the Encoder-Decoder architecture. The

generalization ability of this architecture can vary across complex training scenarios. Notably, imbalanced
and noisy training data can pose challenges. High-resolution images also lead to increased computational
time and resource costs. Older models like U-Net and DeepLabv3 have been outperformed by newer seg-
mentation architectures. Additionally, complex architecture presents challenges in terms of interpretability
and accessibility for SegNet.

Applying knowledge distillation to SegNet also faces related issues. Notably, training time per epoch
increases, impacting the overall learning process. Accuracy and compression performance depend on
the model architecture. However, KD may not be universally suitable for all architectures and datasets.
Careful control of parameters and guidance during teacher-student model training minimizes rigidity in the
development and deployment process.

3 Proposed Method

3.1 SegNet Model
SegNet is a CNN-based architecture designed for semantic image segmentation [39]. It has been used

for a variety of tasks and has achieved competitive results. SegNet consists of two main components: an
encoder-decoder. The encoder extracts feature from the input image. It consists of multiple convolutional
and max-pooling layers stacked on top of each other. Common networks chosen for this task are VGG16 [2],
ResNet [6], MobileNet [19]. The decoder predicts a label for each pixel in the image. It consists of multiple
convolutional layers that increase the size and up-sampling layers. The combination of these two blocks forms
a characteristic bottleneck architecture. Typical variants of SegNet include: DeepLabv3 [23], U-Net [27],
FCN [8], and PSPNet [9]. The basic description of the architecture is shown in Fig. 1.

Figure 1: The SegNet architecture with the Encoder-Decoder block
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3.2 Proposed KD Scheme
The proposed KD model aims to preserve two factors: the high accuracy of the teacher model and the

fast inference speed of the student model. In general, teacher models exhibit superior inference performance
in comparison to student models because of their more intricate data representation and deeper architecture.
Experiments and real-world deployments have provided evidence of this across a vast array of evaluation
metrics, such as mIoU, loss, accuracy, and mDice. The disparity in performance between student and teacher
models can be primarily ascribed to two elements: the network architecture’s ability to generalize and the
degree to which semantic information is preserved throughout gradient descent, in Fig. 2.

Figure 2: KD’s description

In segmentation tasks, the depth and complexity of teacher models may, nevertheless, present obstacles
with regard to training duration and inference efficacy. On the other hand, simplified student models provide
notable benefits regarding network data propagation and computational performance. Student models are
ideally adapted for implementation on resource-constrained systems, including embedded devices and edge
devices, owing to their reduced size and increased speed. By capitalizing on the merits and demerits of both
the teacher and student models, it is possible to train a lightweight model using KD for retaining the teacher
model’s swift inference speed while acquiring enhanced accuracy. In addition, training time can be drastically
reduced, and a much smaller number of training epochs are required to attain performance comparable to
that of conventional models when employing this method.
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3.3 Proposed KD-SegNet
Like the presented SS models, the proposed model is built on the common encoder-decoder structure.

Specifically, the teacher and student model architectures are designed according to the PSP-Net [9]. The
ResNet network [6] with two distinct depths was chosen as the encoder block to extract the features of the
input image. Decoders are pyramid pooling blocks that receive and process information from the encoder
to generate a segmentation map. The specific architectural proposal is presented in Fig. 3.

Figure 3: Proposed KD-SegNet architecture

3.3.1 Proposed Teacher Model
Teacher model is the PSP-Net model [9] with the ResNet152 network [40] chosen as the encoder block.

ResNet152 consists of 152 layers. It is a deep neural network architecture built on residual blocks. Each residual
block consists of two convolutional layers connected through a skip connection, in Fig. 4. The curved arrow
originating from the beginning and ending at the end of the residual block represents the addition of Input
X to the output of the layer. Adding this value will counteract the derivative being 0, thereby preventing the
vanishing gradient phenomenon. With H(x) being the predicted value and F(x) being the true value, the goal
during model training is to make H(x) equal or approximate F(x).
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Figure 4: A residual block in the ResNet network

Furthermore, residual blocks allow the model to capture features effectively by allowing the model to
learn transformations relative to the input data rather than learning from scratch. The layers in ResNet152
use max pooling to gradually reduce the input size and increase the size of the features, thereby creating
the initial feature map. This feature map is used to train the student network on a similar scale. Despite its
excellent accuracy in learning the features of the training data, ResNet152 still has limitations. The model
has a large depth and volume. In addition, there are a large number of parameters that need to be calculated
and propagated complexly. Overfitting is likely to occur on devices with limited computing capabilities. This
leads to a loss of training and inference time for the model.

The decoder block is designed based on pyramid pooling layers. These blocks are used to extract features
at different scales. This information is aggregated and used to create a complete prediction map. Data from
the encoder is divided into decoding regions of different sizes. The size of these blocks is adapted to the size of
the tensor received from the encoder. Each decoding region uses average pooling to reduce noise and focus
on the features to be extracted. The extracted features are brought to a uniform size through deconvolution
layers. Then, concatenation is used to combine information at different scales. The final convolution layer
is used to aggregate information and make predictions. In summary, PSP with a pyramid pooling block
architecture achieves effective segmentation results. This is especially true for adapting to the details and
context of the training data. In combination, authors have the PSP-ResNet152 teacher model with superior
accuracy in the SS task.

3.3.2 Proposed Student Model
The student model closely resembles the teacher model, as the authors have created a comparable

structure for both models during the training process. In the student model, the change is the substitution
of ResNet152 [40] with ResNet18 [29] as the backbone. ResNet18 utilizes residual blocks as a fundamental
component. ResNet18 is comprised of a fundamental structure that has a total of 18 layers. Depth in this
context refers to the number of layers in the network, including both the activated and linear composite
layers. Batch normalization and synthesis classes are not included. The primary distinction is in the
dimensions and lightweight design of the model. The number of parameters required for computation and
propagation in this model is much lower than that of its teacher model (see Table 1).
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Table 1: Comparison between the teacher model: ResNet152 and the student model: ResNet18 based on the number of
parameters

Model Number of parameters (million)
ResNet-152 [40] 58.24
ResNet-18 [29] 11.24
ResNet-50 [41] 23.901
ResNet-101 [42] 42.820

VGG16 [2,3] 134.7
DenseNet-169 [43] 12.8

Due to its simple architecture, ResNet18 has lower performance compared to other models [29]. This
is addressed by distilling knowledge from the weights of the teacher model ResNet152 to improve training
efficiency without increasing the weight and size of the network, which would reduce the model’s learning
and inference speed [40]. Knowledge is transferred from the teacher-to-student model in combination with
the mitigation of the loss function. The class predicted by the teacher model is distributed to the classes of
the student model. During distillation, the probability of each object class [31] is calculated as follows:

pi =
exp ( zi

T )

∑j exp ( zj
T )

(1)

where pi is the probability of the ith class calculated from z, T is the temperature parameter. T = 1 to
define the standard SoftMax function. As T grows up, the probability distribution generated by the SoftMax
function becomes softer, showing that the prediction is close to the correct value. The teacher model and the
student model both use the same T-value to calculate SoftMax during distillation. The overall loss function,
incorporating both distillation and student losses, is calculated as:

L (x; W) = α ×H (y, σ (zs; T = 1)) + β ×H (σ (zt; T = τ) , σ (zs; T = τ)) (2)

Importantly, in order to maintain consistency between the teacher and student models, the decoder
block is left unchanged in the proposed student model structure. The pyramid pooling module incorporates
features from four different scales. It divides the feature map into different subregions and performs average
pooling on the sub-regions. The four subregion sizes used are 1 × 1, 2 × 2, 3 × 3, and 6 × 6. The original
size of the feature map is obtained through bilinear interpolation. Finally, the features extracted at different
scales are aggregated into the final pyramid pooled global features. This pre-serves the multi-scale contextual
information. This allows for utilizing the high performance of the pyramid pooling blocks while also
improving the KD process. Inference to generate the image feature map is performed only on the student
model to take advantage of its smaller size and easier deployment on devices with diverse configurations,
especially on systems with limited resources and computing capabilities.

4 Experiment Results and Discussion
In this section, the generated dataset utilized for training and testing the model is presented. Subse-

quently, the outcomes of ablation and comparative experiments are individually examined.
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4.1 Data Generation
Four datasets were utilized to train the proposed model: Cityscapes (5000 images) [44], Kitti (80,000

images) [45], CIFAR10 (60,000 images) [46], and TaQuangBuu’s (TQB) dataset comprising 1200 images
obtained from the Ta Quang Buu library [47] (https://github.com/buinghia3101/TQB-Dataset.git) (accessed
on 09 January 2025).

4.1.1 Cityscapes
Cityscapes [44] particularly serves as a resource in the domain of vision-based duties involving the

comprehension of street imagery. The dataset comprises over five thousand images, each of which has a
resolution of 1024 × 2048 pixels. The total number of photos used was 1000, of which 85% were for training
and 15% for testing. Augmentation including randomly inverting images horizontally, altering RGB values at
random, normalizing images using the mean and standard deviation of each color channel, and converting
images from Numpy arrays to torch tensors are all reinforcements on this set.

4.1.2 Kitti
Kitti [45] includes more than 80,000 images taken from MR-mounted cameras. The images are high

resolution (2048 × 1024 pixels) and taken at 10 Hz. Augmentation including randomly inverting images
horizontally, altering RGB values at random, normalizing images using the mean and standard deviation of
each color channel, and converting images from Numpy arrays to torch tensors are all reinforcements on
this set.

4.1.3 Cifar10
Cifar10 [46] comprises 60,000 color images of 32 × 32 pixels, divided into 10 classes. The dataset has

split 50,000 photos for training and 10,000 test photos as default. The dataset undergoes image resizing to
256 × 256 pixels, followed by extracting a 224 × 224 pixel square from the center of the resized image.
The data is then converted from Numpy array format to PyTorch tensor format. Finally, the image data is
normalized by subtracting the mean value for each color channel and dividing by the corresponding standard
deviation value.

4.1.4 TQB Dataset
TQB dataset [47] consists of 1200 images gathered from HUST’s Ta Quang Buu library (see Fig. 5). The

total number of photos used was 1200, of which 85% were for training and 15% for testing. The output consists
of the following operations: resizing the images to 224 × 224 pixels, normalizing them using the mean and
standard deviation of each color channel, and transforming them from Numpy arrays to Torch tensors.

Moreover, the learning rate of the model is adjusted through the Adam optimizer [48], adapting to the
specific characteristics and size of the training data. When the gradient changes non-uniformly, accelerating
the parameter convergence process. Thus, it brings efficiency in various diverse training scenarios. This
involves fine tuning the learning rate to prevent information loss during gradient descent. Additionally,
the training dataset is preprocessed using the Gaussian blur function to enhance generalization. The model
adapts better to cases where the training data is of low quality. The generalization and performance of the
model are ensured. The quality of the images is modified and augmented into the training process. The

https://github.com/buinghia3101/TQB-Dataset.git
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Gaussian function [49] is applied as follows:

G(x,y) =
1

2πσ2 e−
x2
+y2

2σ2 (3)

where x, y are distance on the two axes from the original coordinates on the image. σ is the standard deviation
of the distribution.

Figure 5: TQB dataset [47] with input images of specific scene with number (a): 70, (b): 210, (c): 630, (d): 100, (e): 955,
(f): 1015, (g): 1140, and (h): 1870

4.2 Evaluation Metric
4.2.1 Train Loss

Train loss demonstrates the level of efficiency during model training. A loss value closer to zero
demonstrates that the model captures the characteristics to be extracted. The loss value is calculated based
on the cross-entropy function [47] as follows:

J (w) = 1
N

N
∑
n=1

H (pn, qn) = −
1
N

N
∑
n=1
[yn log ŷn + (1 − yn) log (1 − ŷn)] (4)

4.2.2 Accuracy
Accuracy evaluates the performance of predictions [40]. The value is calculated based on an average of

the correct predictions of the model. The closer the accuracy is to 1, the more accurate the model proves the
prediction.

Acc = TP
TP + FP

(5)
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4.2.3 Full-Width Accuracy (Fwa_Acc)
Fwa_Acc calculates accuracy for all pixels in an image, including pixels in the positive class and negative

class [50]. The calculation formula is as follows:

Fwc_Acc = TP + TN
TP + TN + FP + FN

(6)

where TN: True negative; and FN: False negative, respectively.

4.2.4 Accuracy Class (Acc_cls)
Acc_cls is calculated as the percentage of correctly predicted classes [50]. The calculation formula is as

follows:

Acc_cls =

n
∑
i

TPi

n
∑
i

Ni

(7)

where TP is the number of pixels correctly classified into class i, N is the total number of pixels belonging to
class i in the ground truth dataset.

4.2.5 Mean Intersection over Union (mIoU)
First, is described by following Eq. (8), in [50]:

IoU = O
U

. (8)

where O is the overlapping area and U is the consolidated area, respectively. A review value closer to 1
indicates the more accurate the segment. Then, during training, the mean mIoU value increases, indicating
improved segmentation accuracy in (9).

meanIoU = 1
n

n
∑
i=1

IoUi. (9)

where n is the number of classes and IoUi is the IoU for the i class.

4.3 Training Results
The study presents inference outcomes and comparisons with correspondingly structured models

(U-Net, PSP-Net, FCN) to assess the functionality and efficacy of the model. Cifar10, Cityscape, Kitti,
and TQB datasets are harvested to derive the evaluation metrics. Initial distillation performance on the
Cifar10 dataset is represented by the loss value indices. To exemplify the benefits of the proposed method,
suitable evaluation metrics are furnished in accordance with the characteristics of each trained dataset.
The Cityscapes and TQB datasets are utilized to gather segmentation outcomes. Proposed KD-SegNet’s
segmentation performance and rapid inference speed are ultimately demonstrated through a comprehensive
comparison with contemporary methods.

Utilizing the 60,000-image Cifar10 dataset, KD’s efficacy was evaluated. As shown in Fig. 6, the accuracy
attained 98.91%, with student loss and distillation loss measuring 0.13 and 0.12, respectively. The classes
in the training dataset are appropriately captured and predicted by the student model of KD-ResNet18.
The rate of training is considerably quicker in comparison to the conventional approach used to train the
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ResNet18 student network. Typically, the student model will have a smaller size and number of parameters
than the teacher model. In practice, the proposed KD-SegNet model uses distillation with quantization and
distillation combined with model pruning [51]. The coordination of the above techniques results in models
with optimal size and increased computational speed and parameter propagation.

Figure 6: Experimental KD’s results from ResNet152 for ResNet18 [29] training

Furthermore, Fig. 7 illustrates the evaluation metrics including as follows: Loss, Acc, fwa_Acc, Acc_cls
and mIoU based on Cityscapes dataset, to compare the training efficiency of the proposed method to that
of the student model trained using the conventional method. KD-SegNet easily surpasses ResNet18-PSPNet
across all performance metrics. The method under consideration attains a Loss value that is 0.14 units lower
in magnitude than the model being compared. Moreover, segmentation performance is enhanced as Acc
increases by over 0.08, fwa_Acc increases by over 0.11, Acc_cls increases by over 0.19, and mIoU increases by
over 0.23.

A comparative analysis continuously between the acceleration of prediction accuracy and the rate of
convergence of parameters, in Fig. 8. The proposed model generates a comparatively accurate prediction map
in just 30 epochs, with a mIoU of 65% after 30 epochs. On the contrary, the conventional model produces a
prediction map with a mIoU of merely 61% after 120 epochs. The superior efficacy of the proposed KD-SegNet
in terms of training speed and segmentation is substantiated by these two comparisons. MR navigation
facilitates the rapid acquisition of semantic information pertaining to objects.

A summary of the conclusions drawn by the proposed method is presented in Fig. 9. The model captures
and deduces scene elements such as people, vehicles, and streetscapes with remarkable accuracy. Further-
more, data obtained from the pre-existing Kitti dataset is incorporated into the distillation and inference
procedure on the Cityscapes dataset utilized by the student model. The experimental results illustrate that
the performance of inference is enhanced through the transfer and integration of supplementary semantic
information into the model. This results in the SS task becoming more generalized. When coupled with the
nimble characteristics of the student model, the suggested approach possesses the capacity to be implemented
on autonomous systems that provide guidance to resource-constrained MRs. Specifically in navigation tasks,
objects such as roads and obstacles are prioritized for capture. As illustrated, roads, humans, and vehicles are
accurately segmented in corresponding dark yellow, pink, and black colors, respectively. The Mio values for
all classes are above 90%.
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Figure 7: Experimental KD’s results from ResNet152 for ResNet18 [29] training

Figure 8: Inference results of the proposed KD-Segnet with the conventional PSPNet-ResNet18 model

Figure 9: Image prediction using Pascal_VOC dataset for each pair of input image and model prediction, respectively

The last network performance test was also run on Fig. 10’s background image, which features several
intersections and barriers based on the TQB dataset. This benefit enhances the computation of steering angle
and speed for MRs. Safety and cost effectiveness are guaranteed.
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Figure 10: KD-SegNet’s results consist of obstacles, corners, and intersections based on TQB dataset, from (a) to (h),
taken from the MR’s bird’s-eye view when moving from the starting point and preparing to make a left turn

For the SS assignment, the authors present a comparison with other contemporary approaches. Table 2
presents a comparison with other models based on accuracy and mIoU. Not only compared with conven-
tional models, the proposed model also shows superiority when compared with other light-weight models
of MobileNetV2 and EfficientNet. The disparity in prediction performance is insignificant, measuring at
less than 1%. However, upon comparison with the alternative methods, the proposed method exhibits a
substantial enhancement.
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Table 2: Comparison of the proposed KD-SegNet model based on synthesis of metrics collected on the Cityscape
dataset

Model Accuracy mIoU
IRDC [47] 91.265 0.7263

Binary-SegNet [39,52] 93.584 0.6882
PSPNet-ResNet18 [9,29] 90.151 0.7081
PSPNet-ResNet50 [9,41] 90.525 0.6907
PSPNet-ResNet152 [9,40] 96.405 0.7804

FCN-VGG19 [52] 94.909 0.6610
Unet-VGG19 [52,53] 89.477 0.6598

PSPNet-MobileNetV2 [9,47] 93.005 0.6130
FCN-MobileNet [47,53] 88.151 0.5723
Efficientnet-Unet [18,54] 90.082 0.5138

KD-SegNet (Our) 96.319 0.7716

Then, Table 3 points out the improved performance of the student model while maintaining a rapid
training rate. Data is collected and contrasted in the illustration in terms of the number of epochs and training
time. In contrast to conventional models, proposed KD-SegNet attains equivalent inference performance
in 51.26% less time and 25% fewer epochs on average during training. The time to inference averaged
between 0.095 and 0.120 per image for the experiment. Meanwhile, the method is compared to the same time
consumption but with inferior accuracy.

Table 3: Comparison of the proposed KD-SegNet model based on the number of epochs and training duration
guarantees an mIoU score of 65%

Model Number of epochs Time (Hours)
Binary-SegNet [39,52] 102 0.81

PSPNet-ResNet18 [9,29] 95 0.96
PSPNet-ResNet50 [9,41] 71 1.058
PSPNet-ResNet152 [9,40] 66 1.606

FCN-VGG16 [2,3] 81 0.904
KD-SegNet (Our) 20 0.518

Moreover, the suggested framework demonstrates significant enhancement in processing velocity when
juxtaposed with less resource-intensive architectures such as MobileNetV2 and EfficientNet, as evaluated
through latency and throughput metrics (see Table 4). With the use of the KD model in training the student
model, in addition to the accuracy inherited from the teacher model’s weights, the fast inference speed of the
deployed model is also prioritized for evaluation. Along with the high accuracy demonstrated in the previous
sections, the measurement results of the wave transmission process and sample calculation in the proposed
model have all achieved excellent results. For the proposed method, the obtained latency value is only 0.005 s
while the throughput reaches 88.14 samples per second. The computation and parameter propagation during
inference leverage the lightweight structure of the student model. The flexible characteristics of the student
model provide superior sample processing speed compared to the methods being compared.
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Table 4: Comparison of the proposed KD-SegNet model based on latency and throughput

Model Latency (second) Throughput (second)
PSPNet-ResNet152 [9,40] 0.026 65.12
PSPNet-ResNet50 [9,41] 0.008 75.91

FCN-VGG19 [53] 0.011 55.69
FCN-MobileNetV2 [47,53] 0.009 40.17

Unet-ResNet152 [40,54] 0.038 30.10
Unet-VGG19 [55] 0.011 55.63

KD-SegNet (Our) 0.005 88.14

4.4 MR’s Path Planning Based on KD-SegNet
The initial step involves approximating the image plane by utilizing the focal length of the camera and

the image coordinates. The intrinsic camera matrix is subsequently depicted during the pixel plane-to-image
plane conversion in the second transformation. Subsequently, the pixel plane is homogenized for MR’s path
planning in accordance with the perspective projection, in Fig. 11. Furthermore, the homography matrix
3 × 3 at the ground surface signifies the transformation between four points (x, y) of the image plane and
four points (x′, y′)of world plane (see Fig. 11a), as observed from a bird’s-eye view (see Fig. 11b). Therefore,
the transformation described by Eq. (10) such as follows:

p =Mint ×Mext ×W (10)

where 3 × 4 intrinsic parameters, and 4 × 4 extrinsic parameters. Because the camera poses are fixed to form
MR’s bird’s eye view.

Figure 11: A perspective projection with (a): homography transformation and (b): MR’s bird-eye view
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In the ground surface (Z = 0), the homography transformation matrix H is expressed as follows in
following Eq. (11):

H =
⎡⎢⎢⎢⎢⎢⎣

h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎥⎥⎥⎥⎦
; x = h11 X + h12Y + h13

h31 X + h32Y + h33 + 1
; and y = h21 X + h22Y + h23

h31 X + h32Y + h33 + 1
. (11)

Finally, using the checkerboard (see Fig. 12), the construction of MR’s perception is determined by the
pixel plane observed from above. Confirmed empirically, the homography transformation from the image
plane to the pixel plane in bird’s eye view.

Figure 12: The homography transformation using a checkerboard (a) with (b) image plane and (c) having one object
in the bird’s eye view

Furthermore, MR’s environment is constructed by grid-map with cells representing the state of allowing
movement or being occupied by obstacles, in Fig. 13. The size of the calculated cell is chosen to match the
MR’s size and the moving speed in the known grid-map.

Figure 13: MR’s environment with (a) additional risk zones surrounding obstacles and (b) grid-map-based obstacles
with a risk zone in the MR’s environment

In comparing the output performance of the proposed SS network, the author applies the same optimal
navigation algorithm [2,3,47]. On the contrary, the segmented images acquired for this research were
processed utilizing the proposed KD-SegNet that was proposed, thereby facilitating the generation of the
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grid-map. Furthermore, a specialized local search algorithm was created to improve the obstacle avoidance
safety of the MR while it effectively follows the global A* path [2,3,56]. Based on a comparison between the
novel findings and those reported in [2,3,56], it is feasible to deduce that SS plays a critical role in generating
the frontal perspective of the ground. This process aids in the formulation of an ideal trajectory for MR.

Based on the proposed theoretical framework, the authors executed mixed reality navigation experi-
ments within a controlled simulation environment. The spatial and topographical configurations are depicted
in Figs. 14 and 15. The experimental area encompasses approximately four hundred square meters, incorpo-
rating obstacles such as individuals, storage facilities, and structural pillars. The MR will start at different
locations S (see Figs. 14 and 15) and plan the path to the destination G. To test the environment perception
capability through the segmented image output data of the KD-Segnet network, in both environments there
are mobile objects, human 1 and human 2, which will move from top to bottom on the left and from bottom
to top on the right, respectively. With Scenario 1, in Fig. 14, four snapshots from Fig. 14a to b illustrate the
ability to establish a successful path strategy for MR. Furthermore, at Fig. 14c, when MR detects that human
1 intersects and causes a collision with its moving trajectory, MR adjusts its direction and velocity to ensure
safety and successfully reaches the destination G (see Fig. 14d). Based on the bird-eyes view of the monocular
fixed on the MR, four snapshots of from Fig. 14e–h illustrate the live 2D input image and corresponding to
them are four snapshots of from Fig. 14i–l represent segmented images.

Further to reinforce the correctness of the proposed method, twelve snapshots from Fig. 15a to m,
demonstrate that the navigation plan is feasible when MR follows the moving trajectory from the starting
point S to the destination point G, calculating and avoiding the mobile obstacles human 1 and human 2,
as well as the static obstacles in the environment of Scenario 2. By leveraging the superior accuracy and
rapid processing capabilities of the knowledge distillation model, the segmentation process is both expedient
and dependable. The mean Intersection over Union (mIoU) metric recorded during the training phase with
the data acquired from the environment attains a value of 89%. Consequently, the mobile trajectory of the
mixed reality system is continuously computed to correspond with the conditions posed by obstacles. Similar
to the segmentation illustration, the white region is interpreted as the area where the navigation trajectory
can be established. The remaining objects are systematically prioritized by the algorithm for evasion. As
evidenced in the two scenarios presented, the mixed reality system efficiently determines the optimal path
trajectory from the initial point to the target point, while simultaneously avoiding collisions with static
obstacles present in the environment. Utilizing the adaptability and accelerated inference capabilities of KD-
SegNet, the system persistently recalculates the optimal path every three frames. This results in the mixed
reality system partially adjusting to variations in correlation with mobile obstacle entities (individuals).
Such functionality significantly enhances the efficacy of mixed reality orientation planning. As illustrated
in both Figs. 14 and 15, initially, the MR scans the entire surrounding context to determine a preliminary
trajectory. The MR approaches and adheres to the initially established trajectory. Upon encountering an
obstacle in a new context area, the steering angle is recalculated to minimize the likelihood of a collision,
thereby adjusting the movement trajectory based on obtained MR’s path planning.



Comput Mater Contin. 2025;82(2) 2019

Figure 14: Simulation results of MR navigation in the Gazebo environment. In senarios 1: including global position
(yellow dotted-line circle) and trajectory (red-dotted line), as well as frames collected and segmented during the
corresponding movement with from (a) to (d): MR’s Gazebo environment, from (e) to (h): 2D input images, and from
(i) to (l): segmented images

To demonstrate the pratical application, the real MR is stationed with a Jetson nano and monocular
camera, in Fig. 16. The aim of the practical experiments conducted in this study was to enhance methods
for detecting collision-free areas in local search zones while adhering to a predetermined global trajectory,
in Fig. 17. A seamless trajectory would compromise the proposed KD-SegNet outcomes because of the MR
camera pose [57]. In other words, the results generated by the model we have put forth would surpass those
achieved by the prior binary segmentation FCN-VGG [2,3]. In addition, the processing speed of the KD-
SegNet is significantly accelerated and refined when compared to the lightweight IRDC-Net that is built upon
FCN-MobileNetV2 [47,58].

Consequently, the deviation and stability of the MR’s steering angle according to both x-axis and y-axis
are less than 0.05 rad. Then, the MR’s stability and robustness has been improved with smaller angle steering
changes throughout trajectory tracking when compared to [58], in Fig. 18.

Finally, the authors the substantial correlation between the precision of MR’s trajectory tracking and the
performance of KD-SegNet’s output. The MR maintains a seamless tracking trajectory with minimal steering
angle variation of less than 0.05 rad by generating the MR’s frontal view and moving region. Moreover, due to
the stable mounting of the monocular camera on the MR, even minor adjustments in steering angle enhance
stability and improve the overall quality of segmentation outcomes (see Table 5).
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Figure 15: Simulation results of MR navigation in the Gazebo environment. In senarios 2: includes global position
(yellow dotted-line circle) and trajectory (red-dotted line), as well as frames collected and segmented during the
corresponding movement with from (a) to (d): MR’s Gazebo environment, from (e) to (h): 2D input images, and from
(i) to (m): segmented images

Figure 16: Practical MR
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Figure 17: MR tracks the path based on the MR’s bird view from proposed KD-SegNet

Figure 18: The steering angle changing between coordinates with (a): rotation around x-axis and (b) rotation around
y-axis

Table 5: The influence of steering angle changing on the proposed KD-SegNet

MR’s frontal view Steering angle change (rad) Accuracy (%)

When rotating around x-axis

0.00 100
0.01 98.6
0.02 98.2
0.03 97.4
0.04 96.7

(Continued)
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Table 5 (continued)

MR’s frontal view Steering angle change (rad) Accuracy (%)
0.05 96.3
0.1 86.5
0.15 83.1

When rotating around y-axis

0.00 100
0.01 99
0.02 98.5
0.03 98.1
0.04 97.3
0.05 96.4
0.1 85.8
0.15 82.1

5 Conclusions
The paper proposes a real-time MR navigation solution that relies on extracting features from monoc-

ular camera images. Specifically, the SS model integrating with KD enhances the efficiency of training
and the speed of inference. Both the student and teacher models retain their outstanding performance.
Hence, the proposed KD-SegNet becomes a compact model that is efficient in segmenting, and capable of
training and inferring quickly. Furthermore, combining the Adam optimizer with Gaussian preprocessing
further improves the accuracy of segmentation and ensures environmental compatibility. Comparative
outcomes with contemporary methods including Binary-SegNet, PSP-Net, FCN, U-Net, and IRDC-Net
serve to illustrate the practicability of the proposed method. Experiments are performed on four datasets
of Cityscapes, Kitti, Cifar10, and TQB datasets yielding excellent evaluation outcomes. This opens up the
opportunity to optimally exploit system resources or deploy SS tasks on systems with limited computational
capabilities. When implemented in MR navigation, a 0.05 rad reduction in steering angle change enhances
the trajectory of the vehicle. Furthermore, it is evident that the proposed method effectively captures rapid
modifications in the operational MR’s environment. By minimizing Kullback-Leibler divergence, the authors
intend to extract the channel-wise probability map between the teacher and student models as a means
of expanding the scope of their investigation. Future experiments will combine model weight distillation
with other model compression methods to optimize performance for semantic segmentation tasks. Based on
the obtained semantic segmented outputs, real-time MR’s path planning is designed. Overall, the proposed
KD-SegNet model shows great promise for the development of MR’s perception systems.
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Glossary
CNN Convolutional Neural Network
CIRKD Cross-Image Relational KD
CRKD Contrastive Regularization Knowledge Distillation
CWD Channel-Wise Distillation
GPU Graphics Processing Unit
DL Deep learning
FCNs Fully Convolutional Networks
IFVD Intra-class Feature Variation KD
KD Knowledge Distillation
mIoU mean Intersection over Union
MRs Mobile Robots
PSP Pyramid Scene Parsing
SS Semantic Segmentation
SKD Structural KD
TransKD Transformer-based KD
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