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ABSTRACT: Finding materials with specific properties is a hot topic in materials science. Traditional materials design
relies on empirical and trial-and-error methods, requiring extensive experiments and time, resulting in high costs. With
the development of physics, statistics, computer science, and other fields, machine learning offers opportunities for
systematically discovering new materials. Especially through machine learning-based inverse design, machine learning
algorithms analyze the mapping relationships between materials and their properties to find materials with desired
properties. This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine
learning-based approaches to materials inverse design. Then, three main inverse design methods—exploration-based,
model-based, and optimization-based—are analyzed in the context of different application scenarios. Finally, the
applications of inverse design methods in alloys, optical materials, and acoustic materials are elaborated on, and the
prospects for materials inverse design are discussed. The authors hope to accelerate the discovery of new materials and
provide new possibilities for advancing materials science and innovative design methods.
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1 Introduction
Over the past few decades, significant advancements have been made in materials science and engi-

neering, driving the development of many new materials and advanced technologies [1,2]. From electronic
devices to aerospace, and from medical devices to energy technologies, the development and application of
novel materials are crucial. Historically, material discovery has largely relied on traditional methods, such
as experience, trial and error, or serendipitous findings, to identify materials with desired properties. This
involves progressively adjusting the chemical composition and structural parameters of materials to achieve
the required performance [3]. However, due to the vastness of the materials design space, traditional methods
require substantial time and resources, and their efficiency and reliability struggle to meet the growing
demands for materials design [4]. Therefore, there is an urgent need for more efficient and intelligent methods
to accelerate material discovery and optimization [5,6].

In recent years, materials inverse design methods have emerged prominently in the field of materials
science and have been widely applied to the discovery and development of new materials [7]. Materials
are fundamental elements of the material world and can be defined by ACS, which stands for Atoms
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(the basic units of all matter, composed of protons, neutrons, and electrons), Composition (the chemical
makeup, including the types of elements and their relative amounts in a material), and Structure (the
arrangement of atoms or molecules and their spatial relationships, such as crystal structure). Since the
target properties of materials vary across different fields, inverse design methods that start from specific
performance requirements to find materials with target properties have become a major research direction
in future materials science and engineering [8,9]. The forward design of materials is a process that starts
from the composition and structure of materials, using experiments and simulations to predict and optimize
material properties. It can be represented as ACS->P(ACS). On the other hand, inverse design starts from
the desired material properties and works backward to determine the composition and structure, thereby
discovering materials with the target properties. This can be represented as P(ACS)->ACS, where P denotes
the material properties. The processes of forward and inverse design are illustrated in Fig. 1.

Figure 1: The specific processes of forward design and inverse design. (a) Forward design process: Based on the
material’s ACS, the material’s P(ACS) is predicted through experiments and simulations. (b) Inverse design process:
Based on a given material’s P(ACS), the material’s ACS is deduced using inverse design algorithms

Material databases are crucial resources for supporting materials inverse design, providing the essential
data foundation for the development and training of machine learning models. Machine learning is a
technique that learns from data and improves automatically to perform specific tasks [8–10]. Using machine
learning algorithms can accelerate the process of discovering and designing materials. In materials science,
machine learning can handle large volumes of complex data [11], by learning and training from existing
data, it can extract the mapping relationship between ACS and P(ACS) from extensive experimental data.
Based on the given performance, it can predict the ACS of new materials, thus enabling materials inverse
design [12]. Section 2 of this paper provides an overview of the basic concepts and roles of material databases.

However, machine learning-based materials inverse design methods also face numerous challenges. For
instance, the cost of data acquisition and labeling is high, and the scale of existing datasets is limited [13].
Machine learning models have weak generalization abilities and poor interpretability, making it difficult to
provide materials scientists with deep insights and understanding. In addition, low optimization efficiency,
slow convergence speed, and incomplete search of the solution space during the design process are issues
that need to be addressed in current research [14]. To address the aforementioned challenges, this paper
proposes three solutions for inverse design based on exploration, modeling, and optimization. Additionally,
it discusses strategies for selecting machine learning methods and highlights the importance of model
performance evaluation and benchmarking standards for assessing and comparing results, which will be
detailed in Section 3. Furthermore, inverse design has made significant research progress in fields such as
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alloys, optics, and acoustics. This paper will provide a detailed overview of the advancements in these areas
in Section 4.

In this paper, we provide a comprehensive review of machine learning-based materials inverse design
methods. This field has witnessed rapid development in recent years, with steadily increasing research
interest. As shown in Fig. 2, the number of publications related to the application of machine learning in
materials design and materials inverse design has exhibited a year-on-year growth trend in the Web of
Science database, with particularly remarkable growth over the past five years. This trend indicates that, with
the continuous optimization of machine learning algorithms and the growing demands of material science,
researchers are paying increasing attention to this interdisciplinary field. In 2024, the number of publications
related to machine learning-based materials inverse design reached 361, representing a significant increase
compared to previous years. This data highlights the potential of this field and its critical role in advancing
innovation in material science, making it deserving of greater attention and deeper investigation.

Figure 2: Trend chart of related publications in recent years. (a) Annual number of publications on various machine
learning methods and materials design extracted from the Web of Science database. (b) Annual number of publications
on various machine learning methods and materials inverse design extracted from the Web of Science database

We begin with an overview of material databases, analyzing their critical role in supporting materials
inverse design. Additionally, we systematically classify and evaluate materials using inverse design methods,
describing them based on different scenarios and delving into the performance evaluation of models and
benchmarking standards. Furthermore, we summarize the current progress in inverse design research within
the field of materials science. Through this paper, we aim to provide scholars interested in materials inverse
design with a comprehensive perspective, helping them quickly understand various methods and their
practical applications. In the future, with improvements in database quality and advancements in machine
learning algorithms, materials inverse design is expected to play an increasingly significant role in the
discovery of new materials, performance optimization, and engineering design.
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2 Materials Database
In June 2011, the American White House announced the launch of the “Materials Genome Initiative for

Global Competitiveness” (MGI) [15]. This initiative aims to accelerate material research and development
processes and reduce development costs through advanced technologies such as high-throughput computa-
tion, big data analysis, and multiscale simulation [16]. Among these efforts, the construction and sharing of
databases became a critical component of the Materials Genome Initiative. These databases not only store vast
amounts of material data (e.g., composition, structure, properties), providing essential support for material
discovery and simulation but also facilitate high-efficiency data accumulation and automated processing.
This supports in-depth data analysis based on machine learning, offering intelligent guidance for new
material development. Material data serves as the core driver of machine learning algorithm applications.
In recent years, attention has shifted from being model-centric to data-centric. Improvements in model
performance depend not only on architectural innovation and algorithm optimization but are also closely
tied to data quality [17]. This shift emphasizes the importance of data—every step, from data collection and
annotation to cleaning and augmentation, can profoundly impact the final effectiveness of machine learning.

Jia et al. adopted a rigorous data preprocessing strategy to optimize the dataset by removing low-
quality and mixed data [18]. Additionally, when constructing the machine learning model, they introduced
a composition-based cross-validation method to prevent data with the same composition but different
temperatures from being allocated to both the training and test sets. This approach effectively avoided the
model capturing only temperature-dependent trends, ensuring its ability to generalize to unknown materials.
This segmentation method, based on data characteristics, demonstrated that data-splitting strategies play a
critical role in model performance. Furthermore, the model was validated using newly published experi-
mental data from 2023, which further confirmed its robustness and predictive capabilities, emphasizing the
importance of continually updating data. These findings highlight that in the application of machine learning
in materials science, data quality, and processing methods are increasingly becoming key factors influencing
model performance.

The foundation of machine learning lies in the availability of existing data, which is typically sourced
from literature, online repositories, or directly generated from experimental results. Some commonly used
material databases are listed in Table 1 [19]. Data serves as the fundamental building block for training
machine learning models, with experimental data being particularly critical because it accurately reflects
real-world conditions. However, even if potentially promising materials are identified through computational
screening, it may still take years to successfully synthesize them in the laboratory. Consequently, the
performance of models is often constrained by the limited availability of data [20]. Although computational
material databases like Materials Project, Open Quantum Materials Database (OQMD), and Starrydata2
have provided abundant resources for high-throughput screening and performance prediction in recent
years, issues such as data scarcity and quality inconsistency persist. These challenges are especially pro-
nounced in emerging material fields or complex material systems, where data acquisition and organization
remain significant obstacles. Therefore, efficiently utilizing existing data while mining and generating high-
quality new data is a core challenge for applying machine learning in materials science. To address this,
valuable information can be extracted from vast amounts of literature to construct and refine material
databases, thereby enriching research data sources. By integrating experimental validation with machine
learning model predictions, new data can be generated and supplemented, filling gaps in existing databases.
These approaches not only address data scarcity and quality issues but also further expand research data
sources, providing a solid foundation for material science research and driving progress in materials design
and optimization.
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Table 1: Commonly used material databases

Database Description Website URL
Inorganic crystal

structure database
A comprehensive database

dedicated to the crystal structure
information of inorganic materials

https://icsd.products.fiz-karlsruhe.
de/ (accessed on 25 December

2024)
Open quantum materials

database
Includes over 1.2 million material

structures, covering a wide range of
compounds and alloys

https://www.oqmd.org/ (accessed
on 25 December 2024)

Dynamic database of
solid-state electrolyte

A database dedicated to solid-state
battery electrolyte materials

https://ddse-database.streamlit.
app/ (accessed on 25 December

2024)
Materials project An open-access scientific database

that provides computed data on
known and predicted materials

https://next-gen.materialsproject.
org/ (accessed on 25 December

2024)
Novel materials discovery An open-source database that

integrates computational materials
data generated by research teams

worldwide

https://nomad-lab.eu/nomad
(accessed on 25 December 2024)

Cambridge structural
database

An authoritative database
dedicated to the crystal structure

information of organic and
metal-organic compounds

https://www.ccdc.cam.ac.uk/
solutions/software/csd/ (accessed

on 25 December 2024)

ASM Alloy Center
Database

Global equivalencies of alloys,
mechanical properties, physical

and chemical characteristics, and
corrosion resistance data in various

environments

https://www.asminternational.org/
(accessed on 25 December 2024)

As the data quality of material databases directly impacts the effectiveness of data analysis and mining,
and ultimately their practical applications, building high-quality databases has become a critical issue in
the field of materials science [21]. Constructing such databases requires not only integrating scattered
experimental and computational data but also implementing rigorous data cleaning and validation strategies
to ensure reliability, consistency, and completeness. Additionally, the diversity and coverage of the database
are essential to support the analysis and prediction of various material properties. High-quality material
databases provide a solid foundation for machine learning algorithms, enabling the discovery of scientific
principles hidden within the data, accelerating materials design and optimization, and facilitating practical
applications. However, challenges arise during construction, as errors may exist in the original literature or
during the data extraction process. Moreover, databases used for building machine learning models should
maintain uniformity—comprising either entirely experimental or computational data. Experimental data, in
particular, more accurately reflect the actual performance of materials, making the identification and removal
of low-quality data a crucial step in improving accuracy. With advances in experimental technologies, the
latest data typically offer higher quality. To ensure the timeliness and relevance of databases, outdated data

https://icsd.products.fiz-karlsruhe.de/
https://www.oqmd.org/
https://ddse-database.streamlit.app/
https://next-gen.materialsproject.org/
https://nomad-lab.eu/nomad
https://www.ccdc.cam.ac.uk/solutions/software/csd/
https://www.asminternational.org/


1468 Comput Mater Contin. 2025;82(2)

from older publications should be excluded, and additional data can be extracted from recent literature to
validate the credibility and robustness of the models. This ensures that models remain relevant and accurate
when utilizing up-to-date material data. By adopting these strategies, material databases can more effectively
support the development of machine learning algorithms, providing robust backing for the discovery,
performance prediction, and optimization of new materials. This will significantly accelerate research and
progress in the field of materials science.

3 Inverse Design
Inverse design is a method that starts with the desired performance and works backward by adjusting

design variables to meet these performance requirements. Compared to traditional forward design, inverse
design is more challenging because it requires finding design solutions that satisfy specific requirements
within a vast design space. At the same time, machine learning-based materials inverse design meth-
ods face several difficulties, such as the high cost of data acquisition and labeling, poor generalization
capability of machine learning models, and low optimization efficiency during the design process. These
challenges can be addressed through exploratory analysis, model design, and optimization strategies. Table 2
describes three inverse design methods, along with their key algorithms, advantages and disadvantages, and
application scenarios.

Table 2: Overview of inverse design methods and their applications

Inverse design
method

Key algorithms Advantages and
disadvantages

Application

Exploration-based
inverse design

Reinforcement
Learning, Monte Carlo

Tree Search, Particle
Swarm Optimization

-Strong capability to explore
large design spaces, handle

data scarcity
-High computational cost,
slow convergence, complex

hyperparameter tuning

Optical device design,
Alloy optimization,

Complex system
optimization

Model-based
inverse design

Neural Networks,
Generative Adversarial
Networks, Variational

Autoencoders, Forward
and Inverse Model

Integration

-High prediction accuracy,
automated design process,
suitable for structured data

-Requires large, high-quality
datasets, limited

generalization, risk of
overfitting

Refractory alloys with
target properties,
Nano-photonics,

Polymer, and composite
materials

Optimization-
based inverse

design

Bayesian Optimization,
Genetic Algorithms,

Topology Optimization

-Suitable for well-defined
objectives, supports

multi-objective optimization
-High computational cost for
high-dimensional problems,
relies on performance model

accuracy

Acoustic metamaterials,
Optical device

fine-tuning, Mechanical
structure optimization
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3.1 Exploration-Based Inverse Design
Exploration-based inverse design is a method focused on exploring unknown or entirely new design

targets, particularly suitable for situations with scarce data. The conceptual design diagram is shown in Fig. 3.
This method emphasizes gradually approaching the optimal solution through local rules and random
exploration, allowing it to handle complex multidimensional design problems and efficiently discover
potential optimal design solutions in a vast design space. Reinforcement learning and heuristic search
are typical exploration strategies that can better discover optimized designs. The following sections will
specifically describe the applications of exploration-based inverse design in materials.

Figure 3: Exploratory-based inverse design concept diagram

Reinforcement learning methods differ from traditional supervised learning in that they do not rely
on large amounts of labeled data. Instead, they accumulate experience through the interaction between the
agent and the environment during the learning pro cess [22,23]. In situations with scarce data, reinforcement
learning can still effectively explore vast and complex unknown design spaces. Hwang et al. proposed an
inverse design framework based on deep reinforcement learning, which includes the Inverse Design Agent
(IDEA) and the Critical-Value-Based Tree (CVBT) algorithm [24]. Initially, based on the Advantage Actor-
Critic (A2C) method, the agent learns the relationship between the geometric parameters of optical devices
and their performance through trial and error without any prior knowledge. The agent continuously adjusts
the geometric parameters and receives rewards from the environment to optimize the design parameters.
Finally, CVBT proposes multiple candidate designs to enhance the diversity and robustness of the solutions,
gradually achieving the design goals that meet the target performance.

Monte Carlo Tree Search (MCTS) is a tree search algorithm based on random simulations [25,26],
with high heuristic search capabilities. MCTS does not strictly belong to the traditional definition of
machine learning but is often combined with Reinforcement Learning (RL) in inverse design as a strategy
optimization method [27–29]. Without complete data, MCTS can discover potential optimal paths and
solutions through random simulations and probability estimates. Banik et al. proposed a Continuous Action
Space Tree search framework (CAST) based on reinforcement learning, where MCTS serves as a heuristic
search method, exploring the search space through random sampling and tree search strategies [30]. RL
balances exploration and exploitation, optimizing the search path. The heuristic search of MCTS and the
strategy optimization of RL complement each other, enabling the agent to conduct effective exploration and
optimization even in data-scarce situations. This achieves structural and topological optimization in complex
and high-dimensional search environments, significantly enhancing the efficiency and accuracy of crystal
structure prediction and multidimensional system optimization. Patra et al. combined MCTS with Molec-
ular Dynamics (MD) simulations to achieve efficient exploration and optimization of polymer molecular
sequences [31]. MD simulations may face issues of insufficient or expensive experimental data, but MCTS,
with its efficient heuristic search capabilities, can quickly identify and optimize target sequences in a large
design space under data-limited conditions. Through continuous optimization and expansion, the MCTS
algorithm is expected to play a greater role in more materials science and engineering design problems.
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Particle Swarm Optimization (PSO) optimizes objectives by moving a swarm of particles, utilizing
heuristic and intelligent exploration strategies for global search in complex and uncertain design spaces.
This method can efficiently find optimal input parameters in multidimensional spaces through collabora-
tion and information sharing among particles with minimal data or information, thus improving design
efficiency [32–34]. Mi et al. used the PSO algorithm to optimize the input parameters of neural networks,
achieving inverse design through input optimization [35]. Khadikar et al. combined Self-Consistent Field
Theory (SCFT) with PSO to optimize the structure and composition of Block Copolymer (BCP) films.
PSO simulates the self-assembly behavior of biological systems, conducting global exploration in multidi-
mensional design spaces to find the optimal formulation parameters for the target morphology [36]. By
combining PSO with SCFT to handle high-density metastable states of free energy, heuristic search finds
stable target morphologies.

In summary, exploration-based inverse design demonstrates significant advantages in handling
unknown targets and data scarcity issues, making it an effective tool for discovering new materials and
optimizing complex systems. However, this method also faces challenges such as high computational
resource requirements and slow convergence speeds. Future research and technological innovations are
needed in areas such as computational acceleration, adaptive tuning, hybrid optimization, intelligent
algorithms, and uncertainty handling. By continuously improving algorithm efficiency, the robustness and
adaptability of models can be enhanced. Overall, exploration-based inverse design is expected to play a
greater role in materials science, engineering design, and other complex fields, driving innovation and
technological progress.

3.2 Model-Based Inverse Design
Model-Based Inverse Design is a method that uses data-driven or physics-driven inference models for

materials design [37]. This approach builds predictive models that establish the relationship between perfor-
mance and composition or structure based on material databases, enabling the inference of corresponding
material components or structures starting from target performance. The conceptual design diagram is
shown in Fig. 4. Currently, various strategies such as combining forward and inverse models, generative
models, and surrogate models are widely used in materials inverse design. The following will introduce
several model-based inverse design strategies [38].

Figure 4: Conceptual diagram of model-based inverse design

Inverse design often involves mapping multiple outputs from two or fewer inputs, making it prone to
overfitting when using only inverse models. Combining forward and inverse models enables bidirectional
exploration between performance and composition, effectively addressing the overfitting issue. Wang et al.
proposed a machine learning design system (MLDS) for the inverse design of copper alloys in 2019 [39].
Jiang et al. also applied MLDS to the inverse design of aluminum alloys [40]. MLDS consists of two artificial
neural networks built based on a database. One of the models predicts the properties of alloys from their
compositions (i.e., composition→performance, C2P), and the other model predicts the compositions of
alloys according to the targeted properties (i.e., performance→composition, P2C). The P2C model is first
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used to generate multiple candidate material combinations, which are then input into the more reliable C2P
model to obtain more accurate predictions. The predicted values are compared with the target values, and the
error is calculated. Based on the error, a combination design solution is selected or the model is retrained. If
the error exceeds the preset threshold, the P2C model is retrained until reasonable alloy composition design
solutions are selected. The MLDS design process is shown in Fig. 5. In addition to the alloy field, Liu et al.
also applied forward and inverse models to the field of nano-photonics [41]. We find that combining inverse
“pre-design” with traditional “post-analysis” can comprehensively cover the design space, improving design
efficiency and accuracy, and accelerating the discovery of target materials.

Figure 5: MLDS design flowchart [39]

Generative models are deep learning models capable of generating new data points. They can directly
generate material compositions or structures based on target performance in a data-driven manner. This
strategy typically employs advanced machine learning techniques such as Generative Adversarial Networks
(GAN) [42] and Variational Autoencoders (VAE) [43]. Debnath et al. utilized Conditional Generative
Adversarial Networks (cGAN) to achieve the inverse design of refractory high-entropy alloys [44], as shown
in Fig. 6. The cGAN provides an additional conditional vector in the generator compared to ordinary
GANs. This conditional vector, which usually includes the target performance that the material needs
to have, directly influences the generated material data. The generator creates material data according to
this conditional vector. The discriminator also receives this conditional vector and compares it with the
generator’s output to determine the authenticity of the generated material data. In this way, the generator
can create material combinations under imposed conditions based on the input conditional vector, exploring
diverse combinations within the target performance range to compensate for the limitations brought by a
single target value. Pei et al. proposed an Inverse Design Network (IDN) [45]. First, a regression model
is trained to predict the relationship between material performance and element concentration. Then,
a VAE model is used to represent material structure in the latent space, capable of inverse-generating
element concentrations from this space. The IDN uses the trained network weights and biases to transform
the latent space representation into actual element concentrations, completing the mapping from target
performance to material composition, thereby achieving the inverse design of alloys with highly similar
microstructure images.
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Figure 6: cGAN inverse design process

A surrogate model is a simplified representation of a complex function that approximates the mapping
relationship between design parameters and performance. It enables efficient design optimization and
experimental validation by utilizing optimization algorithms to adjust input parameters, thereby maximizing
or minimizing target performance. Liow et al. proposed an inverse design surrogate model that combines
statistical interpolation techniques, machine learning, and optimization design for efficient cathode materials
design and experimental validation [46]. The surrogate model was constructed using a random forest
algorithm to train the model, learning the relationship between cathode materials design parameters and dis-
charge capacity, and predicting design variables that meet the target discharge capacity, demonstrating strong
predictive and optimization capabilities. Dong et al. integrated a transfer learning-based artificial intelligence
surrogate model with traditional optimization algorithms to successfully predict optical materials based on
given target spectra [47]. First, the dataset was divided into a small dataset B, and the remaining dataset A.
The parameters of model A (trained using dataset A) were then transferred to model B (fine-tuned using
dataset B). Finally, the results obtained from model B were used for inverse design through spectral fitting
with traditional optimization algorithms. The framework diagram of the transfer learning-based artificial
intelligence surrogate model is shown in Fig. 7.

Figure 7: Framework diagram of transfer learning-based AI surrogate model

Model-based inverse design focuses on utilizing design models, enabling efficient mapping from
performance to parameters through data-driven methods. This approach is suitable for design problems with
existing data or models. By appropriately selecting and combining these models, it is possible to accurately
predict or generate new design schemes. These models not only enhance the automation and accuracy of
the design process but also expand the diversity and possibilities of design. However, model-based inverse
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design faces challenges such as model stability and high demand for training data. Future research needs to
address these technical challenges, explore more model integration with practical applications, and promote
the rapid discovery and performance optimization of new materials.

3.3 Optimization-Based Inverse Design
Optimization-based inverse design views inverse design as an optimization problem, specifying target

performance and using optimization algorithms to adjust material composition or structure to achieve
specific target performance. The concept diagram is shown in Fig. 8. In this type of design, the target
performance is usually defined as one or more optimization objectives. To achieve these objectives, the design
process relies on various optimization algorithms. Choosing the appropriate optimization algorithm can
greatly enhance model optimization efficiency.

Figure 8: Optimization-based inverse design concept diagram

Bayesian optimization combines Bayesian inference and Gaussian processes to dynamically adjust
design parameters, improving optimization efficiency and accuracy [48–50]. Zheng et al. describe an inverse
design method based on Gaussian Bayesian models (GB) [51]. First, a Gaussian process is used to establish
an initial model relating acoustic performance to design parameters. Then, based on current optimization
results, an adaptive acquisition function is employed to select new observation points, thus enhancing
optimization efficiency. This is followed by iterative calculations and parameter updates to gradually optimize
structural parameters and approach an optimal design. Finally, numerical simulations and experimental
validations are conducted to ensure that the optimized design meets the expected performance. Tagade et al.
combined Bayesian theorem and unsupervised learning for inverse design [52]. They used unsupervised
learning to quantify prior probabilities, ensuring that the search space remained within a valid range.
Then, they applied the Bayesian theorem to update the prior probability distribution and optimized the
molecular structure with new evidence. A large number of valid molecular structures were generated
by sampling from the posterior distribution, and their effectiveness was validated through numerical
simulations and experiments.

Genetic algorithms (GA) are optimization algorithms that search for optimal configurations by simu-
lating the process of natural selection [53]. By incorporating constraints and multi-stage optimization, GAs
can achieve efficient optimization for complex molecular designs. In inverse design, the adaptive nature of
genetic algorithms ensures that generated solutions meet both structural similarity and target performance
optimization requirements. Bhat et al. proposed a design method using category-based optimization to
predict the optimal Al alloy compositions. This approach outperformed traditional class-agnostic opti-
mization techniques in predicting alloys with enhanced tensile strength and elongation, identifying key
alloying elements for targeted optimization. The method was further improved by introducing data-driven
classification techniques to train class-specific regression models. These models were then individually
combined with genetic algorithms to search for alloys with high strength and high ductility [54].

Topology optimization (TopOpt) is an optimization method that provides powerful tools and tech-
niques for inverse design by adjusting material distribution to optimize structural performance [55].
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Christiansen et al. described a density-based topology optimization strategy, which adjusts material dis-
tribution to optimize structural performance and uses adjoint analysis for efficient gradient computation
to optimize design variables [56]. This method has been widely applied to achieve high-performance
structural designs. Chen et al. used topology optimization to maximize near-field enhancement effects in
nanoparticle dimers [57]. They first adjusted design variables through material interpolation methods, then
used adjoint methods to compute the gradient information of the design objectives concerning design
variables. Finally, based on the gradient information, iterative methods were used to update design variables,
gradually approaching the optimal solution. TopOpt demonstrates strong optimization capabilities and
flexibility in handling large-scale and high-dimensional design problems, significantly enhancing design
efficiency and flexibility in mechanics, photonics, and plasma science. Future developments can further
optimize computational efficiency, improve considerations for manufacturing constraints, and promote the
application and innovation of topology optimization in more fields.

Optimization-based inverse design methods are particularly well-suited for materials design prob-
lems with clear design objectives and optimization requirements. This method can accommodate various
types of objective functions and constraints, making it broadly applicable. However, for high-dimensional
design problems, the computational cost of optimization algorithms can be significant. Additionally, the
optimization results depend on the accuracy of performance prediction models; inaccurate models may
lead to suboptimal or incorrect designs. In the future, optimization-based inverse design will play a larger
role in addressing complex, high-dimensional materials design problems. As optimization algorithms and
performance prediction models continue to improve, this method will further enhance the efficiency
and accuracy of materials design, providing powerful tools for the discovery and development of high-
performance materials.

3.4 Machine Learning Method Selection
The selection of machine learning models is a crucial aspect of materials inverse design. Different

task types, data characteristics, and practical application scenarios present varying requirements for model
selection. The right machine learning model can not only improve the accuracy and efficiency of predictions
but also significantly optimize the design process and accelerate material development. However, the
complexity and diversity of material science problems mean that model selection is not fixed but needs to
be considered comprehensively, taking into account factors such as the specific problem type, data scale
and quality, computational resources, and model interpretability. To assist researchers in selecting the most
appropriate machine learning method, Table 3 summarizes model selection strategies based on task type,
data characteristics, computational costs, and other factors. These strategies provide systematic guidance for
choosing machine learning models in materials inverse design, helping to improve design efficiency and the
reliability of results.

Table 3: Recommended algorithms for different machine learning scenarios

Scenario Description Recommended algorithms
Classification

problem
Predicting discrete targets (e.g.,

whether a material meets specific
performance criteria)

Support Vector Machines (SVM),
Random Forest (RF), Logistic

Regression (LR), Neural Networks
(NN)

(Continued)
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Table 3 (continued)

Scenario Description Recommended algorithms
Regression

problem
Predicting continuous variables (e.g.,
thermal conductivity or mechanical

properties of materials)

Linear Regression (LR), Gradient
Boosting Trees (GBRT), Support
Vector Regression (SVR), Deep

Learning (DL)
Generation

problem
Generating material compositions or

structures (e.g., deriving material
composition and structure from target

performance)

Generative Adversarial Networks
(GAN), Variational Autoencoders

(VAE)

Large data volume Capturing complex non-linear
features in data

Deep Neural Networks (DNN),
Gradient Boosting Machines (GBM),

Random Forest
Data scarcity Small datasets with limited or

difficult-to-label data; data
augmentation may be required

Bayesian Optimization, Transfer
Learning, Generative Adversarial

Networks (GAN), Few-shot Learning
High-dimensional

data
Handling problems with many input

features and complex non-linear
relationships

Deep Neural Networks (DNN),
Support Vector Machines (SVM)

Limited resources Models needed to run in
computationally constrained

environments

Decision Trees (DT), Linear
Regression (LR), Gradient Boosting

Machines (GBM)

3.5 Model Performance Evaluation and Benchmarking Standards
In materials inverse design, model performance evaluation and benchmarking standards are key

components for assessing the effectiveness and applicability of machine learning methods. Performance eval-
uation, as one of the key factors to consider when designing, developing, configuring, and tuning computer
systems, should span all stages of the system lifecycle to ensure its effectiveness and reliability in various
application scenarios [58]. As shown in Table 4, different evaluation methods provide researchers with multi-
dimensional performance measurement tools. Through scientifically sound performance evaluation, one
can gain a comprehensive understanding of the model’s prediction accuracy, generalization ability, and
adaptability to complex materials design tasks in various application scenarios.

Table 4: Evaluation methods and their applicability in machine learning models

Evaluation method Description Applicable scenarios
Mean Absolute
Error (MAE)

Measures the average magnitude of
errors in predictions, without

considering their direction

Suitable for regression tasks, especially
for evaluating models that are less

sensitive to outliers

(Continued)
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Table 4 (continued)

Evaluation method Description Applicable scenarios
Root Mean Square

Error (RMSE)
Calculates the square root of the

average of squared differences between
prediction and actual values

Suitable for regression tasks where
sensitivity to large errors is critical,

such as in high-precision continuous
variable predictions

Coefficient of
determination (R2)

Indicates how well data fits a statistical
model, ranging from 0 to 1

Suitable for evaluating overall model
fit, particularly in explanatory

regression analyses
Mean Absolute

Percentage Error
(MAPE)

Represents prediction error as a
percentage of actual values

Commonly used in scenarios sensitive
to relative errors in actual values, such

as time series forecasting and price
predictions

F1 score Measures the balance between
precision and recall for classification

tasks

Suitable for imbalanced classification
tasks, such as spam detection and

disease diagnosis.
Precision Indicates the proportion of true

positive predictions among all positive
predictions

Suitable for scenarios requiring high
accuracy in positive class predictions,
such as recommendation systems and

financial risk assessments
Recall Reflects the proportion of true

positives correctly identified out of all
actual positives

Suitable for tasks sensitive to missing
positive classes, such as medical
diagnosis and object detection

Cross-validation A statistical technique for evaluating
model performance across multiple

datasets

Widely applicable to regression and
classification tasks, especially for

assessing model stability,
generalization ability, and parameter

tuning
Area Under the
Curve (AUC)

Evaluates the trade-off between true
positive rate and false positive rate in

classification models

Suitable for binary classification tasks,
such as credit scoring and ad click

prediction
Mean Squared
Error (MSE)

Represents the average of squared
differences between predicted and

actual values

Suitable for regression tasks highly
sensitive to large errors, such as energy
consumption forecasting and weather

prediction

The establishment of benchmarking standards provides a unified comparison framework for different
methods and models, allowing researchers to evaluate the performance and applicability of technologies on
the same basis [59]. This not only helps identify the strengths and weaknesses of models but also promotes
cross-validation of different research works and the reproducibility of results. Table 5 summarizes the key
elements of benchmarking standards, commonly used methods or tools, and the applicable model types,
offering an important reference for establishing a benchmarking framework.
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Table 5: Benchmarking elements for evaluating machine learning models

Benchmarking
element

Tools Description

Standardized
dataset

Kaggle, UCI Machine Learning
Repository, ImageNet, OpenML

Provides standardized datasets to
ensure models are evaluated under

identical conditions, avoiding biases
caused by data differences

Performance
metrics

scikit-learn, TensorFlow, PyTorch
evaluation modules

Offers multidimensional metrics to
evaluate model performance

comprehensively
Task definition MLPerf Benchmark, GLUE

Benchmark, CASP (Protein Structure
Prediction)

Defines task types and scopes to
provide benchmarks for evaluating

models in specific domains, ensuring
targeted and scientific comparisons

Testing protocol Cross-validation, Hyperparameter
Tuning

Establishes standardized testing
workflows using cross-validation and

hyperparameter optimization to
ensure model stability and

generalization across various
conditions

Resource
consumption

NVIDIA Nsight, TensorBoard,
PyTorch Profiler

Quantifies resource consumption to
optimize computational efficiency and
deployment performance. Suitable for
scenarios like real-time inference, edge

computing, and high-performance
computing

Baseline models ResNet, BERT, XGBoost, LSTM Provides validated baseline models as
performance references to assess

whether new methods outperform
existing techniques

Reproducibility
requirements

Jupyter Notebook, Google Colab,
GitHub, Weights & Biases (W&B)

Ensures transparency and
reproducibility through open code and

experiment settings, enhancing the
reliability and shareability of research

results
Domain-specific

testing
AutoML TOOLS,

DOMAIN-SPECIFIC DATASets
Evaluates model performance and

adaptability in specific fields, assessing
their potential for real-world

applications
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4 Applications of Inverse Design
Inverse design, as an innovative approach in modern engineering design, has been widely applied across

various fields of materials science and engineering technology. Through inverse design, researchers and
engineers can use advanced computing technology and experimental data to improve and optimize existing
materials and devices or develop entirely new high-performance materials. This method not only enhances
design efficiency but also significantly reduces R&D costs. The following will provide a detailed introduction
to the specific applications of inverse design in several key types of materials, including alloy materials, optical
materials and photonic devices, acoustic materials, and other materials.

4.1 Alloy Materials

Alloy materials are widely used in aerospace, automotive, electronics, and military fields due to their
excellent properties [60–63]. With the advancement of industrial technology and the increasing demands for
material performance, combining the inherent properties of alloys with structural design to achieve specific
performance indicators has become a significant research direction in materials design. The composition,
microstructure, and manufacturing process of alloys have a significant impact on their properties. By
adjusting these factors, the performance of alloys can be precisely controlled to meet the needs of various
applications [64]. In alloy design, mechanical properties are fundamental [65]. Tensile strength and ductility
are commonly used and easily tested in engineering, and are often selected as target performances [66].
Inverse design, by constructing a relationship model between composition and performance and using
optimization algorithms to iteratively adjust design variables, can efficiently find alloy combinations that
meet specific performance requirements.

Building relationship models between the composition, thermal processing conditions, microstructure,
and performance of alloy materials are crucial in alloy inverse design [67]. Machine learning algorithms
can efficiently analyze and mine large amounts of experimental data to establish accurate relationship
models, guiding optimization algorithms to quickly find optimal alloy combinations that meet target
performance [68,69]. Hu et al. systematically reviewed the research progress of machine learning in alloy
design, detailing the three major obstacles faced in alloy inverse design [70]. The basic process of alloy
materials inverse design is shown in Fig. 9.

Figure 9: Basic process flowchart for alloy materials inverse design [70]
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As the composition of alloys becomes increasingly complex and elements continue to increase, the
design space expands, making it more challenging to discover alloys with target performance [71]. Opti-
mization algorithms can simplify this search process and accelerate the discovery of new materials. Dudiy
et al. used Genetic Algorithms (GA) as search and optimization algorithms to help find alloy materials with
specific light absorption capabilities [72]. This target performance depends on structural configurations,
with each structural configuration element discovered in the Gap shown in Fig. 10a. The process first
optimizes the atomic structure through evolution to find the optimal configuration. Then, a fitness function
is used to define the difference between the calculated values and the target values, thus driving the GA
optimization process. This method efficiently explores vast design spaces, progressively optimizing alloy
composition and structure to quickly find alloys that meet target performance requirements. Although
this optimization algorithm can effectively accelerate the search speed, it often generates multiple material
combinations, leading to issues of non-uniqueness and uncertainty. To address the non-uniqueness issue,
Jiang et al. proposed an adaptive strategy, interactively using forward models and inverse models [40].
Candidate solutions proposed by the inverse model are validated through the forward model, and uncertainty
is assessed. After each optimization iteration, new validated data is fed back into the forward model to
continuously update the model and improve prediction accuracy. This adaptive updating method evolves
the model, progressively converging to the optimal solution, as shown in the model flowchart in Fig. 10b.
However, single-objective optimization can no longer meet the diverse needs of alloy materials; therefore, it is
necessary to find alloys that simultaneously meet multiple performance requirements. Padhy et al. collected
alloys’ magnetic, electrical, and mechanical properties and designed a database [73]. For this database, they
developed a multi-objective performance machine learning model and combined it with Bayesian algorithms
to optimize in the multi-objective performance space. This method can optimize alloy composition while
considering multiple performance indicators and finding alloy combinations that meet various performance
requirements. Additionally, Bhat et al. trained a multi-objective random forest regression model to predict
three mechanical properties (yield strength, tensile strength, and elongation) [74]. They used the multi-
objective random forest regression model to predict alloy composition and employed a random forest
classifier to predict processing conditions. Through this multi-objective optimization strategy, they success-
fully met multiple performance requirements in alloy inverse design, improving the efficiency and accuracy
of alloy design, as shown in Fig. 10c.

Currently, alloy inverse design methods based on machine learning have made significant progress.
Researchers have successfully predicted the composition and process parameters of new alloys by con-
structing large-scale alloy databases and utilizing advanced machine learning technologies, and these
predictions have been validated through experiments. However, alloy materials inverse design still faces
many challenges, including data quality, model interpretability, and algorithm accuracy. In summary, alloys
with target performance can reduce the time and cost of discovering new materials. With ongoing research
and innovation, machine learning-based alloy inverse design methods will bring greater advancements and
development to the design and application of alloy materials.
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Figure 10: (a) Identification of Np cluster configurations with the deepest defect layer, shallowest defect layer, highest
oscillation intensity, and lowest strain capacity in the Gap [72]; (b) Rational design method for new ultra-strong and
high-toughness aluminum alloys [40]; (c) Summary of the engineering process for aluminum alloy inverse design [74]

4.2 Optical Materials and Photonic Devices
Optical materials and photonic devices are widely used in fields such as optical communications, laser

technology, and optical sensing due to their specific optical properties (e.g., refractive index and absorption
rate) [75,76]. One of the core challenges in contemporary optics is how to optimally combine the inherent
properties of materials with photonic structures to achieve the desired performance. The composition,
structure, and manufacturing processes of materials significantly impact their optical performance. By
adjusting these factors, precise control over the optical properties can be achieved to meet various optical
application needs [77,78]. Traditional optical materials design methods typically start from fixed structural
parameters and predict their optical performance, which is a unidirectional process lacking feedback
adjustment. This approach can limit optimization and speed, especially in the design of complex or large-
scale photonic devices. In contrast, inverse design begins with the desired optical response and uses inverse
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engineering to determine the necessary materials and structures, allowing for the rapid discovery of new
materials. This method has become an active research direction in the field of photonics engineering [79–83].

Molesky et al. systematically introduced the major developments of inverse design in the field of
nanophotonics [84]. In the early stages, adjoint methods and evolutionary algorithms were already applied
to photonic inverse design [85]. However, adjoint methods can get trapped in local optima when facing
multi-modal problems, making it difficult to find the global optimum. Evolutionary algorithms can be
computationally expensive and slow to converge when dealing with complex or non-smooth objective
functions, which may make these optimization methods less suitable. To overcome these shortcomings,
several emerging inverse design methods have been developed in recent years.

Using machine learning to learn patterns and rules in datasets enables the prediction of the performance
and behavior of photonic structures, providing rapid prediction and optimization capabilities. Peurifoy
et al. trained a neural network to simulate the interaction of light with nanoscale materials, mapping the
relationship between the thickness of each shell of the nanoparticle and the scattering cross-sections at
different wavelengths in the scattering spectrum [86]. The inverse problem was solved using backprop-
agation, and the trained model can approximate complex physical simulations. The framework of this
neural network model is shown in Fig. 11a. Compared to traditional methods, neural networks are more
capable of searching for global optima and offer faster computational speeds. Although machine learning
can accelerate the inverse design process in some cases, there are still challenges. A common issue is the
occurrence of non-uniqueness in data, where the same input can result in different outputs [87], such as in
inverse scattering problems [41], the “one-to-many” nature of target spectra [88], and multiple solutions that
satisfy transparency conditions [24]. Cleaning training data, adjusting network structures, or introducing
forward models can help address this issue. For example, Liu et al. overcame the non-uniqueness problem by
cascading forward and inverse models [41], as shown in Fig. 11b. However, machine learning methods heavily
rely on large amounts of high-quality data, and the lack of data resources and poor model interpretability
remain major bottlenecks in optical materials inverse design. In optical systems, building datasets requires
collecting spectral data [89], imaging data, etc., which demands substantial time and resources, making it
challenging to gather sufficient training data.

Given the limitations of traditional methods (adjoint methods and evolutionary algorithms) and
emerging methods (machine learning), there is a need for an approach that combines multiple advantages.
In the optical field, topology optimization, which combines the physical accuracy and numerical efficiency
of traditional methods with low data dependency, has become a powerful tool for solving optical inverse
design problems [90]. Zeng et al. proposed a density-based topology optimization framework for the inverse
design of plasmonic structures [91], as illustrated in Fig. 11c. They converted time-domain finite difference
results to the frequency domain for optimization analysis and integrated it with a frequency-domain discrete
adjoint method within the density-based topology optimization framework. Through topology optimization,
innovative structures and design solutions that are difficult to find with traditional design methods can
be discovered. Similarly, Hammond et al. introduced a density-based topology optimization framework
that combines time/frequency domain adjoint variable methods and automatic differentiation techniques
to efficiently compute gradients for any number of optimization objectives (FOM) or multiple frequency
gradients within the design domain [92]. They also incorporated automatic differentiation techniques for
user-defined photonic optimization objectives, achieving efficient inverse design of complex nanophotonic
structures, as shown in Fig. 11d. In summary, topology optimization in optics is a powerful design tool
that enhances the performance and functionality of optical devices by optimizing material distribution and
structure. With advances in computational power and optimization algorithms, the application of topology
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optimization in optical design will become more widespread, providing crucial support for the design and
innovation of next-generation optical devices.

Figure 11: (a) Neural network architecture iagram; (b) Series network connecting the forward network and the inverse
network [41]; (c) Schematic diagram of inverse design for plasmonic structures [91]; (d) Density-based photonic
topology optimization: First, the design variables are filtered and projected, then a forward run is performed to evaluate
the objective function, and finally, the adjoint sources, determined by the results of the forward run, are applied for
optimization [92]

The significance and application potential of inverse design has been fully demonstrated in photonics
research, providing an effective approach to designing novel optical materials. At the same time, with ongoing
technological advancements and increasing computational resources, inverse design is expected to play a
greater role in the development of optical devices in the future, driving innovation and breakthroughs in the
field of optics.
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4.3 Acoustic Materials
In recent years, the field of acoustics has gained significant attention due to the increasing demand for

designing phononic crystals, acoustic metamaterials, and other acoustic structures. These materials have
widespread applications in vibration reduction, noise control, filtering, acoustic lenses, and acoustic imaging,
which are crucial for industries such as information technology, communication, and healthcare [93]. The
target performance in acoustics typically includes specific functions or characteristics of acoustic structures,
such as sound wave scattering [94,95], absorption performance [96], group velocity profiles [97], and
bandgap distribution. By adjusting geometric parameters, absorption spectra, and elastic wave propagation
behaviors of acoustic materials, their acoustic performance can be altered, thus affecting the functionality
of acoustic devices. Traditional design methods rely on analytical and numerical approaches to predict the
performance of acoustic structures. As the complexity of the structures increases, these methods require
evaluating numerous structural parameters, leading to extended design times and resource consumption
issues. To overcome these limitations, the field of acoustics has begun to shift towards inverse design, where
the desired acoustic characteristics are used to infer the corresponding structures [98].

Jin et al. have provided an excellent review of the development of machine learning in the field of
phononic metamaterials, including machine learning-driven on-demand design [99]. The review covers the
use of supervised learning, unsupervised learning, reinforcement learning, and other methods to achieve
acoustic inverse design. Early acoustic design was primarily based on optimization, including methods such
as topology optimization [100], genetic algorithms, level set methods, and particle swarm optimization,
which have long been applied to various phononic crystal materials. However, as the structures of acoustic
materials become increasingly complex, these optimization methods can be time-consuming and require
precise control of certain factors (such as sound waves). Therefore, relying solely on optimization algorithms
makes it difficult to discover new materials, and machine learning needs to be introduced to assist in the
design process.

With advancements in machine learning technology, its application in acoustics has become a key
focus of research. Through machine learning algorithms, researchers can mine nonlinear physical patterns
in high-dimensional spaces from large datasets of candidate structures, enabling efficient and accurate
design of acoustic materials. Cheng et al. developed a deep neural network model for two-dimensional
input performance parameters and four-dimensional output geometric parameters [101]. Based on this deep
neural network model, a deep autoencoder network (DAE) was also proposed to enhance model accuracy,
ensuring the reliability and stability of the model in acoustic inverse design. The framework of this deep
autoencoder network is shown in Fig. 12a. This model can rapidly search and optimize the design space,
accelerating the process of finding acoustic structures that meet specific requirements. Li et al. trained a
deep learning model to extract topological features from a large number of sample images, revealing the
complex relationship between the topological structure and band gaps of phononic crystals [102]. The model
demonstrates excellent fitting capability even in very complex situations, thus achieving on-demand design
of acoustic materials. The design process is shown in Fig. 12b. As data continues to be updated, the deep
learning model can also self-evolve, avoiding real-time computations. Moreover, this deep learning model
can be applied to the design of other structural mechanical materials. Sun et al. used deep neural networks to
identify the intrinsic relationship between isoelectric effects and acoustic properties [103]. The trained model
can automatically generate isoelectric effect parameters for structures and calculate corresponding geometric
parameters through linear predictive analysis, achieving the expected sound insulation and noise reduction
effects for multi-order Helmholtz resonators and acoustic filters. This design process is shown in Fig. 12c.
This method makes the design and optimization of acoustic structures faster and more efficient compared
to traditional methods, while also improving the accuracy of achieving specific acoustic performance.
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Figure 12: (a) The architecture of the DAE model [101]; (b) Design workflow for photonic crystals with the desired
bandgap [102]; (c) Conceptual diagram of using neural networks to address acoustic inverse design [103]

However, due to limitations in equipment and technology, the data obtained often suffer from incon-
sistencies and limited quantity, which complicates the acquisition and processing of acoustic data and
affects the modeling and predictive performance of machine learning models. Therefore, in inverse design,
data collection and processing for acoustic materials become crucial for achieving on-demand design and
performance prediction. The construction of a dataset typically involves extensive acoustic performance
evaluations, which can be completed through numerical simulations, experimental measurements, or
theoretical derivations. After data collection, the data processing steps include cleaning, transforming, and
feature extraction to prepare the data for training and prediction in machine learning models. Data collection
can be achieved through numerical simulations. For example, finite element methods or other numerical
techniques can be used to calculate acoustic performance such as absorption spectra, transmission spectra,
or reflection spectra of acoustic materials. These data can cover variations in frequency ranges, material
parameters, and structural geometries to ensure the diversity and representativeness of the dataset.

In summary, inverse design in the field of acoustics requires efficient, versatile, and automated design
methods, as well as a deep understanding of the complex relationships between acoustic characteristics and
structures. The introduction of machine learning technologies offers new ideas and methods to address these
challenges, providing more flexible and efficient pathways for the design and optimization of acoustic devices.
In the future, data-driven approaches will become the mainstream for optimizing acoustic structures [104].
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By improving the quality and availability of acoustic data and generating and processing large datasets, it will
be possible to predict acoustic materials with target performance more accurately [105].

4.4 Other Materials
The inverse design of materials using machine learning algorithms also extends to other fields. Polymers,

known for their light weight, good plasticity, and high chemical stability, are widely used in various
domains [106,107]. Mechanical properties, thermal stability, and chemical resistance can be influenced
by factors such as molecular structure, side chain structure, and molecular weight [108]. Designing and
optimizing the structure and composition of polymers is crucial for achieving the desired performance.
Sattari et al. have provided a comprehensive review of optimization algorithms in the inverse design of
polymers [109]. Kumar et al. used particle swarm optimization combined with neural networks for inverse
design, successfully predicting and synthesizing polymers with specific cloud points [110]. Patra et al.
employed MCTS to search for specific polymer sequences and combined it with molecular dynamics (MD)
simulations in inverse design strategies to identify particular copolymers [31]. In the study of inorganic solid
materials, inverse design is gradually becoming an efficient and promising approach. Zunger have reviewed
the inverse design of inorganic solid materials extensively [111]. Other materials related to inverse design
research are listed in Table 6.

Table 6: Inverse design using machine learning in other material fields

Materials Methodology Target Reference
lithium-ion batteries

cathode materials
K-Nearest Neighbors

(KNN), Random Forest
(RF)

Design variables for
predicting expected

target discharge capacity

[46]

Organic molecules Neural network Specific light-absorbing
molecules and host

materials

[112]

Soft membranes Neural network 3D shapes starting from
2D planar composite

membranes

[113]

Chiral functional films Generative Adversarial
Network

Chiral membranes with
target chirality

[114]

Glass Deep graph neural
networks

Improving the plastic
resistance of glass

[115]

Magnonic devices Micromagnetic
simulations

Can specify any function [116]

Biomass fuel Bayesian active learning,
eXtreme Gradient

Boosting

Improve hydrogen
production efficiency

[117]

5 Conclusions
In modern materials science and engineering applications, the limitations of traditional forward design

methods have gradually become apparent with the continuous advancement of technology. Facing complex
multidimensional design spaces and diverse performance requirements, finding optimal design solutions
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has become increasingly challenging. To overcome these challenges, materials inverse design has emerged.
By starting from the desired performance and utilizing advanced algorithms and models, inverse design not
only addresses the limitations of traditional design but also provides an effective approach for discovering
and optimizing new materials. With the development of materials science, inverse design has become a key
tool in driving the discovery and optimization of new materials.

In this paper, we focus on three machine learning-based materials inverse design methods:
exploration-based inverse design, model-based inverse design, and optimization-based inverse design.
Exploration-based inverse design uses techniques such as reinforcement learning, Monte Carlo Tree Search,
and Particle Swarm Optimization to efficiently search for and approximate optimal design solutions in
scenarios with limited data. Model-based inverse design improves the accuracy of predictions by enhancing
existing models. Optimization-based inverse design seeks optimal solutions in complex multidimensional
design spaces using optimization algorithms such as genetic algorithms and Bayesian optimization.

These inverse design methods have been widely applied in fields such as alloys, optics, and acoustics.
For example, in the optical field, inverse design can optimize the geometric structure of optical devices to
enhance optical performance. In the acoustics field, inverse design is used to develop new acoustic materials
for efficient control of sound waves. In the alloy field, inverse design helps scientists discover and optimize
new alloy materials with outstanding performance.

Nevertheless, the widespread application of materials inverse design still faces several challenges:

• Data Scarcity and Quality Issue—The lack of high-quality data required for training machine learning
models limits the effectiveness of inverse design methods.

• Prohibitively large search space—Materials design involves a wide range of possible elements and
processing methods, and the design process requires considering numerous potential combinations.

• Multi-objective tasks—Finding materials that can simultaneously meet different performance require-
ments is very challenging, as optimizing one property may negatively impact others.

• Integration of Interdisciplinary Knowledge-Materials design is inherently interdisciplinary, requiring
knowledge from fields such as chemistry, physics, engineering, and computational science.

These challenges can be effectively addressed through a series of solutions. Data scarcity and quality
issues can be improved by combining experimental data with high-throughput computational data, and
by employing techniques such as data augmentation and transfer learning. In the case of the prohibitively
large search space, efficient optimization methods such as Bayesian optimization and reinforcement learning
can help reduce computational burdens and focus on the most promising design areas. Performance
conflicts in multi-objective tasks can be balanced using multi-objective optimization algorithms, and the
evaluation process can be accelerated by utilizing surrogate models. Finally, the interdisciplinary nature of
materials design requires close collaboration among experts from various fields. By integrating knowledge
from chemistry, physics, engineering, and computational science, interdisciplinary teams can offer more
comprehensive solutions. Furthermore, combining computational models from different disciplines can
provide more accurate predictions and optimizations for materials design. The implementation of these
measures will significantly enhance the efficiency and effectiveness of materials inverse design, driving
innovation and progress in the field of materials science.

With the continuous advancement of computing resources and innovations in machine learning
algorithms, the methods and applications of materials inverse design will become more extensive and in-
depth. By integrating multidisciplinary knowledge and developing more intelligent and efficient algorithms,
we are expected to achieve more breakthroughs in materials design. Additionally, with the increase in
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data sharing and collaborative research, the inverse design will be able to utilize larger-scale and higher-
quality data, further enhancing its accuracy and practicality. In the future, we look forward to seeing
widespread applications of materials inverse design in cutting-edge fields such as new energy materials,
biomaterials, and nanomaterials, advancing scientific and technological progress and contributing more to
solving global challenges.
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