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ABSTRACT: Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells.
It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity
to occur in any bone; however, it often impacts long bones like the arms and legs. Prompt identification and prompt
intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement
of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a
pressing requirement for developing an algorithm that can automatically detect bone tumors with tremendous accuracy.
Therefore, in this study, we proposed a novel feature extractor framework associated with a supervised three-class
XGBoost algorithm for the detection of osteosarcoma in whole slide histopathology images. This method allows for
quicker and more effective data analysis. The first step involves preprocessing the imbalanced histopathology dataset,
followed by augmentation and balancing utilizing two techniques: SMOTE and ADASYN. Next, a unique feature
extraction framework is used to extract features, which are then inputted into the supervised three-class XGBoost
algorithm for classification into three categories: non-tumor, viable tumor, and non-viable tumor. The experimental
findings indicate that the proposed model exhibits superior efficiency, accuracy, and a more lightweight design in
comparison to other current models for osteosarcoma detection.
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1 Introduction
Osteosarcoma, a high-grade intramedullary sarcoma, unfortunately has a survival rate of less than 30%,

making it the most prevalent malignant bone tumor. The prognosis for 70% of patients experiencing local
progression has been enhanced with the advent of contemporary chemotherapy treatments. However, more
advancement is still needed for individuals with metastasis or recurrence [1]. Society must strive for improved
outcomes for those with unfavorable prognoses, given the increasing prevalence of osteosarcoma among
young adults. Osteosarcoma is a cancerous tumor that develops from cells responsible for bone development,
primarily affecting people in their teenage and early adult years. The condition can arise in any bone structure,
primarily in the long shaft of the knee bone and, infrequently, in the upper arm bone [2]. The disease’s
prognosis has improved as a result of breakthroughs in therapy; nevertheless, patients may encounter
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long-term repercussions owing to powerful medicines. Symptoms of osteosarcoma often arise within a bone,
predominantly affecting the femur and tibia bones in the legs and, infrequently, the humeral bone in the
arms. Genetic mutations in bone cells cause genetic instructions for fast and widespread cell growth, leading
to the development of tumors. Cancer cells can maintain their survival even in the presence of apoptosis,
which ultimately results in the growth and destruction of tumors. Cancer cells can separate and spread to
various parts of the body, resulting in the development of metastatic cancer [3,4].

Osteosarcoma has substantial variation, featuring variations within individual observations and across
various observers, contributing to its diverse nature. However, the rounder shape and more dense packing of
osteosarcoma precursor cells contrast with the often more homogeneous size, shape, and density of tumor
cells [5]. To accurately evaluate necrosis, it is necessary to consider many histological regions, including areas
with hemorrhagic tumors, blood cells, growth plates, nuclear clusters, fibrous tissues, cartilage, osteoclasts,
osteoid, osteoblasts, and precursor cells. Recent research [6] has shown the efficacy of Convolutional Neural
Network (CNN) in extracting and analyzing data from medical pictures. Using DL and ML methods, research
on cancer categorization has shown significant efficacy. Osteosarcoma’s intricate pathological characteristics
necessitate the expertise of proficient and competent pathologists. On an ongoing basis, each proficient
pathologist manages numerous segments [7]. Pathologists must establish an effective decision-making
strategy for healthcare informatics to facilitate osteosarcoma analysis and resolve challenges that arise in
healthcare facilities. Medical field analysis increasingly employs neural networks due to their superior
feature extraction capabilities. This is especially true for tasks like MRI segmentation of osteosarcoma and
supplemental staging of lung cancer [8]. CNN is primarily used for automated data extraction from image
data [9].

Osteosarcoma slides serve as a crucial diagnostic tool for cancer and are commonly utilized with non-
invasive imaging techniques like MRI and CT [10]. These approaches facilitate the identification of cancerous
areas and provide quantitative assessments for monitoring treatment responses and planning surgical
procedures. Nevertheless, using tissue slides to examine and diagnose physically osteosarcoma patients might
be subjective and time-consuming. Utilizing whole slide image (WSI) analysis can enhance the reliability
of the study [11]. This methodology may obtain further information from tissue slides, resulting in a more
correct diagnosis. It is planned for an automated method to use morphological and contextual signals from
digital whole slide images (WSIs) to find osteosarcoma slides based on a histological examination [12]. This
approach facilitates the utilization of image processing and analysis methodologies, enhancing the precision
and reliability of cancer diagnosis. Osteosarcoma is one malignancy that is extremely variable and susceptible
to numerous interpretations. Specific precursor cells and tumor cells in osteosarcoma exhibit comparable
blue staining patterns; however, tumor cells are more asymmetrical, densely clustered, and spherical than
precursor cells [13,14]. Many histological regions must be considered when determining the percentage
of necrosis with precision. Recent medical research provides empirical evidence that deep learning can
efficiently extract and analyze information from medical images. The following are main contributions of
this work:

• We proposed a novel feature extractor framework with a supervised three-class XGBoost algorithm for
detecting osteosarcoma in whole-slide histopathology images. This method allows for quicker and more
effective data analysis.

• To address the imbalanced dataset problem, we used oversampling techniques such as ADASYN
and SMOTE.

• To enhance the dataset size, we used several augmentation techniques. After oversampling and augmen-
tation techniques, non-tumor cases increased from 536 to 10,538, non-viable tumor cases from 263 to
10,497, and viable tumor cases from 345 to 10,512.
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• During the training phase, the model is exposed to diverse augmented images, enhancing its resistance
to various data orientations, lighting conditions, and transformations, thereby reducing overfitting and
improving performance.

2 Literature Review
Histology images of osteosarcoma were put through transfer learning techniques, which use convolu-

tional neural networks that have already been trained to tell the difference between pictures of dead tissue and
pictures of healthy tissue. A multitude of methodologies were utilized to preprocess and classify the dataset.
Whole slide images were employed during training to improve the precision of transfer learning models such
as VGG-19 and Inception V3. The models address difficulties associated with classifying multiple classes and
binary data. Accuracy-wise, the VGG-19 model surpasses all other models. Histologic images show that the
enhanced model is remarkably effective at precisely identifying the malignant nature of osteosarcoma [15].

The study [16] wanted to show how different types of osteosarcoma are and how they react to chemother-
apy by using 13 machine-learning models and 40 scanned slide images to sort the tissue into three groups:
viable, necrotic, and non-tumorous. The SVM model was chosen based on its exceptional performance
assessment score. In addition, a deep learning architecture was created and trained using the same dataset.
The ROC was computed to distinguish between non-tumorous and tumorous areas. In addition, conditional
discrimination was performed to differentiate between live and necrotic tumors. The models demonstrated
exceptional performance. Using the trained models, researchers detected regions of interest on image tiles
obtained from whole slide test images. A tumor-prediction map was created to demonstrate the proportional
presence of viable and necrotic tumors compared to the slide image. Due to its challenging diagnosis,
osteosarcoma is an uncommon but frequently benign bone cancer that family practitioners see frequently.
Classifying histological images into viable, non-viable, and non-tumor categories is a common challenge for
pathologists. Osteosarcoma was effectively and reliably classified into these three groups using the Random
Forest machine learning method, which yielded an AUC value of 0.95 and an accuracy of 92.40% [17].

Utilizing CNN can greatly improve the effectiveness and precision of classifying osteosarcoma tumors
into several categories, such as VTs, necrosis, and non-tumorous regions [18]. Kawaguchi et al. [19] developed
density cell chemotherapy through deep methods for cancer detection. The ResNet101 supervised deep
learning model was selected for bone cancer identification, with a prediction accuracy of 90.36% and a
precision of 89.5%. The model’s efficacy in diagnosing bone cancer was successfully proven using user input
weighting, showcasing its capacity to correctly provide anticipated results [20].

The DL methodology was employed to classify osteosarcoma cells into discrete groups, a prominent
manifestation of bone cancer that mostly affects children and young persons. Mesenchymal Stromal Cells
(MSCs) were employed to cultivate several cell types, which undergo the process of differentiation into
osteoblasts and osteosarcoma cells. The specimens were imaged using an optical microscope, and deep learn-
ing algorithms were employed to identify and organize individual cells, resulting in a rating accuracy [21].
The paper presents an innovative ensemble learning model to diagnose bone malignancies. Their model
incorporates a pre-processing technique that eliminates undesirable regions, reduces noise, and enhances
image quality. The SIKC method specifies the segmentation process, while the RGB histogram and spatial
GLDM extract texture and color features. The model additionally conducts a severity analysis and categorizes
images according to viable, non-viable, or non-tumorous malignancies [22]. It was possible to make a better
system for classifying osteosarcoma tumors by combining CNN-based architectures with the multilayer
perceptron (MLP) method. The platform uses CNN models that have already been trained to pick out
important features and get valuable data from whole slide imaging images. Removing less-important features
improves the overall ability of the model to make correct predictions. The model outperformed previous
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approaches, achieving 95.2% accuracy in multiclass classification. This model can aid medical practitioners
in diagnosing osteosarcoma and provide current prognostications by connecting with an online service and
employing the FastAPI web framework. Theyy tested how stable the model was using a modid MLP classifier
for binary andiclass osteosarcoma classification within the framework of five-fold cross-validation [23].

Using machine learning techniques in medical instruments was a noteworthy development in medical
technology. To predict osteosarcoma survival, three crucial machine learning techniques are compared in
work [24]. The higher efficacy of SVM and ANN when red to random forests demonstrates their potential
to provide more precise survival predictions. A comparative study was performed on regularly employed
methodologies employing feature and image datasets to create a prediction system for clinical settings. The
feature dataset employed techniques such as Extra Trees Classifier, Convolutional Neural Network, XGBoost
Classifier, and DenseNet classifier. The fusion of viable and necrotic tumors resulted in a maximum training
accuracy of 96.22%, while the non-tumor vs. viable group attained a slightly lower accuracy of 94.56%. The
convolutional neural networks were utilized to examine the image collection for osteosarcoma forecasts,
showcasing their diminished intricacy. The model was effectively developed with 2.5 million trainable
parameters [25]. Vezakis et al. [10] presented a methodological technique that involves comparison. They
assessed several pre-trained models using transfer learning to standardize and resize input photographs
based on the dimensions of each model. The MobileNetV2 model achieved 91.0% accuracy, making it the
most precise.

3 Materials and Methods
The work flow of the proposed framework, dataset description, organisation, preprocessing, enhance-

ment via augmentation and oversampling approaches, and the deep and proposed framework are evaluated
using cross-validation, ANOVA test and other comparative analyses is presented in Fig. 1.

Figure 1: The work flow of the proposed framework, dataset description, organization, preprocessing, enhancement
via augmentation and oversampling approaches, and the deep and proposed framework are evaluated using cross-
validation, ANOVA test and other comparative analyses
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3.1 Preprocessing and Data Augmentation
In machine learning, scaling images ensures that models receive uniform data, enabling them to

generalize effectively across various dimensions. The consistency of the data allows models to focus on
consistent patterns, extracting key features and patterns even when there are differences in scale. Following
preprocessing steps are adopted in this work:

• The deep learning models require fixed-size input data, so we convert all the images into fixed input
shapes (224 × 224). Ensuring a uniform image size also streamlines computations and minimizes
memory demands, improving training effectiveness.

• Normalization ensures that the brightness and contrast levels between pixels in an image are more
uniform. Most 8-bit images range from 0 to 255, where 255 are white and 0 are black. Normalization
is a useful tool for improving images’ sharpness or ensuring that all pixels have the same value before
processing them further. Normalizing or standardizing color channels can lessen the impact of different
colors [26].

Data augmentation is an essential technique for machine learning, especially when working with image
data. The procedure entails altering the existing data, enhancing variability and the model’s capacity to
generalize across diverse contexts. This reduces the problem of overfitting, which occurs when a model
is so skilled at recalling the training data that it is difficult to adjust for new examples. During training,
the model is equipped with new data that helps it recognize patterns in various sizes, shapes, locations,
textures and lighting conditions. Improving the model’s adaptability makes it more sensitive and sensitive to
small changes, thus being better prepared to deal with real-world situations. Data augmentation techniques
including flipping, distortion, compression, resampling, distortion, and noise reduction are used to simulate
real-world changes in image properties. This improves the robustness of the model and ensures its safety and
performance in practical situations [15]. Dataset classes using oversampling and augmentation techniques
are shown in Table 1.

Table 1: Dataset classes using oversampling and augmentation techniques

Class label Primary Final 1 Final 2 Final 3
NT 536 10508 10508 10538
VT 345 5863 10508 10512

NVT 263 5415 10508 10497
Total 1144 21786 21786 31524

3.2 SMOTE vs. ADASYN

ADASYN and SMOTE are re-sampling techniques employed to rectify class imbalances in deep learning
tasks related to object detection and image classification. SMOTE minimizes the losses of models of majority
and minority classes by generating new instances that alternate between scenarios. In contrast, ADASYN
exhibits its versatility by generalizing the reconstruction process to correspond with the number of nodes in
the local vicinity, thereby enhancing the efficiency of addressing significant disparities by focusing on regions
with smaller clusters. ADASYN provides a more practical approach for managing sequence imbalances by
dynamically adjusting its alignment strategy, which improves the capacity to replicate and optimize various
image segmentation challenges [27,28]. Table 2 shows the parameters setting for SMOTE and ADASYN.
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Table 2: Parameter setting for SMOTE and ADASYN

SMOTE ADASYN Library
Sampling_strategy = “minority” Sampling_strategy = “minority”

Imbalanced learnK_neighbors = 5 N_neighbors = 5
Random_state = 42 Random_state = 42

3.3 Proposed Method
VGG16 was created by the Visual Genomics Group (VGG) at the University of Oxford for the ILSVRC

(ImageNet Large Scale Visual Recognition Challenge). The design included sixteen layers, thirteen of which
were duplicated and three were completely collaborative. The primary aim of this research is to assess the
efficacy of the CNN function. The VGG team used a straightforward modelling strategy with a 3 × 3 filter
configuration and a gradient filter design. The objective was to enhance efficiency by augmenting the model’s
complexity. The first two convolutional layers employ a stride of 1 and a small receptive field of 3 × 3. Thanks
to these layers, the network can analyze and represent simple visual features in the input image, such as
edges, textures, and basic patterns. Max-pooling layers are applied after each set of convolutional layers, with
a stride of 2 and a window size of 2 × 2. This design decision is intended to reduce processing costs, achieve
translation invariance, and lessen the spatial dimensions of the input.

The convolutional layers that follow, ranging from 5 to 10, gradually improve in depth and intricacy
to capture increasingly complex characteristics. Augmenting the quantity of convolutional layers amplifies
the model’s ability to obtain hierarchical representations of the input image. This step applies max pooling
after every two convolutional layers to decrease spatial dimensionality and improve abstraction. Three layers
comprise the VGG16 architecture, and a convolutional layer connects them. This convolutional layer uses
the recovered features to classify by combining spatial information from the layers that came before it. The
number of classes in the ImageNet dataset during the model’s development is reflected in the 1000 neurons
that make up the output layer of the VGG16 model. The layer uses the softmax activation function to translate
the network’s raw output into probabilities for each class. Fig. 2 showcases a feature extractor framework
integrated with a supervised three-class XGBoost algorithm for detecting Osteosarcoma.

The VGG16 architecture is widely acknowledged for its straightforwardness and reliability. The network
is easily understandable and trainable because it frequently utilizes small 3 × 3 filters and multiple layers of
convolution. The simple design has served as a source of inspiration for creating more buildings. VGG16
STATEs that there is a correlation between the depth of a network and its capacity to acquire complex
characteristics. This link ultimately results in enhanced performance in the classification of images. This
finding has significant implications for the progress of deep neural networks. To make the model specific
to the given job, we can use transfer learning with VGG16 and fine-tune the model’s parameters using a
smaller dataset.

To meet the demands of the current task, the fully connected layers are adjusted, while the convolutional
layers, which are responsible for extracting features, retain their understanding of prominent visual charac-
teristics. This strategy demonstrates particular benefits when labeled data are scarce for the new task. This
result can be attributed to the model’s ability to utilize the knowledge gained from ImageNet pre-training.
One major advantage of using transfer learning with VGG16 is the huge decrease in training time and data
needs. After training, the model can enhance its performance on a particular job using fewer labeled data
points. This is possible since the model has gained various hierarchical characteristics from a diverse dataset
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like ImageNet. Therefore, it offers an efficient application when obtaining extensive labeled datasets that are
excessively costly or challenging.

Figure 2: Novel feature extractor framework in conjunction with supervised three class-XGBoost algorithms for
osteosarcoma detection

We selected GG16 as the feature extractor due to its popularity as a robust convolutional neural network
architecture, recognised for its efficacy in extracting spatial data and intricate structures from images. The
meticulously crafted VGG16 model on the ImageNet dataset has shown robust generalisation across several
domains, including medical imaging. The convolutional layers may extract significant features, including
corners, edges, and high-dimensional semantics, essential for differentiating characteristics in structured
datasets. We augment the series’ complexity by examining its foundation and using its characteristics as
feature vectors, utilising deep learning with pre-trained models.

XGBoost was classified for its precision, scalability, and versatility. This is especially beneficial for
managing graphical data derived from deep learning tasks. The XGBoost gradient boosting approach
facilitates the model’s ability to learn intricate nonlinear decision boundaries, making it appropriate for
medical image applications. XGBoost produces feature significance curves that enhance the interpretability
of classification outcomes, which is crucial for clinical applications.

The integration of VGG16 with XGBoost leverages the advantages of both models VGG16 is proficient in
feature extraction from low-dimensional image data, while XGBoost is tailored for classification in structured
environments. This method enables us to reconcile efficiency with computational complexity, assuring the
model’s effective generalisation to novel data.
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4 Results and Discussion
This section presents the experiments and evaluation procedures used in the study to analyze the

effectiveness of the proposed framework.

4.1 Experimental Setup
This study focuses on detecting osteosarcoma bone tumors using deep learning and a unique feature

extractor based on the XGBoost algorithm. The experiments were conducted using Python programming
and following specific parameters. A data splitting method called hold-out was used, with 90% of images
designated for training and 10% for testing. Three different pre-processing methods were used to prepare
the input images. For training the deep transfer learning models, each image was resized to 224 pixels by
224 pixels, with a batch size of 32. Optimization was performed using the Adam algorithm, with a learning
rate of 0.0001. The models were trained independently, and the results from the recommended model were
integrated through cross validation. The deep learning backend consisted of Keras and TensorFlow, and the
NVIDIA GeForce RTX 2060 graphics card was used for training and testing. Accuracy is determined using
true positive and negative tumor predictions divided by total number of predictions. Precision determined
using true positive tumor prediction divided by true positive tumor plus false positive tumor predictions.
Recall determined using true positive tumor prediction divided by true positive tumor plus false negative
tumor predictions. F1 score is the mean of precision and recall. The F1 score is a critical deep learning metric
that accurately assesses the precision and recall of a model.

Accuracy = TPT + TNT
TPT + TNT + FPT + FNT

(1)

Precision = TPT
TPT + FPT

(2)

Recall = TPT
TPT + FNT

(3)

F1 score = 2 × Precsion × Recall
Precision + Recall

(4)

4.2 Dataset Information
The study evaluated a dataset of histological images of osteosarcoma stained with hematoxylin and

eosin. The data was obtained from archived samples from fifty pediatric patients who had treatment at the
Children’s Medical Center in Dallas from 1995 to 2015. The images were categorized as non-tumor, viable
tumor, or non-viable tumor, depending on the predominant cancer types. The collection comprises 1144
images, each with a dimension of 1024 by 1024 pixels. The allocation of these images is as follows: Out of the
total, 536 cases (47%) do not have tumors, 263 cases (23%) have necrotic components, and 345 cases (30%)
have active tumors. The dataset is publicly accessible and categorized into three groups: non tumor, viable
tumor, and non-viable tumor [29].

Nevertheless, the quantity of images available was inadequate to meet the demands for training and
testing. Therefore, data augmentation and sampling methods were employed to enhance the data. Regarding
classification, the most important criteria for evaluation are accuracy, precision, recall, and F1 score.
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4.3 Results Using Primary Dataset
The experimental results using the primary dataset mean on the original dataset are presented in Table 3.

CNN model achieved 83.18% accuracy overall, 81.48% precision for non-tumor class, 86.08% for non-viable
tumor class, and 81.48% F1 score for non-tumor, while VGG-19 achieved more positive results than CNN
and MobileNet, with 87.24% overall accuracy on the primary dataset. The proposed model achieved 90.14%
overall accuracy, a 90.38% F1 score, and 94.01% precision for the non-tumor class. All models achieved a
lower score for the viable tumor class.

Table 3: Performance of transfer learning and proposed feature based algorithm for osteosarcoma detection using
primary dataset

Models Accuracy Label Precision Recall F1
Primary-CNN 83.18 NT 81.48 81.48 81.48

VT 67.56 71.42 69.44
NVT 86.08 70.83 65.38

Primary-ResNet-50 86.08 NT 88.23 83.33 85.71
VT 74.28 74.28 74.28

NVT 68.96 76.92 72.72
Primary-MobileNet 80.86 NT 73.58 72.22 72.89

VT 83.33 71.42 76.92
NVT 56.25 69.26 62.06

Primary-VGG-19 87.24 NT 83.33 83.33 83.33
VT 81.81 77.14 79.41

NVT 75.01 80.76 77.77
Primary-Proposed 90.14 NT 94.01 87.03 90.38

VT 85.29 82.85 84.08
NVT 70.96 84.61 77.19

4.4 Results Using Final 1 Dataset
The results obtained from conducting experiments using the Final 1 dataset are shown in Table 4. The

CNN model obtained an overall accuracy of 87.05%, a precision of 83.02% for the non-tumor class, an
accuracy of 87.10% for the non-viable tumor class, and an F1 score of 83.84% for the non-tumor class. On
the other hand, the VGG-19 model outperformed both the CNN and MobileNet models, with an overall
accuracy of 88.92% on the main dataset. The suggested model attained an overall accuracy of 94.18% and an
F1 score of 95.08%. Additionally, it demonstrated a precision of 96.38% for the non-tumor class. MobileNet
had the lowest results, whereas VGG-19 received the greatest results.

Table 4: Performance of transfer learning and proposed feature based algorithm for osteosarcoma detection using Final
1 dataset

Models Accuracy Label Precision Recall F1
Final 1-CNN 87.05 NT 83.02 84.68 83.84

VT 71.60 77.47 74.42

(Continued)
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Table 4 (continued)

Models Accuracy Label Precision Recall F1
NVT 87.10 76.01 81.18

Final 1-ResNet-50 87.30 NT 83.52 84.87 84.19
VT 71.96 77.98 74.85

NVT 87.18 76.56 81.53
Final 1-MobileNet 85.86 NT 83.20 82.96 83.08

VT 66.91 76.27 71.06
NVT 86.71 73.43 79.52

Final 1-VGG-19 88.92 NT 89.59 82.77 86.08
VT 76.42 80.20 78.26

NVT 80.43 88.01 84.05
Final 1-Proposed 94.18 NT 96.38 93.81 95.08

VT 86.30 86.00 86.15
NVT 87.23 92.06 89.58

4.5 Results Using Final 2 Dataset
Table 5 displays the results of running experiments using the Final 2 dataset. The VGG-19 model

achieved an overall accuracy of 92.91%, a precision of 91.62% for the non-tumor class, an accuracy of 89.78%
for the non-viable tumor class, and an F1 score of 90.56% for the non-tumor class. The CNN and MobileNet
models were not as successful as the VGG-19 model, which performed much better. With an accuracy rate of
91.60% across the board, the MobileNet model has the lowest. The proposed model achieved a total accuracy
of 97.25% and received an F1 score of 95.61%. Furthermore, it displayed an accuracy of 94.85% for the class
of tumors that were not present. The results that MobileNet obtained were the worst, while the results that
VGG-19 received were the lowest.

Table 5: Performance of transfer learning and proposed feature based algorithm for Osteosarcoma detection using Final
2 dataset

Models Accuracy Label Precision Recall F1
Final 2-CNN 92.76 NT 88.39 89.15 88.77

VT 88.80 89.81 89.30
NVT 90.92 88.48 89.30

Final 2-ResNet-50 92.38 NT 87.81 88.48 88.15
VT 87.89 89.15 88.52

NVT 90.07 88.10 89.08
Final 2-MobileNet 91.60 NT 85.56 86.86 86.21

VT 89.31 87.44 88.36
NVT 87.41 87.91 87.66

Final 2-VGG-19 92.91 NT 91.62 89.53 90.56
VT 86.85 89.91 88.35

NVT 89.78 88.67 89.22

(Continued)
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Table 5 (continued)

Models Accuracy Label Precision Recall F1
Final 2-Proposed 97.25 NT 94.85 96.38 95.61

VT 96.62 95.33 95.97
NVT 96.18 95.90 96.04

4.6 Results Using Final 3 Dataset
Table 6 presents the experimental findings using the Final 3 dataset. Overall, the ResNet-50 model got

92.35 percent correct in the Final 3 dataset. It got 87.81% correct for the non-tumor class, 89.17% for the
non-viable tumor class, and 88.89% for the non-tumor F1 score. On the other hand, VGG-19 performed
better than ResNet-50 and MobileNet, with 91.17% overall accuracy. The suggested model obtained 93.86%
precision for the non-tumor class, 94.78% F1 score, and overall accuracy of 96.84%.

Table 6: Performance of transfer learning and proposed feature based algorithm for osteosarcoma detection using Final
3 dataset

Models Accuracy Label Precision Recall F1
Final 3-CNN 92.70 NT 88.00 89.27 88.63

VT 89.00 89.42 89.21
NVT 90.20 88.49 89.33

Final 3-ResNet-50 92.35 NT 87.81 88.23 88.02
VT 88.07 89.24 88.65

NVT 89.17 88.09 88.89
Final 3-MobileNet 91.48 NT 85.29 86.43 85.86

VT 89.12 87.34 88.22
NVT 87.32 87.90 87.61

Final 3-VGG-19 92.96 NT 91.17 89.18 90.16
VT 86.96 90.10 88.50

NVT 90.33 89.04 89.68
Final 3-Proposed 96.84 NT 93.86 95.73 94.78

VT 95.58 94.86 95.22
NVT 96.43 95.23 95.83

4.7 Training and Validation Curves
Training and validation accuracy are crucial in deep learning models, particularly during training.

Training accuracy measures the model’s performance on the training dataset, demonstrating its capacity to
acquire knowledge and correctly represent the data. Validation accuracy measures the model’s effectiveness
using a separate validation dataset, evaluating its ability to apply knowledge to new, unfamiliar data. The
difference between training and validation accuracy lies in their goals and implications. Fig. 3 illustrates the
accuracy curves for training and validation using four datasets. Fig. 3a illustrates the accuracy of the training
and validation sets using the primary (original) dataset. The best accuracy was attained at epoch 26 for the
training set and at epoch 22 for the validation set. Fig. 3b displays the accuracy of the training and validation
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sets using the Final 1 dataset. The maximum accuracy was attained at epoch 30 for the training set and epoch
27 for the validation set. Fig. 3c displays the accuracy of the training and validation sets using the Final 2
dataset. Fig. 3d displays the accuracy of the training and validation sets using the Final 3 dataset.

Figure 3: The proposed approach demonstrates the train and validation accuracy and the best epoch for all datasets
and highlights the epochs

4.8 AUC ROC Curves

ROC AUC is a reliable evaluation metric even in imbalanced datasets, making it useful for choosing
models, adjusting hyperparameters, and comparing training approaches or architectures. Deep learning
models are used for reliable and effective performance in various applications. CNN attained an AUC of
0.9212, ResNet-50 at 0.9318, MobileNet at 0.9162, and VGG-19 at 0.9282. Using the primary dataset, the
proposed model attained an AUC score of 0.9426; the curves are illustrated in Fig. 4a.

CNN had an AUC of 0.9321, ResNet-50 got 0.9412, MobileNet got 0.9273, VGG-19 got 0.9542, and the
proposed model got 0.9676 when used on the Final 1 dataset as shown in Fig. 4b.
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Figure 4: The proposed approach showcases the ROC-AUC for all datasets

As shown in Fig. 4c, CNN attained an AUC of 0.9512, ResNet-50 attained 0.9461, MobileNet attained
0.9302, VGG-19 attained 0.9523, and the proposed model attained a 0.9910 AUC when applied to the Final
2 dataset. VGG-19 attained an AUC of 0.9551, while CNN attained 0.9501, ResNet-50 attained 0.9432, and
MobileNet attained 0.9403. Using the Final 3 dataset, the proposed model attained an AUC score of 0.9863;
the curves are illustrated in Fig. 4d.

4.9 Comparison with State of the Art Techniques
Comparing the proposed approach with the state-of-the-art techniques is important to check the

efficacy for osteosarcoma detection. The study examines the efficacy of deep learning models. It demonstrates
that the proposed method surpasses conventional approaches such as support vector machines (94.56%) and
random forests (92.40%) in terms of performance as shown in Table 7. The accuracy rate of the model is
96.84%, which is higher than the accuracy rates of the deep learning architectures MobileNetV2 (91.01%) and
ResNet-101 (90.36%). This suggests that the MLP approach is proficient at identifying patterns in data and can
serve as a dependable remedy to existing issues, showcasing its reliability. Gyasi-Agyei et al. [26] used logistic
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regression and principal component analysis to diagnose osteosarcoma, but their results were very poor
(77.52% accuracy). Nabid et al. [30] developed a deep learning recurrent CNN technique to detect the cancer
in bones and attained some better 89% accuracy. Ahmed et al. [31] also utilized CNN technique for same
dataset and attained 86.17% accuracy. The previous techniques did not perform well because some studies
did not properly utilize oversampling, augmentation and extraction techniques. The proposed approach
achieved outclasses performance using a balanced dataset.

Table 7: Comparison with state of the art techniques

Ref. Employed dataset Technique Accuracy
Vezakis et al. [10] Medical histopathology MobileNetV2 91.01

Arunachalam et al. [16] Medical histopathology DLA 93.30
Mahore et al. [17] Medical histopathology RF 92.40
Gawade et al. [20] Medical histopathology ResNet-101 90.36

Aziz et al. [23] Medical histopathology MLP 95.23
Srivastava et al. [25] Medical histopathology SVM 94.56

Gyasi-Agyei et al. [26] Medical histopathology LR+PCA 77.52
Nabid et al. [30] Medical histopathology RCNN 89.00
Ahmed et al. [31] Medical histopathology CNN 86.17

[Proposed] Medical histopathology VGG15+XGBoost 96.84

5 Conclusion
Using computer-aided imaging techniques for automated histological image classification is paramount

in medical image processing. Examining histology photographs under a microscope takes a lot of time and a
significant amount of commitment. Within the field of histology, automated diagnosis enables pathologists
to devote more time and effort to cases that are of critical importance. The goal of this study was to enable
the diagnosis of osteosarcoma in whole-slide histopathology images by integrating a supervised three-
class XGBoost algorithm with our own custom-built feature extractor framework. SMOTE and ADASYN
oversampling techniques augment and balance the dataset. The overfitting issue is solved after balancing
the imbalanced samples of the bone tumor dataset. The model achieved 96.84% accuracy and, 95.22% F1
score for viable bone tumors. The XGBoost classifier uses the extracted features from the VGG16 architecture
to classify osteosarcoma cancer. Experiments demonstrate that a three-class XGBoost classifier works best
using deep-extracted features. The results of the experiments show that the proposed model for osteosarcoma
detection is superior to the currently considered to be state-of-the-art in terms of accuracy, efficiency, and
lightweight design. Despite the strengths, the study has some limitations:
• Oversampling methods are only relevant to training data. In imbalanced data, which often occurs in

real-world applications, model performance indicators may be biased towards the majority class.
• Oversampling may exacerbate mistakes in noisy or misclassified outclassed samples by producing more

labels, diminishing model performance.
In the future, we intend to integrate several osteosarcoma bone cancer datasets with identical disease

classifications and devise a more robust ensemble methodology using the autoencoder technology. A
prototype will be developed for the dependable and precise identification of osteosarcoma.
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