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ABSTRACT: Studies to enhance the management of electrical energy have gained considerable momentum in recent
years. The question of how much energy will be needed in households is a pressing issue as it allows the management
plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted
to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption
based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between
the electrical and environmental variables is presented. Then, a resampling process is applied to the initial data set to
generate three other subsets of data. All the subsets were evaluated to deduce the adequate granularity for the prediction
of the energy demand. Then, a cloud-assisted deep neural network model is designed to forecast short-term energy
consumption in a residential area while preserving user privacy. The solution is applied to the consumption data of four
appliances elected from a set of real household power data. The experiment results show that the proposed framework
is effective for estimating consumption with convincing accuracy.

KEYWORDS: Electrical load forecasting; cloud computing; smart grid; weather attributes; energy consumption; time-
series analysis

1 Introduction
In recent years, energy consumption has witnessed a remarkable surge [1]. In the residential envi-

ronment, this can be attributed to the augmented number of household appliances. Numerous initiatives
are being implemented by governments and international organizations to prompt the transition towards
renewable energy sources [2]. Faced with escalating electricity bills, an increasing number of households
are opting to install photovoltaic solar panels on the rooftops of their residences [3,4]. The surplus energy
generated locally by these households occasionally gets redistributed into the electrical grid. In all such
circumstances, understanding the future energy requirements of households is vital for both end-users and
the energy generation industry [5]. This will substantially contribute to the reduction of CO2 emissions
in the atmosphere, thereby mitigating its impact on global warming. The energy prediction solutions
can be categorized into three types based on the desired prediction timeframe: short-term forecasting,
medium-term forecasting, and long-term forecasting [6].
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The question of inference is approached in the scientific community from two angles [7]. One is based
on the use of statistical-oriented methods, smoothing methods as well as the study of the graph generated
by the electrical load [8]. The second one uses emerging methods based on Machine Learning and deep
learning strategies to analyze the patterns exhibited by the data and then perform inference of the energy
consumption [9,10]. The solution proposed in this research makes use of techniques from both approaches
based mainly on hypotheses drawn from the data.

The achievements of this work could be synthesized as follows:

• The statistical study of the correlation between the factors collected on both the power line and the
environmental constants is highlighted. This is to validate the use of the climate as a soft sensor for the
prediction of electrical energy on the data used for the analysis. Thus, the consumption of the appliances
in the house can be deduced without the need for any additional installation,

• A signal decomposition of the electrical load based on the Fast Fourier Transform (FFT) to extract
the set of components with various frequencies that make the original signal. The representation in
the frequency domain of the electrical load is then used to deduce additional time windows for the
data rescaling,

• The design and implementation of an efficient deep learning model for the inference of electricity
consumption, which will allow the establishment of new policies to satisfy the demand response and
lead to a sustainable energy economy.

In the next sections, a description of the state of knowledge in the domain of power load prediction will
be proposed. Then, the presentation of the methodology used as well as the data and the implementation
architecture of the solution will follow. The deep learning model is then introduced and the experimental
phase using data collected in households will be provided. The contribution will be rounded off with a
discussion of the results and a view on the limitations of the proposed solution and take-home ideas.

2 Related Works
Research in the energy field has received significant attention in recent years. Governmental initiatives

are steadily moving towards the rapid decarbonization of the energy production industries. The amount of
research dealing with domestic energy consumption prediction is growing due to a variety of motivations,
such as obtaining knowledge about demand factors, understanding the diverse patterns of power usage to
develop alternative strategies based on demand response behavior, or assessing the socio-economic and envi-
ronmental implications of power generation leading to an improved sustainable economy. The techniques
put forward throughout the years are Auto-Regressive Moving Average (ARMA) [11], Auto-Regressive (AR),
and Moving Average (MA).

As smart meters are increasingly used in households, there is a growing body of data available for
research in this area [12]. Smart homes are now emerging as an interesting solution in the trend to reduce
energy consumption using Energy Management Systems (EMS). There are generally two ways to obtain
energy distribution at the device level [13]. The intrusive way requires an electric meter on each channel of
the household to record consumption directly on the power line and the non-intrusive way analyzes only
the energy entering the household to find the share of each appliance [14,15].

The cloud resources are used to ensure data security in the collection of energy consumption data.
Reference [16] proposes an online solution for appliance consumption modeling. The concern that is attached
to such a system is related to the security of the system [17,18]. The classic architecture of a cloud system
includes sensors, IoT gateway, cloud data storage, wireless networks, and the IoT application service to
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interconnect and assure safe information transfer [19,20]. As mentioned in [21,22], and [17], many users care
about the kind of information that is collected and the uses to which it is put.

Various privacy preference expression frameworks are proposed to handle IoT services data gathering.
Reference [23] presents a fast convergence heterogenous user privacy-preserving consensus. To solve
problems related to device pairing and authentication, a key agreement protocol using the symmetric
balanced incomplete block design is proposed by [24]. The algorithm is suitable for group data sharing since
it allows the generation of a unique conference pass for users. The trust concern in a cloud system is scatted at
every level of the edge architecture. Just as the client-side can be subject to attacks, the server-side must also
be secured to eradicate information leaks in the internal network of cloud services [25]. A trust assessment
method for the security of cloud services is proposed by the research in reference [26]. The evaluation of the
proposed method testifies the effectiveness of the solution. The use of an edge system offloads computational
tasks from the end nodes’ level and offers the possibility to take advantage of all resources available at different
levels [27]. The proposed approach makes use of this advantage to dispatch the computational load between
the different nodes of each level in the cloud system.

Machine learning-based energy prediction models are recently used in the domain of electricity
management to evaluate the amount of power needed for the household [28,29]. Paper [29] presents a novel
Long Short-Term Memory (LSTM) models that can adapt to environmental conditions. The particularity of
the proposed model is that the contextual working detail is provided to the network during the disaggregation
process and newly collected information is used to retrain the model to update the weight according to
the latest appliance signature captured. The assessment of the sequence-to-sequence model presented in
this work was conducted using the AMPds [30], REFIT [31], and REDD [32] datasets. The context-aware
bidirectional long-short term neural network performs relatively better than Convolutional Neural Networks
(CNNs), the unidirectional LSTM, the Factorial Hidden Markov Models (FHMM), and the baseline CO
model of Hart [33]. The drawback of this model is that the model relies on new actual data to update the
weights and biases learned in the past time.

In reference [34], the authors present a technique to estimate hourly AC (Air Conditioning) consump-
tion based on the temperature and the total consumption of commercial buildings in Japan. The experiments
were conducted using the BEMS dataset [35]. Since the operation state data is not available, authors make
use of Self-Organizing Maps (SOMs) and K-means clustering to estimate the operation state, then design a
prediction model to estimate AC demand using a regression model. The research was based particularly on
the AC demand estimation because the total consumption is highly correlated to the AC demand in those
buildings (greater or equal to 0.848).

Some scholars used weather data to improve the accuracy of energy consumption forecasting. In
reference [36], a heuristic algorithm was proposed, which utilized outdoor observation data to create a
weather profile database. By comparing this data with temperature forecasting data, the energy consumption
was obtained. The authors also formed a weather data profile by clustering weather data and determined
the optimal number of clusters through experiments. In reference [37], a method for energy consumption
prediction using weather forecast data has been proposed, which trains the prediction model by considering
the dependency relationship between energy consumption and weather data. In addition, feature analysis
was conducted using SHapley additive interpretation. The results indicate that temperature, wind speed,
duration of rainfall, and precipitation have a normal impact on the model.

As can be observed in recent literature, a great amount of work has been proposed on the topic of energy
forecasting in commercial areas as well as residential areas. We present in this research a new approach
starting with a detailed analysis of the existing relationship between climate and energy consumption in
residential areas. A non-intrusive architecture leveraging the benefits of cloud computing is then designed
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and evaluated on the predefined problem. The inference of energy demand is then addressed from a different
perspective and a comparison of the outcomes of the newly established solution and conventional approaches
is outlined.

3 Proposed Methodologies
In this section, we introduce the framework of proposed methodologies, the dataset, and the data

preprocessing method.

3.1 Cloud-Assisted Platform
The need to obtain itemized electricity consumption and make energy demand predictions in residential

areas is a hot topic. For this purpose, an increasing number of smart meters are being deployed in homes to
capture the consumption that transits through the circuits. This approach inevitably leads to the intrusion of
additional sensors in the users’ living environment, which raises privacy issues. To address this challenge, a
platform using a soft-sensor approach based on an alternative variable to predict the power consumption of
devices is introduced in this work. The data monitoring system required for the study is two-fold consisting
of modules for collecting the electrical load and a weather station for monitoring the climate parameters.
The collected data are then converged to the appropriate gateway and safeguarded on the cloud storage for
further processing. The illustrative diagram of the platform is portrayed in Fig. 1.

Figure 1: The illustrative diagram of the platform

3.2 Time-Series Analysis
This section presents a synthetic overview of the analysis and processing of the time-series for

forecasting. By definition, a time-series refers to a succession of time-based reading recorded at regular spans.
For a set of t discrete-samples x1,..., xt , where xi (with 1 ≤ i ≤ t) is the observation at the time i, we may
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then frame the time-series prediction problem as the task of forecasting the values of xn+1,..., xn+ j, having
the preceding samples x1,..., xn (n + j≪ t), to nullify the gap between the estimated value xn+i and the
groungtruth observation xn+ j (1 ≤ i ≤ j).

Three essential components need to be introduced regarding the time series:

• Trend—The increasing or decreasing linear behavior of the series over time. A trend can be rising
(upward), falling (downward), or flat (stationary).

• Seasonality—The repeating patterns or cycles of behavior over time. For example, an escalation of the
use of the heater in winter because of the drop in temperature.

• Residual—The variability in observations that cannot be explained by the model.

Other decomposition criteria can equally be included. A key criterion to validate the applicability of
time-series data analysis is stationarity. This implies that the mean, variance, and auto-correlation profiles
do not change with respect to the time. When a time-series is not stationary, several processing steps are
required prior to the implementation of forecasting approaches.

The interaction between these variables must be evaluated to assess the relevance of the feature. The
linear and non-linear methods can be investigated depending on the time-series patterns. We refer to the
reader to [38–40] for further introduction to time-series analysis.

3.3 Dataset and Pre-Procession
To validate the solution presented in this paper, we have used the Smart* (pronounced smart star)

dataset [41] which offers in addition to the records of the electrical loads the climate data of the experimental
area. The Smart* dataset includes UMass Smart* Home Data Set and UMass Smart* Microgrid Data Set,
which are all collected by installed sensors. Monitoring data from appliances such as the HVAC circulator,
clothes dryer, refrigerator, and water heater are collected at a frequency ranging from 30 to 1 min. Weather
information is recorded every hour. The data set contains measurements from 7 households for one to three
years between 2014 and 2016. The weather station used in the house provides weather attributes such as
precipitation, wind speed, temperature, pressure, humidity, etc. The sample size is about 8760 each year. To
balance the two subsets of data, we rescaled the power measurement to match the number of records available
in the weather information. The frequency was modified to 1 h by summing the consumption between each
hour’s time windows.

3.4 Statistical Analysis and Time-Series Data Preparation
The experiment presented in this paper has two parts. The first part of the experiment is to evaluate the

correlation between the attributes of the weather dataset and the electricity consumption of the appliances.
For this reason, four common non-linear statistical ranking correlation coefficients namely the Maximal
Information Coefficient (MIC), the Total Information Coefficient (TIC), Distance Correlation, and the
Spearman’s rank correlation coefficient were computed between the two subsets of data. The result is shown
in Fig. 2.
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Figure 2: Statistical evaluation of correlation (a) Spearman correlation, (b) Distance correlation, (c) Maximal informa-
tion coefficient, (d) Total information coefficient

Then a study of the electrical load graph was performed to identify the periodicity of events using the
Fast Fourier Transform (FFT). The result can be appreciated in Fig. 3. According to the results, 3 other subsets
were created using the most recurrent periods obtained from the FFT evaluation. Based on the frequency
domain representation obtained by decomposition, we notice that most devices have their primitives at
certain key intervals. The purpose of rescaling is to determine how much energy is consumed during this
periodic interval. These are 4, 12, and 24 h. The data was then readjusted under these different frequencies,
and the four subsets of data were considered in the continuation of the experiment.

To perform the time-series analysis, a major condition is that the data must be stationary. The stationary
differentiation and moving average processes with a lag of 5 were applied to the target variables to make them
stationary. Then, we calculate the autocorrelation and partial autocorrelation to confirm the effectiveness of
the previous process. The result for the HVAC circulator load is shown in Fig. 4.
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Figure 3: Discrete Fast Fourier transform of the electrical load of appliances (a) HVAC circulator, (b) Dryer, (c) Fridge,
(d) Hot Water Heater

Figure 4: Autocorrelation and partial auto-correlation function on the HVAC circulator load

Feature engineering techniques were used to make raw data suitable for further analysis. The time, day,
and month were extracted separately and converted into a periodic sequence using a cosine transform on the
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time, day, and month in the time-series temporal attribute. Features such as temperature, precipitation, or
pressure do not span the same scale. Therefore, preprocessing is required to reduce them to a fixed, standard
interval, as machine learning algorithms work best with uniform numerical values. For this reason, the
standard scaler was used to transform the entire input axis. The transformation is done according to Eq. (1)
where μ and α represent the mean and standard deviation of the input value, respectively, and x is the initial
value.

xscal ed =
x − μ

α
(1)

The final step in data processing is data windowing. As mentioned earlier in Section 3.2, the model
presented in this paper makes predictions based on a window of consecutive historical observations. The
important parameters that drive our analysis are:

• The size of the historical record is required as input to the algorithm.
• The prediction horizon represents the distance into the future that the model must predict at one time.

The data must then be formatted into a vector to matrix format for the learning model. The structure
is described below. Let xni be the input at time t = i of feature n, yi the dependent variable at time t = i, h
the historical horizon, and p the prediction horizon. The best performance during the experimental phase
was obtained with an input width and prediction horizon set to 24 and 6 observations, respectively. An
illustrative Fig. 5 is presented below:

Figure 5: Data windowing format

3.5 Multi Attributes Convolutional Long Short-Term Memory Model
This section presents the sophisticated deep learning model implemented for appliance load prediction.

Our base model is a fully connected neural network (FCNN). The model is built by stacking a series of
dense layers followed by max-pooling layers and batch normalization layers. The last fully connected layer
of our model uses a rectified linear unit as the activation function. The output is then transformed to zero if
a negative value is emitted from the previous layers, but for a value greater than zero, no change is made. We
also use L2 regularization on the hidden layer for a smoother training phase.

As is shown in Fig. 6.
This model predicts consumption over a fixed time (relatively short) period in the future. A deep auto-

regressive model is derived from this architecture to make long-term forecasting. Using an iterative process,
the output of the model at time t is reused to produce the prediction at time t + 1. This allows for making a
medium- and long-term prediction of consumption.
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Figure 6: MACLSTM model architecture

Based on the results of the basic model and various other models, such as convolutional neural network
(CNN), long-short term memory (LSTM), bi-directional LSTM (bi-LSTM), Gated Recurrent Units (GRU),
and Recurrent Neural Network (RNN), explored in the experimental setting, we designed the proposed
Multi Attributes Convolutional Long Short-term Memory (MACLSTM) model in three parts, including
convolutional blocks, long short-term blocks and feedforward neural networks.

3.5.1 Convolutional Blocks

The first part of the model uses an improved convolutional architecture for pattern extraction. This
model is built using 3 parallel blocks of convolutional layers followed by max-pooling layers [42] and local
response normalization (LRN) layers [43]. The convolutional layers use 128 filters and a kernel of size 3 * 3.
Convolutional blocks are employed at the beginning of our model to automatically detect the importance
of each input feature and the patterns that can be extracted from all input features at once. Local response
normalization (LRN) was introduced to improve the generalization ability of CNN blocks and encourage
lateral inhibition. We assume that this enables the algorithm to narrow its focus to spatial locations and
perform local contrast enhancement so that local maximum values are used as excitation for subsequent
layers. The data transfer in the convolutional blocks designed in this paper is depicted in the Fig. 7.

Figure 7: Proposed convolutional blocks architecture
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Here, XIn put denotes the input sequence, filters (128) indicate the number of kernels in the convolutional
layer, kernel (3 * 3) signifies the kernel shape, and Yout put denotes the output sequence.

3.5.2 Long Short-Term Memory Blocks
The output of the convolutional blocks is concatenated and reshaped into a 4-dimensional tensor. This

tensor is then fed into 100-unit LSTM blocks. A dropout at 0.2 is used at the output of the LSTM block to
avoid overfitting. The load inference problem is modeled here as a temporal sequence where connections
between consecutive measurements are established. The data transfer process in the LSTM blocks designed
in this paper is illustrated in the Fig. 8.

Figure 8: Proposed long short-term memory blocks architecture

Here, XResha ped signifies the processed data initially extracted from the CNN layer. XL2R refers to the
data passed from the first LSTM layer to the repeat vector, XR2L refers to the data derived after n repetitions by
the repeat vector, and XL2F refers to the data that continues to propagate forward from the second LSTM layer.

3.5.3 Feedforward Neural Networks
The output tensor is rooted through 4 fully connected layers that have 100, 50, 20, and 1 units,

respectively. The rectified linear unit is used throughout the network as the activation function to eliminate
any negative values. The model is compiled using the Adam optimizer and the mean square error as the
loss function. The data transfer process in the Feedforward networks designed in this paper is shown in the
formula below:

yi = σ (
k
∑
i=1
(Wi xi + bi)) (2)

Here, yi denotes the output data, represents the activation function, Wi denotes the weights, xi denotes
the input data, and bi denotes the bias.

Define W = {W1 , W2, W3, . . . , Wn}, Y = {y1 , y2, y3, . . . , yn}, X = {x1 , x2, x3, . . . , xn}, and b =
{b1 , b2, b3, . . . , bn}, and the transfer process of the feedforward network in this paper can be expressed
through the following matrix computation.

Y = σ (W X + b) (3)

4 Experiment Results and Performance
In this section, we present the experimental environment, and the results obtained from various

experimental contexts. The experiment was conducted using Python 3.7 and TensorFlow v2.
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4.1 Comparative Experiments
Four appliances from Houses A, G, and H of the Smart* dataset was used for validation. The data is split

into 3 subsets named training set, development set, and testing set with respectively 0.8, 0.1, and 0.1 percent
of the data. We introduced the preprocessed data in the models designed for this purpose. The batch size
was set to 128 and the shuffle was set to False since the relation between consecutive values is important in
time-series analysis. An early stop with a patience of 5 was implemented to avoid overtraining the model.
The maximum epoch was set to 300 epochs. During the training process, we used a time-based learning rate
decay to reduce the learning rate until local minima is obtained. Several common prediction metrics are used
to evaluate the model: the Root Mean Squared Error (RMSE) in Eq. (2), the Mean Absolute Error (MAE)
in Eq. (3), the Median Absolute Error (MdAE) in Eq. (4), the Mean Absolute Percentage Error (MAPE)
in Eq. (5), and the Coefficient of determination (R2) in Eq. (6) defines how well the changes in the input
data is reflected in the models’ output. The average training results for all models at various frequencies are
presented in Table 1 where two types of model architectures were evaluated: the sequence-to-sequence (S2S)
models and the sequence-to-point (S2P) models. In Table 1, “↑” represents that the larger the value is, the
better the performance will be. The bold value represents that the model achieves the best performance.

RMSE =
�
		
 1

n

n
∑
i=1
(yi − ŷi)2 (4)

MAE = 1
n

n
∑
i=1
∣yi − ŷi ∣ (5)

MdAE = median (yi − ŷi , . . . , yn − ŷn) (6)

MAPE = 1
n

n
∑
i=1
∣ yi − ŷi

yi
∣ (7)

R2 = 1 −
n
∑
i=1

(yi − ŷi)2

∣yi + ŷi ∣
(8)

Table 1: Overall performance of models for all four appliances

Type of model RMSE ↓ MAE ↓ MdAE ↓ MAPE ↓ R2 ↑
Baseline S2P 1.675 2.258 1.734 2.639 0.648

CNN S2P 1.411 2.056 1.739 2.441 0.665
LSTM S2S 1.105 1.350 1.315 1.780 0.782
GRU S2S 1.470 1.863 1.533 2.177 0.695
RNN S2S 1.398 1.612 1.430 1.984 0.718

BiLSTM S2S 0.898 1.280 1.269 1.637 0.876
BiRNN S2S 1.270 1.776 1.503 2.11 0.716
ARIMA S2P 1.575 2.089 1.733 2.505 0.667

MACLSTM S2S 0.668 0.571 0.881 1.130 0.918
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A self-collected dataset was also used. The dataset included load data from 10 rooms in a building from
01 September 2020 to 01 September 2022, collected with a frequency of once a day. The parameter settings of
the model remained the same. As shown in Table 2, MACLSTM achieved the best performance in terms of
RMSE, MAE, MAPE and R2. Among them, R2 increased by 21.9%, compared to RNN model.

Table 2: Experiments based on self-collected dataset

Type of model RMSE ↓ MAE ↓ MdAE ↓ MAPE ↓ R2 ↑
CNN S2P 0.146 0.120 0.108 2.997 0.545
LSTM S2S 0.146 0.113 0.086 2.558 0.550
GRU S2S 0.140 0.101 0.068 1.989 0.582
RNN S2S 0.131 0.101 0.078 1.482 0.634

BiLSTM S2S 0.132 0.095 0.058 1.486 0.628
BiRNN S2S 0.134 0.095 0.062 1.329 0.621

MACLSTM S2S 0.103 0.078 0.062 1.165 0.773

4.2 Ablation Experiments
The ablation experiments were used to set the number of LSTM layers. The number of layers in the

model needs to be limited to prevent overfitting, so the number is set to 1, 2, and 4. MAC-LSTM-1 represent
that the model consisted of 1 LSTM layer. As shown in Table 3, MAC-LSTM-2 achieved the best performance,
so we set the number of LSTM layers to 2.

Table 3: Ablation experiments based on self-collected dataset

Type of model RMSE ↓ MAE ↓ MdAE ↓ MAPE ↓ R2 ↑
MAC-

LSTM-1
S2S 0.137 0.105 0.084 2.595 0.602

MAC-
LSTM-2

(Proposed)

S2S 0.103 0.078 0.062 1.165 0.773

MAC-
LSTM-4

S2S 0.140 0.109 0.095 2.476 0.587

5 Discussion
In this study, we present an innovative method to predict the consumption of household appliances.

The experiments were conducted on redefined data into four different frequencies and the deduction of the
waveforms that constitute the load of each appliance. In general, the most successful results were achieved
when the frequency was in the range of 1 to 4 h for most of the devices. This could be explained by the
fact that these durations are consequent enough to contain a complete cycle of all the operating modes
of the device. When the experiments are performed on the daily data, the performance decreased the
most because this transformation not only concealed several patterns that occurred during the day but
also considerably reduced the amount of information fed to the model. The model proposed in this paper
outperforms commonly used approaches. We hypothesize that this could be explained by the increased
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ability to generalize offered by the improved CNN blocks used to detect modalities in the data. A comparison
using RMSE and R-squared of the models is presented in Fig. 9. A loss of performance is however observed
for some appliances such as the Dryer, and it may be caused by the periodic use of the devices. Indeed,
the operating mode of these appliances would not be strongly linked to climate factors. Nevertheless, the
existing relations between the successive observations made it possible to detect most of the sequences of
the utilization of these devices.

Figure 9: Comparison of the RMSE and R2 obtained by all models for each subset of data. The sampling frequencies
were (a) 1 h, (b) 4 h, (c) 12 h, (d) 24 h

The scores of the proposed model were benchmarked against the performance of the Artificial
Cooperative Search (ACS) [44], Adaptive Differential Evolution-back-propagation neural network (ADE–
BPNN) [45], and the ant colony optimization energy demand estimation (ACOEDE). During this process,
the entire data set was used to carry out performance testing of the model. Table 4 summarized the
performance indicators based on RMSE, MAPE, and R2.

Although the experiments focused more on short-term forecasting, the solution proposed in this work is
also suitable for medium and long-term forecasting when the historical data frequency is properly formatted.
This could be the subject of future investigation.
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Table 4: The performance indicators of the proposed model and commonly used algorithms

RMSE MAPE R2

ACS 1.124 1.952 0.819
ADE-BPNN 0.824 1.423 0.894

ACOEDE 0.847 1.874 0.886
Proposed model 0.621 1.080 0.931

6 Summary and Future Work
This study focused on the proposal of an ingenious method for electric energy prediction using climate

data. The paper presents a statistical study to establish the degree of relationship between climate variables
and the electrical consumption of appliances. A decomposition of the graph obtained from the monitored
electrical load was then carried out. A deep learning model was subsequently implemented and evaluated
on data from real households. The experimental results showed that the proposed method offers better
performance than the state-of-the-art models in most cases. Since not all devices have the same internal
structure, some devices seem not to respond favorably to the proposed solution. Compared to current
popular models, MACLSTM did not achieve the best performance on all indicators in the experiments
based on self-collected datasets, but its prediction accuracy was more stable. In addition, the performances
of our proposed MACLSTM are different based on the two data sets. Therefore, the generalization of the
model needs further testing, and we will test our model on more data sets. The future research can be
directed towards the development of a collaborative method that will combine the strengths of several
existing solutions.
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