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ABSTRACT: In multimodal learning, Vision-Language Models (VLMs) have become a critical research focus,
enabling the integration of textual and visual data. These models have shown significant promise across various
natural language processing tasks, such as visual question answering and computer vision applications, including
image captioning and image-text retrieval, highlighting their adaptability for complex, multimodal datasets. In this
work, we review the landscape of Bootstrapping Language-Image Pre-training (BLIP) and other VLM techniques. A
comparative analysis is conducted to assess VLMs’ strengths, limitations, and applicability across tasks while examining
challenges such as scalability, data quality, and fine-tuning complexities. The work concludes by outlining potential
future directions in VLM research, focusing on enhancing model interpretability, addressing ethical implications, and
advancing multimodal integration in real-world applications.

KEYWORDS: Bootstrapping language-image pre-training (BLIP); multimodal learning; vision-language model
(VLM); vision-language pre-training (VLP)

1 Introduction
The transition in Artificial Intelligence (AI) from unimodal to multimodal systems represents a revolu-

tionary change in how machines understand and engage with data. Conventional unimodal systems perform
exceptionally well when processing inputs from a single source, such as text, music, or pictures, but they
frequently fail to capture the subtleties inherent in multimodal datasets [1,2]. For example, understanding
a joke requires more than just processing the words; it also involves considering the tone of voice, facial
expressions, and contextual factors [3]. Comprehension is enhanced by integrating multiple sensory inputs,
highlighting the limitations of single-modality approaches [4].

The evolution of advanced Vision-Language Models (VLMs), such as Bootstrapping Language-Image
Pre-training (BLIP) [5], is built on a rich foundation of research and innovation. Around 2018, the field
witnessed a surge in interest in multimodal learning, particularly in the context of vision-language tasks.
Early works explored joint embeddings of visual and textual features, leveraging techniques such as canonical
correlation analysis [6] and deep neural networks [7]. The advent of large-scale image-text datasets, including
Conceptual Captions [8] and Visual Genome [9], fueled further advancements, enabling the development
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of more powerful VLMs [10–12]. Transformer-based architectures [13] quickly gained prominence, demon-
strating exceptional capabilities in capturing long-range dependencies and contextual relationships within
multimodal data [14,15]. Pre-training techniques, initially successful in natural language processing [16],
were adapted for vision-language tasks, leading to significant performance gains across a variety of bench-
marks [10,17,18]. This evolution culminated in sophisticated models capable of understanding individual
modalities and reasoning about their complex interplay, paving the way for an AI systems generation that
can truly see and speak. BLIP [5], a revolutionary framework that combines verbal and visual modalities, is
at the vanguard of this change. BLIP cultivates a sophisticated grasp of the interrelationships between these
aspects by using pre-training approaches on text and picture data.

Figure 1: Taxonomy of VLMs, illustrating key approaches, challenges, and applications [5,10,19–49]

In this paper, we present an extensive review of Vision-Language Pre-training (VLP), starting with an
in-depth investigation of its basic ideas and the development of important models. We look at important
contributions to the area, including advancements in visual representation techniques [16] and unified
frameworks for handling tasks such as image captioning and Visual Question Answering (VQA) [50]. While
numerous papers have provided insights into the development of multimodal and VLP [1,4], there remains
a critical gap in understanding the practical implications, which comes with an overview of the future
direction of recent advancements such as BLIP [5]. This review study aims to fill the gap by offering a detailed
analysis of the underlying principles and state-of-the-art approaches in VLP, highlighting the transformative
impact of VLMs, and offering a focused discussion on the synthesis of vision and language and its real-world
applications. To provide a better comprehensive view of VLMs, we have visualized the taxonomy as Fig. 1,
which organizes the landscape of VLMs into three primary areas: approaches, challenges, and applications.
Approaches such as BLIP and Contrastive Learning are designed to tackle the scalability and data quality
challenges inherent in multimodal tasks. Their applicability extends to various domains, including VQA and
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cross-modal retrieval, highlighting their flexibility. Our contribution implies summarizing existing research
and combining key insights into challenges and future potential in this domain.

The remainder of this paper is organized as follows. In Section 2, we provide a comprehensive overview
of the background of VLP and explore the diverse applications of VLP models. We then analyze their
performance on various benchmarks in Section 3. We discuss the challenges and future directions of VLP,
addressing critical issues such as data requirements, model interpretability, and ethical considerations
in Section 4. Finally, Section 5 concludes this work.

2 Overview of Vision-Language Pre-Training
VLP has garnered significant interest recently, emerging as a key methodology for bridging the gap

between visual and linguistic information. At its core, VLP seeks to develop models capable of understanding
and reasoning about the relationships between images and text, leading to performance improvements
in diverse tasks such as image captioning, VQA, cross-modal retrieval, and even language-guided image
generation, as illustrated in Fig. 2. Unifying these modalities allows for a deeper and more nuanced
understanding of the world, which aligns more closely with how humans process and interpret information
from multiple sources. VLP models leverage large-scale datasets containing paired image-text data to achieve
this, using pre-training objectives that align textual and visual embeddings in a shared semantic space.

Figure 2: An example of image-text retrieval with Visual Question Answering (VQA)

One significant milestone in VLP is the concept of unified pre-training, where models are trained
to handle multiple vision-language tasks under a single framework. The work [15] introduced the Vision-
and-Language BERT (ViLBERT) model, an early attempt to establish parallel streams for processing text
and image data, using co-attentional transformer layers to combine visual and semantic features effectively.
ViLBERT is trained with two tasks, as represented in Fig. 3, to reconstruct the input text and image, and
the multimodal alignment is predicted if the description correctly describes the image. Similarly, the Visual-
Linguistic BERT (VL-BERT) model [51] focuses on unifying visual and linguistic displays, emphasizing the
potential for transformer-based architectures to serve as a common backbone for VLP. These approaches
have laid the groundwork for subsequent advancements, where efforts have increasingly shifted toward
incorporating richer visual representations, such as those found in VinVL [21]. VinVL revisits the extraction
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of object-level features and integrates them into VLMs, demonstrating the critical role of high-quality visual
representation in enhancing model performance.

(a)

(b)

Figure 3: Two tasks in the training step of ViLBERT: (a) masked multimodal learning; (b) multimodal alignment
prediction

In addition, a notable development in VLP is the use of weakly supervised learning, as seen in the Simple
Visual Language Model (SimVLM) [22]. This model employs a simple, end-to-end transformer architecture,
as shown in Fig. 4, and demonstrates that training on large-scale data with weak supervision, without the
need for carefully curated annotations, can still achieve competitive results across various benchmarks. The
success of SimVLM underscores the importance of data scalability, suggesting that larger and more diverse
datasets, even when weakly labeled, can serve as a solid foundation for training robust VLP models, making
this approach particularly promising for scaling VLP to broader applications.

Figure 4: SimVLM Transformer architecture
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Region-based Contrastive Language-Image Pre-training (RegionCLIP) [24] further enhances VLP by
focusing on regional alignment between visual and textual content, which allows for a more granular level of
understanding. Unlike other VLP approaches that treat the entire image as a single entity [10,11], RegionCLIP
decomposes the image into meaningful regions, aligning these with corresponding linguistic descriptors, as
demonstrated in Fig. 5. One prominent technique within RegionCLIP that enhances interpretability is the
use of attention mechanisms, which allow the model to focus on particular parts of an image while drawing
matches to relevant textual descriptors, thus providing a more detailed understanding of the content. This
is particularly useful in tasks that involve complicated reasoning about object distinctions or at least regions
within an image, enabling the model to produce contextually appropriate answers.

Figure 5: RegionClip and CLIP Visual-text Matching

VLP has become a nexus of innovation, weaving visual and textual modalities to enable models that
recognize and describe images and infer deeper semantic alignments. Central to this effort is creating models
that can seamlessly interpret image-text pairings for tasks such as image captioning and VQA, as highlighted
by [19]. These systems synergize multiple vision-language tasks, emphasizing a holistic understanding of
cross-modal relationships. The BLIP [5] and Bootstrapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models (BLIP-2) [20] frameworks push this boundary further by refining
the alignment process between vision and language, introducing more robust mechanisms for harmonizing
visual and textual streams under a shared semantic canopy. They embody the shift from separate pre-training
streams toward a more interconnected, bidirectional understanding between modalities.

For video-based tasks, the study [52] extended VLP models to video contexts, demonstrating their
ability to perform well with minimal data. This highlights the adaptability of VLP methods in transferring
knowledge from static images to dynamic sequences. The work [53] further advanced this domain by
showcasing the benefits of training on large video corpora. Using distillation techniques, the model efficiently
extracts and retains critical visual information from vast datasets, essential for understanding complex, real-
world scenarios in video format. These advancements are particularly relevant for applications such as video
captioning and video content retrieval [48], where a deep understanding of video content is crucial.

The consideration of VLMs within remote sensing is either necessary or offers great potential for
recent developments in multimodal systems. SpectralGPT [54] is an example of a frontier foundational
model tailored to the needs of spectral remote sensing, utilizing a 3D generative pre-trained transformer
(GPT) architecture. The model combines spatial-spectral information input through innovative 3D token
generation and multi-target reconstruction mechanisms, enabling the processing of over a million spectral
images with exceptional performance in scene classification and change detection tasks. In infrared imaging,
UIU-Net [55] unveils a U-Net-based architecture particularly suited for the detection of small objects,
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a prerequisite for any fine-grained analysis concerning vision-language tasks. Its design retains spatial
information through skip connections while improving the model’s ability to detect small details that are
usually missed by more traditional approaches. This closely aligns with the demands put forth by VLMs
requiring accurate recognition of objects and proper context identification. LRR-Net [56] further emphasizes
interpretability in hyperspectral anomaly detection. When it yields understandable information about its
decision-making process, it fulfills an important requirement toward transparency in practical applications
so that it entrusts and comprehends what the model output entails.

In the medical domain, MedKLIP [47] and MedDr [49] demonstrate the transformative potential of
VLP in healthcare. MedKLIP integrates medical knowledge into pre-training, enhancing the interpretation
of complex medical images alongside textual descriptions [47]. MedDr, on the other hand, uses diagnostic
guidance to refine image-text associations, boosting performance in medical diagnostics [49]. VLMs
significantly impact healthcare by improving diagnostic accuracy, assisting in medical report generation,
and scaling services through automation. For instance, MedKLIP aids radiologists with context-aware image
interpretations, while MedDr enhances anomaly detection in specialized tasks [47,49]. However, challenges
persist, including the scarcity of annotated medical datasets, difficulties in generalizing across clinical
settings, and concerns about data privacy and model explainability. Addressing these issues through privacy-
preserving methods, diverse datasets, and collaborative efforts with clinicians could further solidify the role
of VLMs in advancing healthcare.

The rise of large-scale internet data has driven significant progress in vision and language technologies,
enabling advancements in automation. One such innovation, Manipulate-Anything [57], is an automated
approach for robot manipulation in real-world environments. Unlike traditional methods, it does not rely
on privileged state information, pre-defined skills, or a fixed set of objects, allowing the robot to perform
a wide variety of tasks with diverse, unseen objects. This approach also facilitates behavior cloning policies
that surpass the performance of human demonstrations. Similarly, recent studies on Large Language Models
(LLMs) for autonomous driving have shown promise in improving planning and control systems. However,
high computational demands and hallucinations remain challenges, impacting accurate trajectory prediction
and control signal generation. While deterministic algorithms offer reliability, they struggle with complex
driving scenarios and context-dependent uncertainty. VLM-Auto [58], a novel system for autonomous driv-
ing assistance, addresses these limitations by adapting driving behaviors based on a real-time understanding
of road scenes.

The integration of VLMs in urban planning transforms the analysis and management of urban
environments by combining satellite imagery and street-view visuals with textual data. UrbanVLP [59]
enhances urban profiling through a dual-branch contrastive learning method that aligns visual information
with generated textual descriptions, overcoming the limitations of traditional approaches. This innovative
framework significantly improves the accuracy and interpretability of urban analysis, outperforming existing
models in predicting key indicators such as GDP, population, and carbon emissions.

In image captioning, the paper [45] explored using VLP to generate personalized captions. This
approach aligns with the broader trend of adapting VLP models for user-specific applications, demonstrating
the ability to create captions that resonate with user preferences [45]. The work [46] underscored the
dynamism between textual and visual inputs, especially when handling nuanced image data, e.g., remote
sensing imagery. Additionally, the study [26] employed an attention-based mechanism that allows models
to focus on different aspects of an image while generating captions, enhancing their descriptive capabilities.

Optimization remains a key area in VLP research. Guo et al. [32] proposed reducing the computational
demands of VLP by optimizing the number of tokens required during training, enabling faster and more
resource-efficient model deployment. Additionally, Jian et al. [33] introduced a method that decouples
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language pre-training from the vision component, allowing for focused improvements in text understanding
without the need for simultaneous visual data processing. Prototypical Contrastive Language Image Pre-
training (ProtoCLIP) [34] and Capsfusion [35] further optimize the scale of image-text data, improving
model data efficiency. Meanwhile, BootPIG [36] pushes the boundaries of personalized image generation by
refining the model’s ability to generate contextually rich outputs with minimal prior data. Liang et al. [37]
enhanced training efficiency by introducing tailored masking techniques. In contrast, Radenovic et al. [38]
focused on the quality of training data, emphasizing the importance of high-quality negative examples for
sharpening the model’s ability to discern subtle variations in input data. Lastly, EmbodiedGPT [39] con-
tributes to this dialogue by proposing methods to strengthen the model’s reasoning capabilities, enhancing
the interaction between visual and linguistic modalities.

The study [60] explored VLP from a multimodal translation perspective, offering a comprehensive
view of the evolution of cross-modal models. These overviews highlight a collective push towards models
that are more flexible and capable of distilling intricate relationships between words and visuals, adapting
to increasingly complex real-world tasks [60]. In addition, the increasing use of prompt-based learning
approaches [19] has introduced a new dimension to VLP, allowing models to adapt more efficiently to low-
resource settings and specific downstream tasks [31]. Prompts act as targeted guidance during pre-training
and fine-tuning, enhancing model flexibility and reducing the need for extensive re-training when adapting
to new contexts.

Finally, datasets such as Common Objects in Context (COCO) [61], Visual Genome [9], and
Flickr30k [62] have been instrumental in VLP, providing paired image-text data that serves as the foundation
for pre-training many models. These benchmarks offer a consistent evaluation framework for tasks such as
image captioning and VQA, enabling researchers to track progress across different models.

3 Vision-Language Models: Comparison and Discussion
The field of VLP has seen significant progress through diverse approaches and methodologies, each

making unique contributions to tasks such as image captioning and VQA. These advancements can be
evaluated through a comparative lens by analyzing performance on shared benchmarks while identifying
each model’s strengths and weaknesses.

3.1 Dataset for VLM Training
The development of VLMs is deeply reliant on large-scale, high-quality datasets that capture diverse and

complex visual-textual relationships. Notable datasets include COCO Captions [44], Visual Genome [9],
Flickr30k [62], and VQA 2.0 [63], each playing a distinct role in advancing VLM capabilities.

The COCO Captions [44] dataset, with its rich human-annotated descriptions, serves as a strong
foundation for image captioning and image retrieval, enabling models to learn both object identification
and scene-level understanding. Visual Genome [9] complements this by offering detailed region-level
annotations, fostering fine-grained reasoning about object relationships, and enhancing performance in
visual question answering. Similarly, Flickr30k [62] provides diverse, colloquial descriptions that aid in
training models for less structured, conversational language use. The VQA 2.0 [63] dataset, through its
balanced question-answer pairs, ensures unbiased training and robust reasoning capabilities for answering
natural language queries based on visual inputs.

These datasets collectively enable robust representation learning, aligning visual and textual modalities
for cross-modal reasoning. COCO Captions [44] and Visual Genome [9] support pre-training for object-
level and scene-level comprehension, while Flickr30k [62] and VQA 2.0 [63] ensure adaptability to diverse
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linguistic and reasoning tasks. Additionally, Visual Genome [9] allows fine-grained object-level analysis, and
VQA 2.0 [63] further refines reasoning accuracy, reducing biases and enhancing generalization to real-world
scenarios. Together, these datasets underpin the versatility and effectiveness of modern VLMs.

3.2 Performance Metrics
Several key metrics are employed to assess the quality of text generated by VLMs about visual inputs.

Bilingual Evaluation Understudy (BLEU) [64] measures the overlap of n-gram between the generated and
reference texts. With a specific focus on sequences of up to four words, BLEU is particularly well-suited for
evaluating image captioning, enabling the assessment of how closely generated captions align with human-
generated references. It is defined as

BLEU-n = BP ⋅ exp(
n
∑
k=1

wk log pk), (1)

where pk is precision of k-grams, wk is weights for k-gram precision, often set to 1
n for uniformity, and BP

is the Brevity penalty to penalize short generated sentences, defined as

BP =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if c > r

exp(1 − r
c
) if c ≤ r

(2)

with c as the length of the candidate sentence and r as the length of the reference sentence.
Consensus-based Image Description Evaluation (CIDEr) [65] is also an effective evaluation metric in

assessing image descriptions. It focuses on measuring the degree to which generated captions align with
human-generated captions, emphasizing the consensus among human-provided captions by considering the
frequency of n-grams. CIDEr is represented as

CIDEr = 1
N

N
∑
i=1

∑4
n=1 gn(ci) ⋅ gn(si)
∥gn(ci)∥∥gn(si)∥

, (3)

where N represents the number of reference captions, gn(ci) denotes the term frequency-inverse document
frequency (TF-IDF) weighted vector for n-grams of the candidate caption ci , and gn(si) signifies the TF-IDF
weighted vector for n-grams of the reference caption si .

Additionally, Metric for Evaluation of Translation with Explicit ORdering (METEOR) [66] provides a
more sensitive evaluation to fluency and semantic understanding compared to BLEU. METEOR evaluates
generated text by considering synonyms, stemming, and word order, with the formula as

METEOR = Fmean ⋅ (1 − γ ⋅ Fragmentation Penalty), (4)

where Fmean is the Harmonic mean of precision and recall, i.e.,

Fmean =
(1 + α) ⋅ P ⋅ R

α ⋅ P + R
, (5)

with P as precision and R as recall, γ is the parameter to penalize fragmented alignments, typically set to 0.9,
and the Fragmentation Penalty is Penalty for unaligned words between the candidate and reference.
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Lastly, Semantic Propositional Image Caption Evaluation (SPICE) [67] focuses on the semantic content
of captions, measuring how well the generated captures relationships and objects depicted in the image.
SPICE is calculated by

SPICE = ∑R∈S min(Countc(R), Countr(R))
∑R∈S Countr(R)

, (6)

where S is the set of semantic propositions (relations, objects, and attributes) extracted from the captions,
Countc(R) is the count of a proposition R in the candidate caption, and Countr(R) is the count of a
propositionR in the reference captions.

3.3 Comparative Analysis
Tables 1–3 provide a comparative analysis of various VLP models on three benchmark tasks: image

captioning, VQA, and image retrieval. Performance is evaluated using standard datasets and evaluation
metrics, such as BLEU-4, CIDEr, METEOR, and SPICE for image captioning, VQA score for visual
question answering, and Recall@K (R@K) score for image retrieval. The specific details of each model are
outlined below.

Table 1: Comparison of different models for Image Captioning (IS) regarding various metrics

Model Dataset BLEU-4 CIDEr METEOR SPICE
Unified VLP [19] COCO Captions [44] 36.5 116.9 28.4 21.3

Flickr30k [62] 30.1 67.4 23.0 17.0
VinVL [21] COCO Captions 40.9 140.9 – 31.1

FewVLM [31] Flickr30k – – – 37.0
SimVLM [22] COCO Captions 40.3 143.3 – –

BLIP [5] COCO Captions 41.7 143.5 30.0 –
RegionCLIP [24] COCO Captions 40.5 139.2 – –

BLIP-2 [20] COCO Captions 43.7 123.7 – –
NoCaps [68] – – – –

FIBER [69] COCO Captions – 42.8 – –
NLIP [43] Flickr30K – – – 135.2
LCL [23] COCO Captions – 87.5 – –

Table 2: Comparison of different models for Visual Question Answering (VQA)

Model Dataset VQA score
Unified VLP [19] VQA 2.0 [63] 70.3%

VinVL [21] VQA 2.0 76.6%
FewVLM [31] VQA 2.0

(Few-shot)
51.1%

SimVLM [22] VQA 2.0 24.1%
BLIP [5] VQA 2.0 77.5%

BLIP-2 [20] VQA 2.0 79.3%
VILA [27] VQA 2.0 80.8%

(Continued)
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Table 2 (continued)

Model Dataset VQA score
GQA [70] 63.3%

LCL [23] VQA 2.0 73.4%

Table 3: Comparison of different models for Image Retrieval (IR)

Model Dataset R@1 score
TCL [71] COCO [61] 62.3%

Flickr30K [62] 88.7%
CLIP [10] COCO 58.4%

Flickr30K 88.0%
NLIP [43] COCO 82.6%

Cross-Attention Transformer [72] COCO 67.8%
Flickr30K 88.9%

DreamLIP [28] COCO 58.3%
Flickr30K 87.2%

The work [26] introduced a novel combined approach to visual attention by integrating bottom-up
and top-down mechanisms for tasks such as image captioning and VQA. Traditional top-down attention
models focus on task-specific context to attend to predefined spatial regions, often missing object-level
detail. In contrast, the study [26] proposes a bottom-up mechanism that leverages Faster R-CNN to
detect objects and salient image regions, which are then weighted through top-down task-relevant context.
This combined approach allows the model to focus on coarse and fine-grained details, leading to more
accurate and human-like image understanding. The model sets new state-of-the-art results on the COCO
Captions [44] and VQA [50] benchmarks, achieving a CIDEr score of 117.9 in image captioning and first
place in the 2017 VQA Challenge with an accuracy of 70.3 on VQA 2.0 [63]. The approach enhances
interpretability and performance by focusing attention at the object level, demonstrating broad applicability
across vision-language tasks.

The VLP model by [19] is a prominent example of a unified approach to handling vision-language
generation and understanding tasks, such as image captioning and VQA. This model is built on a shared
multi-layer transformer network used for encoding and decoding, which is pre-trained on a substantial
dataset of image-text pairs. The VLP model is optimized through unsupervised learning objectives, specifi-
cally bidirectional and sequence-to-sequence (seq2seq) masked vision-language prediction. The innovative
aspect of this model lies in its ability to use a single architecture for two distinct types of vision-language
tasks, resulting in state-of-the-art performance on benchmarks such as COCO Captions [44], Flickr30k
Captions [62], and VQA 2.0 [63]. On the COCO Captions [44] test set, the VLP model achieves a BLEU-4
score of 36.5 and a CIDEr score of 116.9. These results indicate strong performance in generating captions
that are both syntactically and semantically aligned with the ground truth. On the Flickr30k [62] test set, the
model achieves a BLEU-4 score of 30.1 and a CIDEr score of 67.4, demonstrating its ability to generalize well
across different datasets, though the performance is slightly lower than on COCO Captions [44], likely due
to the differences in dataset size and complexity. However, the model’s extensive pre-training requirements
make it computationally intensive, posing challenges in environments with limited annotated data.
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The work [10] introduced Contrastive Language-Image Pre-training (CLIP), a model that learns trans-
ferable visual representations by pre-training on 400 million image-text pairs. CLIP uses natural language
supervision to align images and captions, enabling powerful zero-shot transfer to downstream tasks. On
COCO [61], CLIP achieves R@1 scores of 58.4 for image-to-text retrieval and R@1 of 37.8 for text-to-image
retrieval. On Flickr30K [62], it achieves R@1 scores of 88.0 for image-to-text and R@1 of 68.7 for text-to-
image retrieval, demonstrating strong performance across different datasets. Additionally, CLIP matches the
accuracy of ResNet-50 on ImageNet [73] in zero-shot settings without using any ImageNet [73] training data.
While CLIP performs competitively across over 30 benchmarks, optimizing for task-specific scenarios is still
room for improvement.

VinVL [21] significantly enhances visual feature extraction through improved object detection. By pre-
training on datasets such as OpenImages, VinVL achieves robust results in tasks requiring detailed visual
understanding. On the COCO Captions dataset [44], VinVL attains a BLEU-4 score of 41.0 and a CIDEr
score of 140.9, outperforming many contemporaneous models. Its performance in the VQA task is also
noteworthy, achieving an accuracy of 76.6 on the VQA 2.0 [63] datasets. The model’s object-centric solid
visual representation drives these results, although this focus may limit its effectiveness in tasks where context
or abstract understanding is critical.

The research [25] introduced Frozen, a multimodal few-shot learner that extends the capabilities of
large pre-trained language models to vision-language tasks by training a vision encoder to transform images
into continuous embeddings. Frozen leverages this method to perform tasks such as captioning, VQA, and
few-shot learning of visual categories with minimal examples. The model achieves 48.4 accuracy on VQA
2.0 [63], outpacing a blind baseline (39.1) but trailing behind specialized models such as Oscar (73.8). Frozen’s
advantage lies in its ability to adapt to new tasks with few examples despite not achieving state-of-the-art
results. Its strength is in generalization across diverse tasks without fine-tuning, but its reliance on pre-trained
language models may not perform as well on large datasets.

The study [74] proposed PICa, a method that leverages GPT-3’s few-shot learning ability for knowledge-
based VQA. Instead of relying on structured external knowledge bases, PICa prompts GPT-3 with image
captions or tags to retrieve and reason over relevant knowledge jointly. This approach simplifies VQA by
treating GPT-3 as an implicit knowledge base, achieving state-of-the-art results on the OK-VQA [75] dataset,
with a significant accuracy boost to 48.0, and showing strong few-shot performance on VQA 2.0 [63].

FewVLM [31] adopts a prompt-based learning approach tailored for low-resource vision-language
tasks. By leveraging prompt designs such as Prefix Language Modeling (PrefixLM) and Masked Language
Modeling (MaskedLM), FewVLM efficiently guides model performance, achieving competitive results even
with significantly fewer parameters. In particular, FewVLM outperforms the Frozen model (31x larger) by
18.2 in VQA tasks and achieves results comparable to PICa, which is 246x larger. This makes FewVLM espe-
cially useful for zero-shot and few-shot learning scenarios where computational resources are constrained.
Despite its success, FewVLM may not match the performance of extensively pre-trained models on larger
benchmarks, particularly in tasks requiring substantial prior knowledge. Nonetheless, the model’s robustness
in low-resource environments highlights its effectiveness and practicality.

SimVLM [22] is a minimalist approach that simplifies the pre-training process using weak supervision
from large-scale noisy data. This model relies on a single Prefix Language Modeling objective and eliminates
the need for object detection pre-training, simplifying the training process and improving scalability.
SimVLM achieves state-of-the-art results across multiple vision-language benchmarks, including VQA [50],
NLVR2, SNLI-VE, and image captioning tasks. Its strength lies in its simplicity and strong generalization
capabilities, enabling zero-shot and few-shot learning. However, due to its minimalist design, its performance
may be limited in tasks requiring intricate visual-textual interactions.
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The paper [69] presented Fusion-In-the-Backbone-based transformER (FIBER), a vision-language
model that integrates multimodal fusion directly within the backbone using cross-attention layers. This
enables FIBER to handle high-level tasks such as VQA and image captioning as well as fine-grained tasks
such as object detection and phrase grounding. The model adopts a two-stage pre-training strategy: i) coarse-
grained pre-training on image-text data, followed by ii) fine-grained pre-training using image-text-box data.
FIBER achieves state-of-the-art performance across multiple benchmarks, including 78.55 accuracy on VQA
2.0 [63], 42.8 CIDEr on COCO Captions [44], and robust results on LVIS object detection. Despite these
successes, fine-grained pre-training on high-resolution images comes with significant computational costs,
and the model may inherit biases from large-scale datasets.

The study [72] introduced an innovative method for Text-to-Image retrieval by embedding object priors
and leveraging a cross-attention transformer. Their model improves image-text alignment and retrieval
accuracy by using detected objects as anchor points. Additionally, the query-agnostic nature of the model
significantly accelerates inference compared to query-dependent approaches. On the Flickr30K [62] dataset,
their method achieves an R@1 score of 73.6 for Text-to-Image retrieval and 88.9 for Image-to-Text retrieval.
On the COCO dataset [61], the model achieves an R@1 score of 52.4 for Text-to-Image retrieval and 67.8 for
Image-to-Text retrieval, surpassing state-of-the-art methods while maintaining inference efficiency.

BLIP [5] is a novel approach that integrates vision-language understanding and generation tasks within
a unified framework. This model uses a bootstrapping method, combining a multimodal mixture of encoder-
decoder (MED) architecture with a captioning and filtering mechanism (CapFilt) to improve the quality
of training data. BLIP achieves state-of-the-art performance across various vision-language tasks, including
image-text retrieval, image captioning, VQA [50], and visual reasoning. Its strength lies in its ability to handle
understanding and generation tasks effectively. Still, the complexity of its bootstrapping process and the need
for large-scale data make it computationally intensive.

The following papers present various innovative approaches for advancing VLP, each focusing on
distinct methodologies and evaluated on benchmarks such as ImageNet, MSCOCO, and Flickr30K. The
paper [76] introduced Masked Image Pre-training on Language Assisted Representation (MILAN), which
enhances masked image modeling by leveraging language-based semantic features, excelling in ImageNet
classification and semantic segmentation tasks. The authors in [77] proposed MS-CLIP, which explores
parameter sharing between vision and text encoders, achieving efficiency without sacrificing accuracy by
sharing most transformer layers while incorporating lightweight modality-specific modules for further
improvements. It achieves a 13% boost in zero-shot classification and a 1.6-point increase in linear probing
across 24 downstream tasks. The study [34] proposed ProtoCLIP, which enhances CLIP through prototype-
level discrimination, grouping semantically similar representations more effectively and mitigating modality
gaps, improving retrieval and classification tasks. The work [78] introduced GrowCLIP, an automatic model-
growing framework that scales as data increases, significantly improving zero-shot classification accuracy
by 2.3% and enhancing retrieval performance. Finally, the paper [33] presented Prompt-Transformer (P-
Former), decoupling language pre-training from visual components, optimizing prompt predictions with
fewer image-text pairs. However, more paired data may be needed for the best results in some scenarios. Each
approach has its strengths, with MS-CLIP and ProtoCLIP standing out for their performance and efficiency
gains, while GrowCLIP excels in scalability and MILAN offers rich semantic feature learning.

RegionCLIP by [24] emphasizes region-specific pre-training, aligning visual regions with corre-
sponding textual descriptions. This approach performs strongly in tasks requiring fine-grained visual
understanding, such as open-vocabulary object detection and segmentation. On COCO Captions [44],
RegionCLIP achieves a CIDEr score of 139.2 and a BLEU-4 score of 40.5. In open-vocabulary object detection
on the LVIS [79] dataset, RegionCLIP reaches an average precision of 29.3, demonstrating its ability to
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generalize to unseen categories. However, relying on region-specific annotations and pre-trained models as
CLIP limits its broader applicability.

The paper [71] introduced Triple Contrastive Learning (TCL) for VLP, leveraging cross-modal and
within-modal self-supervision. Experimental results demonstrated that TCL delivers competitive, state-of-
the-art performance on popular downstream tasks such as image-text retrieval and VQA, using datasets
such as COCO [61] and Flickr30K [62]. However, the model exhibits some limitations, including biases and
reduced performance for underrepresented groups.

The work [20] introduced BLIP-2, a VLP model designed to efficiently bridge the gap between visual
and textual modalities by leveraging frozen pre-trained image encoders and LLMs. BLIP-2 uses a lightweight
Query-Former (Q-Former), trained in two stages: vision-language representation learning and vision-to-
language generative learning. The model achieves state-of-the-art performance across multiple benchmarks,
such as outperforming Flamingo80B [80] by 8.7 points on zero-shot VQA 2.0 [63] while using 54 times fewer
trainable parameters. BLIP-2 also achieves impressive results, including 123.7 CIDEr on NoCaps [68] and
43.7 BLEU-4 on COCO Captions [44], demonstrating strong generalization capabilities. However, BLIP-2
has limitations, including suboptimal in-context learning due to its reliance on frozen models, as evidenced
by a lack of improvement in VQA tasks. Additionally, the model may produce unsatisfactory image-to-text
generations due to outdated or inaccurate knowledge in the LLM, and similar to other large language models,
BLIP-2 inherits the risk of generating biased or offensive content.

Huang et al. [43] introduced Noise-Robust Language-Image Pre-training (NLIP), a novel VLP
framework that handles noisy image-text pairs. The framework incorporates two key strategies, noise
harmonization, and noise completion, to effectively mitigate common noise issues in image-text pre-training.
NLIP achieved state-of-the-art performance in tasks such as image retrieval and image captioning, with
impressive results on benchmarks such as COCO [61] (R@1 of 82.6) and Flickr30K [62] (CIDEr score
of 135.2).

Liu et al. [29] introduced Large Language and Vision Assistant (LLaVA), the first multimodal model to
leverage GPT-4 for generating language-image instruction-following data. By instruction tuning on these
data, LLaVA combines a vision encoder with an LLM to perform visual and language understanding tasks.
LLaVA achieves an 85.1% relative score compared to GPT-4 on a multimodal instruction-following dataset
and sets a new state-of-the-art accuracy of 92.53% when fine-tuned on ScienceQA [81], showcasing strong
multimodal chat and reasoning capabilities.

The authors in [28] proposed DreamLIP, a novel VLP model that leverages long, detailed captions
generated by a Multi-modality Large Language Model (MLLM) to enhance the learning of image-text
alignments. By re-captioning 30 M images with longer descriptions, DreamLIP uses sub-caption sampling
and a grouping loss to match sub-caption embeddings with their corresponding local image patches. This
approach significantly improves the model’s fine-grained representational capacity. DreamLIP outperforms
state-of-the-art models, such as CLIP trained on 400 M image-text pairs, across image-text retrieval and
semantic segmentation tasks, achieving an R@1 score of 87.2% on Flickr30K [62] and 58.3% on COCO [61]
for text retrieval, with fewer data and better efficiency.

Lin et al. [27] introduced Visual Language (VILA), a visual language model that enhances LLMs with
visual inputs by optimizing the pre-training process. The study presents several key findings. First, freezing
LLMs yields decent zero-shot results, but limits in-context learning, which requires unfreezing. Second,
interleaved image-text data improves performance over image-text pairs alone. Third, re-blending text-only
instruction data boosts both text and visual tasks. VILA outperforms other models, achieving 80.8% on VQA
2.0 [63], 63.3% on GQA [70], 60.6% on VisWiz [82], and 66.6% on TextVQA [83] across benchmarks.
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Han et al. [30] proposed Anchor-based Robust Fine-tuning (ARF) to preserve the out-of-distribution
(OOD) generalization capabilities of models, particularly CLIP, during fine-tuning. ARF uses text-
compensated anchors and retrieved image-text pairs to maintain rich semantic information and prevent
overfitting. On the ImageNet [73] domain shift benchmark, ARF achieves an average accuracy of 61.3%, out-
performing other fine-tuning methods. In zero-shot learning, ARF achieves 55.6% accuracy across tasks such
as Caltech101, OxfordPets, and StanfordCars, while maintaining competitive in-distribution performance.

Finally, the study [23] proposed Latent Compression Learning (LCL), a novel framework for pre-
training vision models on interleaved image-text data, leveraging the mutual information between inputs
and outputs of a causal attention model. LCL achieves competitive performance compared to CLIP on
the image-text pair dataset LAION-400M and significantly outperforms other methods on the interleaved
dataset MMC4. It achieves 75.2% top-1 accuracy on ImageNet [73], 48.5% R@1 on COCO retrieval [61], and
87.5 CIDEr on COCO captions [44].

3.4 Summary and Discussion
In general, VLP has seen the development of diverse models, each with unique strengths and weak-

nesses. For example, the Bottom-Up and Top-Down Attention model [26] excels in object-level detail
extraction, leading to superior performance in image captioning and VQA, but its reliance on complex object
detection might limit generalizability. VLP [19] offers a unified approach for image captioning and VQA
through transformer-based architectures, but its heavy pre-training requirements pose computational chal-
lenges. CLIP [10] shines in zero-shot learning across tasks, though it falls short in task-specific optimization.

VinVL [21] improves visual feature extraction, setting benchmarks in image captioning and VQA, but
may struggle in abstract contextual tasks. SimVLM [22] simplifies pre-training using weak supervision,
allowing scalability and robust generalization, but may underperform in tasks requiring detailed visual-
text interaction. BLIP [5] integrates vision-language understanding and generation effectively, although its
bootstrapping complexity demands substantial computational resources.

FewVLM [31] is particularly strong in low-resource environments, offering competitive performance
with fewer parameters, though it may not excel on larger, more complex datasets. Frozen [25] demonstrates
adaptability in few-shot learning but lacks state-of-the-art results compared to specialized models. Dream-
LIP [28] focuses on fine-grained image-text alignment, achieving top-tier performance in image retrieval
tasks, although it still relies on large-scale data and processing.

4 Challenges and Future Directions

4.1 Challenges
When scaling language-image pre-training models, various challenges require substantial computa-

tional and data-handling capacities. For example, the authors in [40] faced significant difficulties when
increasing the dataset from 400 million to 2 billion images using the LAION-2B dataset. This process
required a massive infrastructure for data management and model training. Training VLMs on large datasets,
such as LAION-2B, presents scalability challenges. Specifically, the amount of data requires precise pre-
training and fine-tuning strategies to manage computational resources while avoiding overfitting issues
effectively. Research in this field aims to develop approaches that decrease the complexity of training
while maintaining efficacy. These include knowledge distillation and progressive resizing, which allow more
effective exploitation of computational resources by concentrating on the most informative samples during
training [84]. Furthermore, recent innovations in model architectures aim to make the training process
smoother by introducing adaptive learning rates and dynamic sampling strategies that could dramatically
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scale up the process without compromising interpretability or performance. Switching from a Vision
Transformer-Large (ViT-L) image encoder to a Vision Transformer-Huge (ViT-H) [11], which has twice the
parameters, dramatically increased the computational load. Additionally, scaling the text encoder to match
the larger image encoder exacerbated the strain on computational resources. Despite increasing the sampled
data to 25.6 billion (64 epochs of 400 million data points), the longer training times did not always yield
proportional performance improvements, highlighting the challenge of balancing computational cost and
model effectiveness.

In the medical domain, the study [85] encountered another significant obstacle: the lack of textual
descriptions for brain scans. This shortage hindered the model’s ability to perform VQA effectively, as the
absence of paired text made it difficult to describe observed features. Although MedBLIP aimed to mitigate
these computational challenges by not training models from scratch and leveraging pre-trained VLMs, the
substantial computational power required remained a challenge.

Additionally, the work [41] introduced further complications when curating large, high-quality, mul-
tilingual, multimodal datasets. Many current VLMs are predominantly trained using just one language,
primarily English, which may lead to biases related to cultures and regions and restrict the use of VLMs
in different linguistic contexts [10,86]. Training VLMs with multilingual text significantly improves their
ability to understand diverse cultures and visual content across languages, enhancing their effectiveness
in various linguistic contexts. The AltCLIP framework [87] introduces an innovative approach to training
bilingual and multilingual models by integrating the XLM-R text encoder in place of OpenAI’s CLIP encoder.
This method employs a two-step training process that includes teacher learning and contrastive learning,
which contributes to the model’s overall performance. The paper [88] presents KELIP, a bilingual model
that has been trained on an impressive 1.1 billion image-text pairs, comprising 708 million in Korean
and 476 million in English. By utilizing advanced techniques such as MAE pre-training and multi-crop
augmentation, KELIP excels in both languages. This work illustrates the potential of multilingual training
and effective strategies for enhancing the capabilities of VLMs. Training for VLMs often requires large
datasets and substantial computational resources, raising sustainability concerns. One possible solution is
to train effective VLMs using smaller image-text datasets by leveraging the supervision among image-text
pairs [89,90]. Recent studies have also investigated pre-training VLMs with LLMs [91,92], improving the
process by enriching the textual data associated with image-text pairs. This additional language knowledge
enhances the model’s ability to learn vision-language correlations more effectively. Managing and processing
vast amounts of data from multiple languages required large-scale computational resources and meticulous
alignment and synchronization between image and text data across different languages and modalities.
Even though there were efforts to ensure high-quality annotations, ensuring consistency across such diverse
datasets continued to pose significant computational and logistical hurdles. Moreover, the complexity of
combining these modalities to create a cohesive model that performs well across languages underscores the
need for sophisticated systems that can handle the scale and diversity of such datasets.

The challenges related to model interpretability and explainability arise from the two-stage frame-
work [42]. While the mask proposal generation provides visual insights into segmented regions, the challenge
lies in the granularity of these proposals, as they may overlap or fail to delineate particular objects properly,
making interpretation difficult in some cases. The reliance on the CLIP-based classification system also
introduces limitations because the model explanations depend heavily on the textual prompts used. Crafting
appropriate prompts for each class can be subjective and may not always yield the best classification,
thus posing a challenge to maintaining transparency and consistency in model outputs. Moreover, while
prompt learning offers a way to improve the adaptability of text prompts, tuning these prompts requires
extensive computation, and even minor changes can drastically affect the model’s interpretability. Balancing
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the accuracy of predictions with clear, interpretable outputs remains an ongoing challenge, particularly in
complex scenes where multiple classes and objects interact.

4.2 Ethical Considerations
Ethical considerations in VLMs encompass crucial dimensions such as safety, privacy, equity, and

the potential for harm, thereby ensuring the responsible evolution and application of these technologies.
The term “ethics” in this context denotes adherence to societal norms designed to protect individuals and
communities from harm, bias, and exploitation while fostering equity, security, and transparency [93,94].
Safety pertains to the creation of models that offer sound advice, circumvent the generation of harmful or
misleading information, and deter misuse through strategies such as reinforcement learning from human
feedback (RLHF) and supervised fine-tuning (SFT) [93,95]. Privacy concerns are centered on the protection
of sensitive and identifiable information contained in multimodal datasets through stringent data governance
and anonymization techniques, with frameworks such as VLSBench playing a role in preventing visual safety
information leakage (VSIL) [93]. Fairness is concerned with ensuring equitable treatment across various
demographics, addressing biases with diverse datasets, fairness-oriented training objectives, and alignment
datasets such as SPA-VL [94]. The mitigation of harmfulness involves averting outputs that incite violence,
promote inappropriate content, or disseminate harmful ideologies through adversarial training and harm
detection systems [95]. Comprehensive evaluation frameworks such as VLFeedback are instrumental in
examining responses for biases, offensiveness, and safety, thereby facilitating continuous enhancements in
alignment and robustness [95]. Collectively, these measures provide a robust foundation for ethically sound
VLMs, enabling their safe and equitable deployment in practical settings.

4.3 Research Directions
Future research directions for advancing VLMs across different tasks are highlighted in [96,97]. In

particular, improvement in the generalizability and transferability of prompt learning methods should be
focused on recommendations made for scaling instance-conditional prompts to larger models, using more
extensive training images, and incorporating diverse datasets [96]. Further exploration of the Conditional
Context Optimization approach in new tasks and domains is recommended to assess its robustness and effec-
tiveness, aiming to develop more scalable prompt learning techniques. In [97], challenges in open-vocabulary
object detection are addressed through methods that optimize embeddings for negative proposals, improving
the distinction from class embeddings. Refinement of positive proposals is also suggested to enhance context
grading and strengthen prompt representation learning. Extension of the DetPro approach to additional
datasets is emphasized as a key step in evaluating generalization capabilities across tasks.

Future research is also encouraged to focus on advanced pseudo-labeling techniques and self-training
methods to enhance unsupervised prompt learning [98]. The proposal includes extending the Unsupervised
Prompt Learning (UPL) framework beyond image classification to tasks such as object detection and
segmentation to validate its generalizability. Optimizing interaction between image and text encoders within
VLMs is also highlighted as essential for boosting performance and efficiency. Similarly, in [43], a Noise-
robust Language-Image Pre-training (NLIP) framework is proposed, introducing noise-harmonization and
noise-completion schemes to stabilize pre-training. These noise-robust learning methods could be applied
across various cross-modal pre-training models, potentially improving performance in fine-grained tasks
such as open-world object detection, segmentation, and image generation.

Future research directions for the BLIP-2 framework suggest scaling it to integrate larger image and
language models to enhance zero-shot performance, with an emphasis on improving cross-modal alignment
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by refining interactions between the Q-Former and language models [20]. In addition, incorporating in-
context learning through sequential image-text pairs could advance performance on VQA tasks. Extending
BLIP-2 to address more complex challenges, such as visual commonsense reasoning and open-world image
generation, is also recommended, along with mitigating risks associated with bias, misinformation, and
privacy. Lastly, in the domain of multimodal machine translation (MMT), a recent survey [60] highlights
the importance of addressing weakly grounded datasets, which lack direct visual-text relevance, such as
How2, in contrast to strongly grounded datasets, such as COCO. To tackle these grounding issues, the
survey advocates expanding datasets through automated means and developing pre-trained models that
more effectively integrate visual information into text-to-text translation, particularly for applications with
weaker visual relevance, such as subtitle translation. Furthermore, the high reliance on human annotations
presents an ongoing challenge in producing high-quality, large-scale datasets, emphasizing the need for
scalable solutions in both BLIP-2 and MMT frameworks.

5 Conclusion
In recent years, tremendous progress has been made in the field of VLP, with models such as BLIP [5],

RegionCLIP [24], and FIBER [69] exhibiting outstanding performance on a variety of tasks. These state-
of-the-art methods have used cutting-edge methodologies such as coarse-to-fine pre-training, region-based
learning, and unified pre-training to improve their understanding and generation skills. Consequently,
VLMs have been used in various domains, including cross-modal retrieval, picture captioning, VQA, and
even specialized fields such as medical report production. Even with these noteworthy successes, much work
must be done before VLP models can reach their full potential. Promising prospects for future research
directions are presented by persistent challenges, including the need for better model interpretability and
explainability, the ever-growing data and computational requirements [99], and the crucial need to ensure
ethical considerations in the development and deployment of these potent technologies [100].

Prospects for VLP model development are quite promising for novel developments. With the potential
to facilitate more intuitive, natural, and contextually aware communication, these models can completely
transform the way humans and machines communicate [101]. VLMs are expected to revolutionize a
wide range of industries, including healthcare [47,49], education, and entertainment [19], as they become
more reliable, scalable, and interpretable. The future of VLP lies in the collective efforts of researchers,
developers, and stakeholders to address the remaining challenges, explore novel architectures and learning
paradigms [102], and ensure the ethical and responsible development of these powerful technologies [103].
By embracing this challenge, we can unlock the true potential of VLP models and pave the way for a future
where human-machine collaboration reaches unprecedented levels of sophistication and effectiveness.
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