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ABSTRACT: The identification of the traction acting on a portion of the surface of an anisotropic solid is very
important in structural health monitoring and optimal design of structures. The traction can be determined using
inverse methods in which displacement or strain measurements are taken at several points on the body. This paper
presents an inverse method based on the method of fundamental solutions for the traction identification problem in
two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless
method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply
performed by solving the corresponding direct problem several times with different loads. The effects of important
parameters such as the number of measurement data, the position of the measurement points, the amount of
measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The
results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be
concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than
the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown
traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points
increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further
increasing the number of measurement data has little effect on the results.

KEYWORDS: Traction identification; inverse method; anisotropic elasticity; load identification; method of fundamen-
tal solutions; measurement location

1 Introduction
Determining the traction applied to an edge of an anisotropic body is very important in structural health

monitoring and optimal design of structures. The traction applied to a body cannot usually be measured
directly but should be determined using inverse methods, in which displacement or strain measurements
are taken at several points on the body. In direct problems, the boundary conditions, the material properties,
and the applied loads are known and the displacement, strain, and stress fields in the domain are calculated
by solving the problem. In inverse problems, the boundary conditions, the material properties or the applied
loads are not known, and by using an inverse method and measured data, the unknowns are calculated.
Inverse problems may be ill-posed [1] and are usually more difficult to solve than direct problems.

Inverse problems related to anisotropic elastostatic problems have been the subject of intense research
in recent decades. Some researchers have studied the identification of elastic constants of anisotropic solids.
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Van Hemelrijck et al. [2] presented an inverse finite element method based on a static biaxial test for
the identification of two-dimensional (2D) elastic constants of composite laminates. They used full-field
strain measurements in their inverse method. Hematiyan et al. [3] presented an inverse method based on
the boundary element method for the identification of 2D anisotropic elastic constants. They employed
displacement measurements from more than one elastostatic test to overcome the ill-posedness of the inverse
problem. An inverse finite element method for determining in-plane orthotropic elastic constants of 2D
solids was presented by Nigamaa et al. [4]. They employed full-field strain measurements in the inverse
analysis. Chen et al. [5] presented a method based on the singular boundary method for the identification of
elastic constants of orthotropic materials. They used measured data obtained from measurement points on
the boundary of the problem in the inverse analysis. Hematiyan et al. [6] presented an inverse meshless radial
interpolation method for the identification of all 21 elastic constants of three-dimensional (3D) generally
anisotropic solids. They used strain measured data obtained from several simple elastostatic tests to find the
unknown elastic constants. Smyl et al. [7] presented an inverse method for identifying elastic properties of
inhomogeneous orthotropic materials. They used displacement field obtained from digital image correlation
through quasi-static elasticity imaging in their method. Mei et al. [8] proposed an inverse method for
determining inhomogeneous elastic parameters of two-dimensional orthotropic materials using a finite
number of displacement measurements. They employed an iterative inverse algorithm along with the finite
element method in their approach. Another inverse method based on the finite element method for the
identification of elastic constants of 2D orthotropic materials was proposed by Kim et al. [9]. They used
a specimen with an elliptic hole and full-field measurements in their inverse method. Zhang et al. [10]
presented a machine learning model based on a modified radial basis function neural network to determine
21 elastic constants of anisotropic additive-manufactured solids. They utilized the Young’s modulus and the
shear modulus values of samples in different orientations to predict the elastic constants. Recently, Hematiyan
et al. [11] proposed an inverse method of fundamental solutions (MFS) for the identification of 2D anisotropic
elastic constants of solids.

Identification of boundary conditions in isotropic elasticity has been the subject of many studies
(e.g., [12–16]); however, this type of inverse problem for anisotropic materials has received less attention.
Comino et al. [17] proposed an iterative inverse method based on the boundary element method for the
identification of boundary conditions in 2D anisotropic elasticity. They also investigated the effect of the
amount of measurement error on the accuracy of the solution. Zhang et al. [18] developed a non-iterative
inverse method based on the meshless local Petrov-Galerkin method for inverse analysis of isotropic and
anisotropic solids. They assumed that a portion of the boundary is over-determined, i.e., both the traction
and displacement are prescribed on that portion, while the boundary condition on another portion of the
boundary is unknown. A similar inverse Trefftz method based on the Stroh formalism was proposed by
Zhang et al. [19].

The MFS, which is a well-known boundary-type meshfree method, is very suitable for inverse analysis
of engineering problems because it is computationally efficient and simple to program. Moreover, various
boundary conditions can be implemented in the MFS without any integration. The MFS has been widely used
for inverse analyses [20]. Although the MFS has not been employed for traction identification in anisotropic
elasticity, it has been widely employed for boundary condition identification in isotropic media. Marin [21]
proposed an iterative inverse MFS for the identification of the condition on a portion of the boundary of
an isotropic domain, while both the traction and displacement on another portion of the boundary were
prescribed. He used the Tikhonov regularization method in the inverse analysis and chose an appropriate
value for the regularization parameter using the generalized cross-validation criterion. Moreover, Marin
et al. [22] proposed another inverse MFS based on the fading regularization method for solving the same
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inverse problem. Marin et al. [23] proposed a non-iterative MFS for the identification of boundary conditions
on a part of the boundary of 2D and 3D isotropic elastic domains. They considered over-prescribed boundary
conditions on the remaining boundary and examined some regularization methods in the inverse analysis.

A review of previous works shows that the MFS has been widely used for various inverse problems in
isotropic media. Moreover, it is observed that the MFS has been employed for the identification of elastic
constants of anisotropic materials; however, neither the MFS nor other boundary-type meshless methods
have yet been used for the identification of traction on the boundary of anisotropic bodies. Boundary-type
meshless methods are more attractive than domain-type methods because they require less effort from the
user. In this paper, an inverse MFS for the identification of traction on a part of the boundary is presented.
Measured displacements or strains taken at several points in the domain or on the boundary are used in the
inverse method. The effects of important parameters such as the number of measurements, the location of
measurement points, the amount of measurement error, and the type of the measurement (displacement or
strain) on the results are also investigated.

2 The MFS for 2D Anisotropic Elasticity

The MFS is a boundary-type meshless method that has been widely employed for the analysis of linear
problems. It is a semi-analytical method, in which the governing equations are exactly satisfied in the
problem domain, while the boundary conditions of the problem are satisfied at a number of collocation
points on the boundary. The MFS was introduced as a numerical method more than four decades ago [24].
An overview of the MFS can be found in [25]. Since the MFS is an efficient computational method, it has
been used for the analysis of various problems. A few examples include the use of the MFS in the analysis
of Poisson’s equation [26,27], elastostatic problems [28,29], isotropic thermoelasticity [30,31], anisotropic
thermoelasticity [32], elastodynamic problems [33,34], and plate bending problems [35–37]. A variation of
the MFS, called the localized method of fundamental solutions, has also been presented, which can be more
efficient for large scale problems [38,39]. In the finite element method, which is a very popular method, it is
required to discretize the domain of the problem, which can lead to difficulties in some problems. In domain-
type meshless methods (e.g., [40,41]), there is no need to define any elements; however, it is necessary to
define a sufficient number of nodes in the domain of the problem. The MFS compared to the finite element
and meshless methods, is more attractive because it is a boundary-type meshless method, and there is no need
to consider any internal nodes or elements with this method. The boundary element method (e.g., [42,43]) is
also a well-known boundary-type method that does not require domain discretization. The MFS compared to
the boundary element method, is simpler because the MFS is an integral-free method, while various singular
integrals must be computed in the boundary element method.

In this section, the MFS for 2D anisotropic elasticity is briefly described. The unknowns in the 2D
elasticity problem are the displacements in the x1 and x2 directions, i.e., u1 and u2, the in-plane strains ε11, ε22,
and ε12, and the in-plane stresses σ11, σ22, and σ12. The governing equations of the problem are equilibrium
relations, strain-displacement equations, and stress-strain relations [44]. The equilibrium equations are:

∂σ11

∂x1
+ ∂σ12

∂x2
= 0, (1)

∂σ12

∂x1
+ ∂σ22

∂x2
= 0. (2)



3072 Comput Mater Contin. 2025;82(2)

The strain components in terms of the displacement components can be expressed as follows:

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε12 =

1
2
( ∂u1

∂x2
+ ∂u2

∂x1
) . (3)

For an anisotropic material, the strain components in terms of the stress components can be written as
follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε11
ε22
2ε12

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

a11 a12 a16
a21 a22 a26
a61 a62 a66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ11
σ22
σ12

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (4)

where ai j represent the elastic compliance coefficients of the anisotropic material. The relations between ai j
and the Young’s moduli, shear moduli and the Poisson’s ratios can be found in [44,45].

The standard boundary conditions can be written as follows:

ui = ui (x1 , x2) on ∂Ω1, i = 1, 2 (5)

ti = σi jn j = t i (x1 , x2) on ∂Ω2, i = 1, 2 (6)

where ui are predefined functions on ∂Ω1 with essential boundary conditions, and t i are predefined functions
on ∂Ω2 with natural boundary conditions. ti represents the component of the traction vector t, and n j is the
component of the unit vector n, which is normal to the boundary of the domain Ω.

In the MFS for 2D elasticity, the displacement solution is approximated as follows:

ui (x) =
N
∑
k=1

[γk1u∗i1 (x , Sk) + γk2u∗i2 (x , Sk)] , (7)

where N is the number of fictitious forces (sources) applied at N source points on a pseudo boundary. As
shown in Fig. 1, the source points are located outside the domain of the problem. The location of the kth
source point is denoted by the vector Sk . An arbitrary field point with coordinates (x1 , x2) in the domain or
on its boundary is denoted by x. u∗i j (x , Sk) is the displacement fundamental solution, which has a singularity
at the source point Sk but has finite values in Ω and ∂Ω = ∂Ω1 ∪ ∂Ω2. Each fundamental solution exactly
satisfies the governing equations of the problem, and since the problem is linear, the linear combination of
a set of fundamental solutions, i.e., Eq. (7), satisfies the governing equations. The details of the displacement
fundamental solution [46,47] are described in Appendix A.
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Figure 1: Source points and collocation points in the MFS

The components of the strain and stress tensors can be computed as follows:

εi j (x) =
N
∑
k=1

[γk1ε∗i j1 (x , Sk) + γk2ε∗i j2 (x , Sk)] , (8)

σi j (x) =
N
∑
k=1

[γk1σ∗i j1 (x , Sk) + γk2σ∗i j2 (x , Sk)] , (9)

where

ε∗i jm (x) = 1
2
[u∗im , j (x , Sk) + u∗jm , i (x , Sk)] , (10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ∗11k
σ∗22k
σ∗12k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

a11 a12 a16
a21 a22 a26
a61 a62 a66

⎤⎥⎥⎥⎥⎥⎦

−1 ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε∗11k
ε∗22k
2ε∗12k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (11)

ui (x), εi j (x), and σi j (x) in Eqs. (7)–(9) satisfy the governing equations given in Eqs. (1) to (4). The
boundary conditions given in Eqs. (5) and (6) are satisfied at M collocation points on the boundary of the
problem, which leads to the following system of linear equations:

[A]
�

2M×2N

{γ}
�
2N×1

= { f }
�
2M×1

. (12)

M must be equal to or greater than N . In cases where M > N , Eq. (12) becomes an overdetermined
system of equations, which can be solved using the least-squares method. Some remarks regarding the MFS
for 2D anisotropic elasticity can be found in [45].

3 Inverse Analyses
The general schematic of the inverse problem for identifying the applied traction t on a part of the

boundary of a 2D anisotropic medium is shown in Fig. 2. Boundary conditions on other parts of the
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boundary are known, and material properties are also assumed to be known. The values of the displacements
or strains at NM measurement points are available. These measurement data are obtained from appropriate
experiments in real applications; however, in this study, they are provided through numerical simulation by
solving the corresponding direct problem using the MFS. The traction vector t is expressed in terms of m
unknown parameters, i.e., f1 , f2, . . . , fm , which must be found through the inverse analysis. For example, a
quadratic variation with three parameters may be considered for the traction.

Figure 2: General schematic of the inverse problem for traction identification

The vector of unknowns is defined as follows:

{X} = [ f1 f2 ⋅ ⋅ ⋅ fm ]T . (13)

The vector of measurement data can be expressed as follows:

{Y} = [ Y 1 Y 2 ⋅ ⋅ ⋅ Y NM ]T . (14)

where Y i represents the displacement or strain measurement datum at the ith measurement point. Through
the inverse analysis, the value of the displacement or strain at measurement points is reconstructed. The
vector of the reconstructed parameters is expressed as follows:

{Y} = [ Y1 Y2 ⋅ ⋅ ⋅ YNM ]T . (15)

where Yi is the reconstructed displacement or strain at the ith measurement point. The vector {Y} is
predefined and is fixed in the inverse analysis, while the vector {Y} is computed as a function of {X}. In
the inverse analysis, the objective is to calculate {X} in such a way that the difference between the vector of
measurement data, i.e., {Y}, and the reconstructed vector {Y} is minimized. For this purpose, the following
cost function is defined:

ϕ ({X}) = ({Y} − {Y})T ({Y} − {Y}) . (16)

In cases where the ill-posedness of the inverse problem is considerable, such as when a small number
of measurement data is available, the inverse solution for the components of {X} may be oscillatory. In
these cases, the regularization term μR {X}T {X} can be added to the right-hand side of Eq. (16). μR is
the regularization parameter and an appropriate value should be selected for it. Large values for μR result
in a regularized solution, but the difference between measurement data and reconstructed measurement
variables becomes large. On the other hand, if a very small value is selected for μR , the difference between {Y}
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and {Y}will be small, but the solution may be oscillatory. In this study, a quadratic form with three unknown
parameters is considered for the traction and the oscillation of the solution is not significant; therefore, the
inverse analysis is conducted without any regularization.

To minimize the cost function in Eq. (16), its derivative with respect to {X} is set equal to zero, yielding:

{S}T ({Y} − {Y}) = 0, (17)

where {S} is the sensitivity matrix, the components of which are expressed as follows:

Si j =
∂Yi

∂X j
i = 1, 2, . . . , NM , j = 1, 2, . . . , m. (18)

Since the problem is linear, one can substitute {Y} = {S}{X} in Eq. (17), which results in:

{X} = ({S}T {S})
−1
{S}T {Y} . (19)

To find the unknown vector {X} from Eq. (19), it is necessary to compute {S}. By solving m direct
problems the components of {S} can be found. As the first problem in the sensitivity analysis, we set f1 = 1 and
f2 = f3 = . . . = fm = 0, and compute the measurement variables at the NM measurement points. Assuming
that the computed values are Y1, Y2, ..., YNM , respectively, the first column of {S} can be set as Si1 = Yi .
Similarly by setting f j = 1 and other traction parameters equal to zero and solving the direct problem the jth
column of {S} is computed.

4 Numerical Study
An inverse plane anisotropic problem in several different situations is presented in this section, and the

influence of important parameters such as the number of measurement data, the location of measurement
points, and the magnitude of the measurement error on the solution is investigated. Two different materials
are considered in the analyses. The elastic compliance coefficients of these materials are given in Table 1.

Table 1: The elastic compliance coefficients* of the materials used in the analyses

a11 a12 a16 a22 a26 a66

Material 1 0.1060 −0.0315 −0.0045 0.1060 −0.0045 0.2690
Material 2 0.4537 −0.0787 −0.3050 0.4537 −0.3050 0.8700

Note: *The dimensions of the coefficients are (MPa)−1.

A rectangular domain with a central hole is considered in the example. The geometry and boundary
conditions of the direct problem are shown in Fig. 3. The left edge of the rectangle is fixed (i.e., ui = 0), while
the upper and lower edges, as well as the internal circular boundary, are traction free (i.e., σi jn j = 0), and the
right edge of the rectangle (AB) is subjected to the normal traction t = f (y). Specifically, σ11 equals t, and
the tangential component of the traction, σ12, is equall to zero on AB.
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Figure 3: Geometry and boundary conditions of the problem

For constructing the inverse problems to be analyzed, three different functions are considered for the
function f , which are given in Table 2. To provide the measurement data for the inverse analysis, the direct
problem, subject to the three tractions on its right edge (i.e., AB) is solved, and the solutions for displacement
and strain are found. The obtained solutions at some points, with added artificial errors, are used in the
inverse analysis as the measurement data. Each measurement datum is simulated by adding a Gaussian error
to the exact value as follows:

Y i = Y exact
i + ei , (20)

where Y exact
i is the exact value and Y i is the simulated value of the ith measured datum, and ei is the added

error. ei corresponds to a noise level of T% and is computed as follows:

ei = Y exact
i γi(T/100), (21)

where γi is a random number with a Gaussian distribution in the interval [−1 1].

Table 2: Different functions considered for the traction t = f (y)

Traction function Type
f (y) = 1 + y/2 Linear

f (y) = 2 + 0.7y − 0.2y2 Quadratic
f (y) = sin (πy/2) Sinusoidal

The geometry of the considered problem includes sharp corners and involves a curved boundary.
Moreover, since the material is anisotropic and there are stress concentrations around the circle, the problem
can be considered as a relatively complicated problem. A larger number of source points is required to solve
anisotropic elastostatic problems than for isotropic problems [45]. The direct problem was solved three times
using the MFS with 456, 912, and 1824 source points. The number of collocation points was considered to
be two times the number of source points in each case. Through a numerical study it was observed that the
case with 912 source points and 1824 collocation points results in a very accurate solution with less than 0.1%
difference compared to the case with 1824 source points. Consequently, the model with 912 source points is
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used in the inverse analyses. The distance between the main and pseudo boundaries has been selected based
on the procedure described in [45], where it is suggested to use the value of 0.95 for the location parameter
of source points. Based on the procedure mentioned, the distance from the pseudo boundary to the main
boundary is selected as 0.024 m and 0.1 m for the internal circle and the rectangle, respectively. Detailed
explanations regarding the suitable distance between the main and pseudo boundaries for the analysis of 2D
anisotropic elastostatic problems can be found in [45].

In the inverse analysis, the traction function on the edge AB is considered to be unknown. We
approximate the traction with a quadratic function in terms of three unknown parameters as follows:

f = t1
(y − 1)(y − 2)

2
+ t2

y(y − 2)
−1

+ t3
y(y − 1)

2
(22)

where t1, t2, and t3 in Eq. (22) are the unknown traction parameters. Indeed, t1, t2, and t3 represent the value
of the traction on the edge AB at points with y = 0, 1 and 2, respectively. The quadratic form considered for
the unknown traction vector can exactly match the linear and quadratic functions given in Table 2; however,
its form is different from the third case, which has a sinusoidal form. In the considered problem, the edge
with unknown traction is straight. However, if the edge with the unknown condition is curved, the same
procedure can be used since the unknown traction is expressed in terms of several unknown parameters,
which can be found by inverse analysis.

The inverse analyses are performed with several different configurations of measurement points. Six
different cases for the configuration of measurement points are shown in Fig. 4. There are 4 measurement
points in Cases 1, 2, and 3 where the measurement points are closer to the edge AB in Case 1 and the distance
from the measurement points to the edge AB is larger in Case 3. The number of measurement points has
been increased to 8 and 12 in Cases 4 and 5, respectively. In Case 6, the measurement points are located on
the boundary of the problem, where 6 measurement points have been considered.

The error percentage (based on the L2 norm) of the inverse solution is calculated by the following
equation using the exact and computed values of the traction at 21 points on the edge AB:

Er =

√
∑21

i=1 (tInv
i − tExact

i )2

√
∑21

i=1 (tExact
i )2

× 100%, (23)

where tInv
i represents the magnitude of the traction at the ith point obtained by the inverse analysis and tExact

i
is the exact solution at the same point.

Now, the results obtained from different inverse analyses are reported. First, we study the accuracy
of the inverse analysis with displacement and strain measurements. Strain at a point on the surface of a
body can be simply measured by a strain gauge, while displacement measurement, especially when the
magnitude of the displacement is small, may be more difficult. In Fig. 5, the results for the identification of the
traction on edge AB in a case with Material 1 (Table 1), 3% measurement error, and with measurement points
configuration of Case 1 (Fig. 4) are shown. At the first time, the displacement measurement data and at the
second time the strain measurement data have been used. In Fig. 5a–c, the results for the traction with linear,
quadratic, and sinusoidal variations (Table 2) are shown, respectively. As can be seen, the results obtained
with strain measurements are clearly more accurate than the cases where displacement measurements
are used. Therefore, in the next inverse analyses, strain measurements are used for the identification of
the traction.
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Figure 4: Configuration of measurement points in the inverse analyses
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Figure 5: Results of the inverse analysis for the traction identification with Material 1, Case 1 of measurement points
configuration, 3% measurement error, and with displacement and strain measurements: (a) linear traction, (b) quadratic
traction, (c) sinusoidal traction
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In Fig. 6, the results for the identification of the traction on edge AB in a case with Material 1 (Table 1),
with 0%, 5% and 10% measurement error (strain measurement), and with measurement points configuration
of Case 2 (Fig. 4) are shown. In Fig. 6a–c, the results for the traction with linear, quadratic, and sinusoidal
variations (Table 2) are shown, respectively. When the measurement error is zero, the tractions with linear
and quadratic forms are identified without any error. However, there is an error of 3.5% in the identification
of the traction with sinusoidal variation. The magnitude of the error is computed using Eq. (23). In the case
with 5% measurement error, the error of the identified traction is 3.0%, 3.5%, and 3.6% for linear, quadratic,
and sinusoidal tractions, respectively. In the case with 10% measurement error, which is a significantly large
magnitude, the error of the identified traction is 6.0%, 7.0%, and 6.7% for linear, quadratic and sinusoidal
tractions, respectively. From the results shown in Fig. 6 it is observed that the inverse method is capable of
traction identification even with considerable measurement error. Moreover, it is seen that the method can
identify a traction with a different form than the one considered for the traction in the inverse analysis.

In the next inverse analysis, we study the influence of the location of the measurement points on the
accuracy of the identified traction. The results of the inverse analysis for the traction identification with 3%
measurement error, Material 1, and two different configurations of measurement points are shown in Fig. 7.
In the first analysis, the 4 measurement points of Case 1 (in Fig. 4) are used in the inverse analysis. In the next
analysis, the 4 measurement points of Case 3 are used in the inverse analysis. In Case 1, the measurement
points are close to the edge with unknown traction (edge AB), while the measurement points are relatively
far from edge AB in Case 3. From Fig. 7, it is observed that the obtained results are much more accurate when
the measurement points are close to the edge with unknown traction.

The influence of the number of measurement data on the accuracy of the identified traction is also
studied. The results of the inverse analysis for the traction identification with 10% measurement error,
Material 1, and with 4, 8 and 12 measurement points are shown in Fig. 8. Cases 1, 4, and 5 in Fig. 4 correspond
to the three cases with 4, 8, and 12 measurement points, respectively. As can be seen from Fig. 8, by increasing
the number of measurement points from 4 to 8, the accuracy of the results is significantly increased. Further
increase of the measurement points from 8 to 12 has no significant effect on increasing the accuracy of the
results. In other words, when the number of measurement points is not large, increasing the number of
measurement points will increase the accuracy of the inverse solution; however, in cases with a large number
of measurement points, further increase of the number of measurement data has little effect on the results.

In all of the previous inverse analyses, the measurement points were located within the domain of the
problem. A case with measurement points on the boundary is also considered. The results for this case with
Material 1, with 0%, 5%, and 10% measurement error, and with 6 measurement points (Case 6 in Fig. 4) are
shown in Fig. 9. As can be seen from Fig. 9, the inverse method can efficiently identify the unknown traction
using measurement points located on the boundary.

In all of the previous analyses, Material 1 was used. To ensure that the inverse method is capable
of finding acceptable solutions for different materials, another analysis with Material 2 (Table 1) is also
performed. The results for this case with Material 2, with 0%, 5%, and 10% measurement error, and with
4 measurement points (Case 2 in Fig. 4) are shown in Fig. 10. This figure shows that the inverse method
can identify the unknown traction with sufficient accuracy for the case with Material 2 as well. It should be
mentioned that the inverse method proposed in this study is applicable to problems with linear anisotropic
materials. For more advanced anisotropic materials with large deformations [48], a different method should
be developed.
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Figure 6: Results of the inverse analysis for the traction identification with Material 1, different measurement errors
and Case 2 of configurations of measurement points: (a) linear traction, (b) quadratic traction, (c) sinusoidal traction
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Figure 7: Results of the inverse analysis for the traction identification with 3% measurement error, Material 1, and
two different configurations of measurement points: (a) linear traction, (b) quadratic traction, (c) sinusoidal traction,
“Inv., Meas. I” and “Inv. Meas. II” in the legends correspond to measurement points configurations 1 and 3 in Fig. 4,
respectively
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Figure 8: Results of the inverse analysis for the traction identification with 10% measurement error, Material 1, and
with 4, 8 and 12 measurement points: (a) linear traction, (b) quadratic traction, (c) sinusoidal traction
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Figure 9: Results of the inverse analysis for the traction identification with 0%, 5%, and 10% measurement error,
Material 1, and with 6 measurement points on the boundary: (a) linear traction, (b) quadratic traction, (c) sinusoidal
traction
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Figure 10: Results of the inverse analysis for the traction identification with 0%, 5%, and 10% measurement error,
Material 2, and with 4 measurement point: (a) linear traction, (b) quadratic traction, (c) sinusoidal traction
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5 Conclusions and Remarks
The MFS is computationally efficient. Moreover, boundary conditions are applied in a strong form in

this method. Consequently, the MFS can be effectively utilized to identify an unknown traction along a part
of the surface of a solid. An inverse MFS based on displacement and strain measurements was presented to
identify traction on a part of the boundary of an anisotropic domain. Several inverse analyses were performed
to determine various traction forces on the edge of an anisotropic body. The key conclusions drawn from
this research are summarized as follows:

– Some inverse analyses based on displacement and strain measurements were performed, and it was
observed that the results obtained using strain measurements were more accurate than those obtained
using displacement measurements. This can be explained by the fact that the displacement field includes
both deformation and rigid-body motion, while the strain field reflects only the deformation, which is
more sensitive to the applied traction.

– The results indicated that the proposed inverse method is capable of identifying traction even in cases
with significant measurement error. It was also observed that the method can identify traction in a form
different from the one considered for the unknown traction in the inverse analysis.

– The solution of the inverse method is more accurate when the measurement points are closer to the
edge with the unknown traction. As the distance from the measurement points to the edge increases, the
sensitivity of the structural response at those points to the traction parameters decreases. Consequently,
the ill-posedness of the inverse problem increases, which leads to a decrease in the accuracy of
the solution.

– In cases where the number of measurement points is small, increasing the number of measurement
points significantly enhances the accuracy of the inverse solution. However, when there are a sufficient
number of measurement points, further increases have little effect on the results. In this work, each
test problem involved 3 unknowns, and it was observed that using 4 to 8 measurement points yields
sufficiently accurate solutions.

– The inverse analysis conducted in this study revealed that the proposed method can efficiently
identify unknown traction using measurement points located along the boundary. Furthermore, the
method demonstrated insensitivity to material properties. Examples involving two different anisotropic
materials showed that the solutions obtained in both cases were sufficiently accurate.

– In this study, a continuous form was considered for the unknown traction function. If the actual applied
traction is discontinuous, the inverse method will identify a continuous function that reconstructs the
measurement data as accurately as possible. It should also be noted that for cases with a highly complex
or discontinuous traction function, incorporating a greater number of parameters in the function used
to represent the unknown traction will enhance the solution of the inverse problem.

– It should be noted that the MFS and the inverse method developed in this study are applicable to
problems involving linear anisotropic materials. For more advanced nonlinear anisotropic materials, a
different method should be developed.
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Appendix A Displacement Fundamental Solutions
In this appendix, the displacement fundamental solution for anisotropic elasticity in 2D is described.

We denote the displacement fundamental solution as u∗i j (x , S), where the source point S has coordinates
(x0, y0) and the field point x has coordinates (x , y). The fundamental solution can be expressed as
follows [46,47]:

u∗i j (x , S) = 2Re [Pi1A j1 ln(z1 − z01) + Pi2A j2 ln(z2 − z02)] . (A1)

z1, z2, z01, and z02 in Eq. (A1) are expressed as follows:

z1 = x + μ1 y, z2 = x + μ2 y, (A2)

z01 = x0 + μ1 y0, z02 = x0 + μ2 y0, (A3)

in which μ1 and μ2 are complex numbers, which can be determined by identifying the roots of the following
polynomial:

a11 μ4 − 2a16 μ3 + (2a12 + a66)μ2 − 2a26 μ + a22 = 0. (A4)

This equation has four complex roots. The imaginary parts of two roots (μ1 and μ2) are positive, while
the imaginary parts of the other roots are negative. Pi k in Eq. (A1) are determined as follows:

P1k = a11 μ2
k + a12 − a16 μk , P2k = a12 μk + a22/μk − a26, k = 1, 2. (A5)

A ji are also complex numbers. The real and imaginary parts (i.e., Re( ) and Im( )) of A ji can be
determined by solving the following matrix equation:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
Im(μ1) Re(μ1) Im(μ2) Re(μ2)
Im(P11) Re(P11) Im(P12) Re(P12)
Im(P21) Re(P21) Im(P22) Re(P22)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Re(Ai1)
Im(Ai1)
Re(Ai2)
Im(Ai2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−δi2/4π
δi1/4π

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2. (A6)

where δi j denotes the Kronecker delta. In the MFS formulation, it is required to find the derivatives of u∗i j,
which can be found using the following equation:

u∗i j ,k = 2Re [
Pi1A j1Tk1

(z1 − z01)
+

Pi2A j2Tk2

(z2 − z02)
] , (A7)

where T11, T12, T21, and T22 are equal to 1, 1, μ1, and μ2, respectively.
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46. Lekhnitŝkĭı SG. Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day; 1963.

https://doi.org/10.1023/A:1018981221740
https://doi.org/10.1016/S0307-904X(82)80104-2
https://doi.org/10.1016/S0955-7997(01)00002-9
https://doi.org/10.1108/02644400910943590
https://doi.org/10.1016/j.enganabound.2013.04.002
https://doi.org/10.1016/j.apm.2021.02.001
https://doi.org/10.1016/0045-7825(92)90135-7
https://doi.org/10.1016/0045-7825(92)90135-7
https://doi.org/10.1016/j.enganabound.2020.04.014
https://doi.org/10.1016/j.enganabound.2020.04.014
https://doi.org/10.1016/j.enganabound.2007.12.005
https://doi.org/10.1016/j.ijsolstr.2009.03.004
https://doi.org/10.1016/j.enganabound.2018.02.007
https://doi.org/10.1016/j.amc.2022.127600
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125945
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125945
https://doi.org/10.1016/j.enganabound.2020.12.012
https://doi.org/10.1007/s40997-023-00701-6
https://doi.org/10.3390/aerospace10100885
https://doi.org/10.1016/j.enganabound.2024.03.010
https://doi.org/10.32604/cmes.2022.018235


3090 Comput Mater Contin. 2025;82(2)

47. Cruse TA. Boundary element analysis in computational fracture mechanics. Dordrecht, Netherlands: Kluwer
Academic Publishers; 1988.

48. Wollner MP, Terzano M, Rolf-Pissarczyk M, Holzapfel GA. A general model for anisotropic pseudo-elasticity and
viscoelasticity at finite strains. J Mech Phys Solids. 2023;180(10):105403. doi:10.1016/j.jmps.2023.105403.

https://doi.org/10.1016/j.jmps.2023.105403

	A Boundary-Type Meshless Method for Traction Identification in Two-Dimensional Anisotropic Elasticity and Investigating the Effective
obreakspace Parameters
	1 Introduction
	2 The MFS for 2D Anisotropic Elasticity
	3 Inverse Analyses
	4 Numerical Study
	5 Conclusions and Remarks
	Appendix A Displacement Fundamental Solutions
	References


