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ABSTRACT: Accurate forecasting of oil production is essential for optimizing resource management and minimiz-
ing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread
application, often encounter difficulties in handling the complexities of oil production data, which is characterized by
non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning
methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy,
they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack
the capacity to model complex data distributions adequately. To address these challenges, this study introduces a novel
hybrid model called Transfer LSTM to GRU (TLTG), which combines the strengths of deep and shallow networks using
transfer learning. The TLTG model integrates Long Short-Term Memory (LSTM) networks and Gated Recurrent Units
(GRU) to enhance predictive accuracy while maintaining computational efficiency. Gaussian transformation is applied
to the input data to reduce outliers and skewness, creating a more normal-like distribution. The proposed approach
is validated on datasets from various wells in the Tahe oil field, China. Experimental results highlight the superior
performance of the TLTG model, achieving 100% accuracy and faster prediction times (200 s) compared to eight other
approaches, demonstrating its effectiveness and efficiency.

KEYWORDS: Time series forecasting; gaussian transformation; quantile transformation; long short-term memory;
gated recurrent units

1 Introduction
Fossil energy is still widely used as a source of power in the world nowadays. Furthermore, the oil

production rate over time is essential for managing and maintaining the oilfield. Accurate production
forecasting is indeed a necessary step to conduct cost-effective procedures and manage petroleum reservoirs
well. This prediction is essential and valuable to guide reservoir engineers to make good project designs,
avoid precipitous investments, and improve sustainable development [1,2]. On the other hand, the time series
forecasting for the nonlinear oil production rate is a big challenge.

Time series is a list of series values ordered by time. Time series forecasting (TSF) is a process to predict
future values of a time series based on the previous input data [3,4]. TSF is one of the oldest known predictive
analytics techniques and is still widely used in various fields, such as the economy, finance, weather forecast,
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sentiment prediction, language translation, and the petroleum industry [5,6]. Many methods like decline
curve analysis (DCA) and numeric simulation were used in petroleum engineering before forecasting [7,8].
DCA is the correct equation to forecast oil and gas production data, but it is challenging to predict historical
wells’ production due to complex and unsteady production [4]. The numerical simulation is more accurate
than DCA. However, its accuracy depends on the accuracy of the geological model, a numerical model, and
history matching [2,9]. Machine learning has introduced efficient methods for TSF. These methods have been
deployed in the petroleum industry, which helps to ease analysis.

Many linear methods were used for forecasting. To study linear mathematical models, Autoregressive
(AR) models and Moving Averages (MA) were represented. AR assumed that the current value of the time
series results from its linear past values. However, MA assumed the current value resulted from interference
passes or disruption in the series. The Autoregressive moving average (ARMA) combined these two methods,
providing an effective model for forecasting linear time series [10–12]. Recently, several models have appeared
to analyze nonlinear time series data. After the backpropagation principle has been applied to train Artificial
Neural Networks (ANNs), Recurrent Neural Networks (RNNs) have remarkably advanced in TSF [13].

Long short-term memory (LSTM) has a particular unit called the memory cell to keep and access
data over long periods, minimizing the vanishing gradient issue [14]. Researchers recently applied various
machine learning, including deep learning (DL) techniques in oil production prediction applications. The
LSTM is considered part of DL. It shows the ability to deal efficiently with the variance trend of data and
describe the dependency relationship of time sequence data.

The recent trend for TSF is to hybridize more than one method to improve forecasting accuracy further.
Song et al. used LSTM to forecast the petroleum time series [9]. Due to particle swarm optimization (PSO)
arithmetic stability and to improve the model’s efficiency and accuracy, they also added the PSO algorithm
to the LSTM network. To enhance the forecasting performance of the Neutrosophic Time Series (NTS)
model for three different datasets, Edalatpanah et al. [15] individually incorporated the results of the quantum
optimization algorithm (QOA), particle swarm optimization (PSO), and genetic algorithm (GA) into the
NTS model. This hybrid structure improved forecasting precision in uncertain and complex environments.
Hybrid models are a perfect way to increase model accuracy, but data limitation creates significant challenges
to enhance the results [16]. Higher accuracy needs a deep network, and the deep network needs enough data.
On the other hand, although a shallow network (only having a few layers) is a good solution for the small
dataset, it provides small accuracy, especially with complex data which requests composite computations.

In machine learning, preprocessing is the primary step to improve performance. The collected data
may have many unacceptable data and needs hard work to prepare and format it to be suitable and ready
for training. Many machine learning algorithms perform better when features are on a relatively similar
scale and near to customarily distributed. So, there are many ways to do preprocessing like MinMaxScaler,
RobustScaler, StandardScaler, and Normalizer to prepare the input data before training. Even though deep
learning methods of predictive have achieved great success in oil production forecasting, they still have
insufficient ability to deal with outliers and different distribution dimensions in the training data.

The nature of oil well data is highly unstable and distributed, making it challenging to forecast. While
deep and machine learning methods have shown promise in TSF, these approaches were not designed to
handle the complexities and limitations of such data. This is due to several reasons: 1) When a small amount
of input data is available, deep networks with multiple layers and complex operations tend to have lower
accuracy. However, a more complex network is required to analyze these limited, complex data and achieve
higher accuracy simultaneously. 2) Deep networks require larger datasets to obtain higher accuracy. 3)
Shallow networks are helpful in training small datasets but provide poor accuracy for complex datasets.
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4) The oil field domain comprises multiple datasets, each with a distinct data distribution, necessitating a
flexible approach to improve the forecasting of all datasets.

The proposed approach uses transfer learning to combine the benefits of deep and shallow networks by
transferring weights from the first part of the model to the next. The next part then improves and updates
the model output based on the input data and the output of the first part. Gaussian transformation is used
as a preprocessing step to enhance the input data distribution and reduce outliers and skewness.

The main contributions of this study can be summarized as follows:

• Proposing the Transfer LSTM to GRU (TLTG) model, which is a novel approach for training complex
and abnormal distribution data to extract more features from small datasets with high accuracy,
overcoming the limitations of traditional TSF techniques used in oil field studies.

• This study demonstrates the effectiveness of the transfer learning technique in enhancing prediction
accuracy. The study also addresses the limited data problem in deep learning methods, which is an issue
particularly prevalent in oil production forecasting.

• Introducing Gaussian transformation as a preprocessing step to improve the normality of the data
distribution, reducing outliers and skewness. This step ensures more robust model training, contributing
to improved predictive performance.

The rest of this paper is presented as follows. Section 2 discusses the related works using deep learning
and transfer learning. Section 3 presents the methodology model that provides two types of preprocessing
used in these experiments: transfer learning, LSTM, and GRU methods, and the structure of the TLTG
model. Sections 4 and 5 present experiments, datasets, evaluation methods, experimental results and
comparisons. Section 6 presents the conclusion and future work.

2 Related Work

2.1 Deep Learning Models in Time Series Forecasting
Many experiments have provided many deep-learning approaches for time series forecasting. Wang

and Chen used an analytical model to generate noise data to test the ability and accuracy of LSTM. They
used LSTM with two kinds of flow rates to detect the relationship between the flow rate and pressure. Wang
et al. combined two methods with LSTM: Improved Pattern Sequence Similarity Search (IPSS), and Support
Vector Regression (SVR), to get a hybrid model to forecast the gas price, and they found that the relation
between the amount of data and the error rate is inverse relation. Implemented Ensemble Empirical Mode
Decomposition Ensemble (EEMD) with LSTM to obtain oil prediction was introduced in [2]. Before feeding
data into the LSTM, EEMD was used to decompose data of time series into several Intrinsic Mode Functions
(IMFs) with Dynamic Time Warping (DTW) to pick the stable data. Wang et al. developed a hybrid model
to optimize the LSTM model results by the PSO algorithm with an adaptive learning technique. This hybrid
model was proposed to detect Shear Wave Velocity (Vs) necessary to discover fluid [17]. Hybrid models
in [18] increased the quality of the oil production forecasting and seismic analysis compared to the other
used models.

2.2 Transfer Learning in Deep Learning Studies
Although traditional machine and deep learning (TMDL) technology is successful and widely used in

many practical applications, it still has some limitations for specific real-world scenarios. TMDL trains each
model separately depending on its domain, and in some situations, getting the data to train and test the model
is expensive and complicated. Furthermore, getting higher accuracy depends on the amount of data and its
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distribution. In contrast, transfer learning allows us to utilize knowledge from previously trained tasks and
apply it to new and related ones [19].

In [20], the study model used k-means, Transfer Learning, and LSTM (MEC-TLL) to transfer the base
network’s weights to a target network. This minimized computing time and energy management for a smart
building’s Multiple Electric Energy Consumption forecasting (MEC). Ye et al. used a hybrid algorithm in the
TSF to transfer the knowledge of the old-time series data by updating the model weights according to the new
data. They aim to solve data limitations, avoid using old data directly because of the different distributions,
and train the model with the minimum norm and with less loss [21].

These studies collectively contribute to the growing body of literature on advanced time-series fore-
casting methodologies [22], particularly in domains requiring high accuracy and computational efficiency.
The approaches discussed, including decomposition techniques, attention mechanisms, and hybrid models,
provide valuable insights into addressing the challenges posed by complex and nonlinear time-series data.
Building on these advancements, our study introduces the Transfer LSTM to GRU (TLTG) model, which
combines the strengths of deep and shallow networks through transfer learning coupled with Gaussian
transformation for enhanced data preprocessing. This novel approach addresses the limitations of existing
models by offering improved accuracy and efficiency in the context of oil production forecasting.

3 Methodology

3.1 Preprocessing Methods
Commonly collected data has many things that affect training. For example, the amount of data is

insufficient; it has missing values, a highly skewed distribution, and outliers. Before entering the data into the
model, showing data by a specific graph is necessary to see the data distribution and decide which processing
is needed to improve it before and through training time. This graph could be a boxplot, histogram, or density
plot. When the dataset has values with varying dimensions, some larger than others, these large values can
dominate the training in deep learning and affect the accuracy [23]. Therefore, to enhance the data before
feeding it to the training network, preprocessing methodologies improve and obtain better results, such as
scale, standardize, and normalize. After cleaning datasets from all unacceptable data like null and zeros, this
study used two ways to scale and transform the input data: MinMax Scaling and Gaussian Transformation.

3.1.1 MinMax Scaling
MinMax scaling (MM scaling) is a machine learning algorithm that normalizes the dataset and is used in

preprocessing. It smooths training and rescales the input data to a specific range (0 to 1), called normalization.
This study used MM scaling to scale all input data to be between −1 and 1, and the shape of the distribution
does not change, as follows:

xmms = (x −min (x))/(max (x) −min(x)), (1)

MM scaling works to shift the data without changing its distribution. In many cases, it improves
performance. On the other hand, if the input data has many outliers or high skewness, it does not work well.

3.1.2 Gaussian Transformation
This transformation is a quantile transformation (QT) of the feature to follow a Gaussian distri-

bution [24]. It maps each quantile from the original feature distribution to the target distribution. This
transformation is very suitable when the input data has a highly skewed distribution and outliers that cause
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the distribution to be highly prevalent. QT works to remap the input data distribution to be smoother and
normal; it is required for a wide range of statistical methods. The simple way to represent QT is as follows:

y = G−1
y (Fx (x)), (2)

where Fx represents the original feature Cumulative Distribution Function (CDF) for the original variable
x, and G−1

y is the Gaussian Cumulative Distribution Function (GCDF) for y as follows:

F (x) = 1/σ
√

2π∫
+∞

−∞

exp [− (x − μ/σ)2/2] dx . (3)

Therefore, it is a mapping from the original distribution. The CDF is used to get the cumulative
probability, which can be mapped through the inverse of the GCDF to get the associated same cumulative
probability value from the original distribution in the new distribution. Hence, it is mapped through the
cumulative probabilities.

The GCDF is unbounded. It goes from negative infinity to positive infinity with a very small probability,
becoming increasingly dimensionally small as we go farther out. The inverse of the quantile transform is:

x = F−1
x (Gy (y)). (4)

Oilfield data typically conclude with very low production values relative to the beginning; hence the
likelihood of skewness is extremely high. Therefore, it is advantageous to improve the data distribution prior
to feeding it into the model.

The histogram and box plot assist in visualizing the distribution of data and identifying any skew
or outliers. Selecting the optimal preprocessing allows us to comprehend our data and select the optimal
processing to enhance data distribution and performance. Fig. 1 illustrates the differences between before
and after the use of QT for two different datasets. The data distribution changed and became more normal
after using the Gaussian transformation preprocessing, which improved the skewed data’s symmetry and
helped reduce the number of outlier values, as illustrated in Fig. 2. As also seen, the first well dataset gets
nine outliers after using QT, which is the cost of enhancing the skewness. This improvement is shown clearly
in Fig. 1. QT decreases the distance between the values to be close to each other and have a regular and
trainable shape. On the other hand, the MM scaling did not do anything to reduce the outliers, and it only
transforms values by rescaling them into the range [−1, 1] without changing their original distribution, as
seen in Fig. 2.

3.2 Transfer Learning
Before defining transfer learning, let us go through the concepts of a domain and a task. The domain

(D) has two components, feature space (χ) and marginal probability (P(X)), where X is defined as X =
{x∣xi ∈ χ, i = 1, ⋅ ⋅ ⋅, n}, x is a vector of the input data, and n is the number of samples. Thus:

D = {χ,P (X)}. (5)

The task (T) also has a two-element, the label space (Υ) element, and the objective function (F )
element. From a probabilistic standpoint, the objective function can be written as P (Υ∣X). Thus:

T = {Υ,P (Υ∣X)} . (6)

Transfer learning is the operation to improve the target objective function (Ft) or Tt in the target domain
(Dt) using knowledge from T source task (Ts) in theDs , whereDs ≠Dt , or Ts ≠ Tt .
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Figure 1: The distribution of data in the four datasets before and after applying the QT. The left side has box plots for
examining outliers and skewness for 1st and 3rd wells data before and after the transformation ((a) represents TK908DH
well data and (b) is the TK922H well data). After applying QT processing, the data distribution becomes smoother and
more regular; the values become closer
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Figure 2: The number of outliers in each dataset, without scaling, after using MinMax scaling and quantile
transformation

3.3 LSTM

The components of LSTM are cell state (CS) and three gates (input gate, output gate, and forget
gate). The gates are different neural networks to decide which information is allowed in the cell state. Cell
state is the most critical part of LSTM, and it is a path to carry relevant information throughout the processing
of the sequence; it is the horizontal red line in Fig. 3. The operation steps in LSTM are as follows: Firstly, the
forget gate works to decide which information to omit before passing it to the cell state as follows:

ft = σ (Wf .ht−1 + xt .U f + b f ). (7)

Figure 3: LSTM network with the various gates
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The second step contains two portions to determine which correct data to pass into the CS, based on
its importance. The first portion is the input gate (it) to choose particular values modified by the sigmoid
function (σ). The other portion is the tanh function, which weighs the passed values by determining their
degree of significance (−1 to 1), generating new candidate values (C̃t).

it = σ (Wi .ht−1 + xt .Ui + bi), (8)

C̃t = tanh (Wc .ht−1 + xt .Uc + bc). (9)

Then getting the current new data of cell state as:

Ct = (Ct−1 ⊗ ft) ⊕ (it ⊗ C̃t). (10)

Finally, generate the output by passing new cell state data into the tanh function to get values between
−1 and 1. After that, multiply these values with the output of the sigmoid gate (ot). These two operations are
defined as follows:

ot = σ (Wo .ht−1 + xt .Uo + bo), (11)

ht = ot ⊗ tanh(Ct), (12)

In which, U indicates the input weight, W represents the recurrent weight, and b represents the bias,
which here = 0. More so, f indicates the forget gate, where C represents the CS, o indicates the output gate,
h represents the hidden state, and t represents the time step. Moreover, σ stands for the sigmoid function,
which can be represented as:

σ (x) = 1/(1 + exp (−x)). (13)

tanh is the activation function, and it is represented as follows:

tanh (x) = (exp (x) − exp (−x))/(exp (x) + exp (−x)). (14)

3.4 Gated Recurrent Units (GRU)
The Gated Recurrent Units (GRU) was introduced by Cho et al. [25] to address the vanishing gradient

problem of RNNs. The GRU is a variant of the LSTM, with fewer gates than the conventional LSTM. Thus,
GRU requires less computation cost [13]. Fig. 4 shows the structure of the GRU network.

The first gate of the GRU is called the update gate. It employs the sigmoid function for scaling the
outcomes between 0 and 1 to determine which values are selected to be transferred to the next step and
eliminate the vanishing gradient problem.

ut = σ (Wu .st−1 +Uu .xt + bu). (15)

The gate’s function is to prevent unwanted or unrelated values from being passed to the next operation.

rt = σ (Wr .st−1 +Ur .xt + br). (16)

In case of rt value is close to 0, the previous process values are ignored.
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Figure 4: The structure of GRU

The rest gate is used to store the corresponding values. This is done by multiplying the results with st−1

(previous state values). The results are then combined with the current input values before being passed to
the tanh operation. The tanh function output is fed into the last step.

s̃t = tanh (Ws .st−1 ⊙ rt + xt .Us). (17)

The final step is employed to obtain to get the network’s final results as the following:

st = ut ⊙ st−1 + (1 − ut) ⊙ s̃t . (18)

3.5 The Transfer LSTM to GRU Model

Fig. 5 depicts this study’s structure, consisting of three stages and two parts. The initial stage is to collect
data and remove any unwanted values, such as nulls and zeros. The second stage is comprehending each
dataset’s data distribution well enough to prepare properly. Training the TLTG model is the third stage. The
TLTG is a sequential model contains two parts. As is well known, LSTM is an effective method for forecasting
time series due to its ability to retain longer series in its memory; this is detailed in Section 3.3; hence, the
first part contains two LSTM layers. Before feeding the output of the first part to the next part, the freezing
operation works to keep all the weights of the previous part. The second part contains six layers: two GRU
layers, two batch normalization layers, and two fully connected layers (FC) (Fig. 5).

3.5.1 First Part of the TLTG

This part has two LSTM layers, one batch data entry from the bottom to the top of the LSTM model.
Each cell state (CS) receives one batch of data inserted into the first layer of the LSTM, and the input gate
accepts the data and processes it with the other LSTM gates, as mentioned before. The CS of the bottom
LSTM returns the output data as the input data of the next layer and passes the output data to the next CS
as short-term memory in the same layer. The final step returns a sequence of data, which is the output of
the LSTM. Since LSTM has more gates than GRU, that enables it to analyze more complex data. Finally, the
output of this part is transferred to the next part of processing to enhance the feature extraction and get
the results.
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Figure 5: The model structure of this study

3.5.2 Second Part of the Model
The second part retrains the first part’s weights with the input data and stops the backpropagation update

in the first part (frozen), which helps avoid performance loss associated with training a deep network on
a small dataset. Instead, performance is enhanced by updating the output based on feedback from the loss
function in this part (second part). To achieve this, the layers in the first part are frozen to prevent weight
changes. Consequently, weight updates and backpropagation occur only in the second part, without affecting
the first part.

Algorithm 1: Transfer learning
Input: Training dataD1 = {Xi , yi}m

i=1 (Xi ∈ Rn , yi ∈ Υ)
Output: An ensemble forecasting H

1. Step 1: Learn first-level forecasting ofD1
2. for t ← 1 to m do
3. Learn a base forecasting ht based onD1
4. end for
5. Step 2: Keep the weights of the first part
{X

′

i , yi}, where x
′

i = {h1(Xi), h1(Xi), ..., hm(Xi)} by freezing the first part layers.
6. Step 3: Learn a second-level of forecasting based onD1 and x

′

i
7. Generate part two’s weights based on the training data and the previous weights. Learn a new

forecasting h′ based on the newly constructed data set.
8. end for

Return H(X) = h′(h1(Xi), h1(Xi), ..., hm(Xi))

The two layers of GRU work to improve and enhance the output by updating the weights of this part
according to the input data and the first part’s weights, which leads this part to choose the best weights. The
GRU method is suitable for simple data with no complex distribution or frequency. It is a less complicated
computation than LSTM and has a long memory. The output of GRUs is fed into the sequence of fully
connected layers (FC). The first layer of FC uses the exponential linear unit (ELU) activation function,
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ELU (x) = x i f x > 0, el se exp (x) − 1, to improve the training, normalize it, and avoid overfitting. Finally,
the last layer is FC to obtain the final output, which is a sequence of forecasting data. Algorithm 1 summarizes
the proposed TLTG model.

4 Experiments
All experiments were conducted on a 64-bit Windows 10 PC with 128 GB of RAM, 89 GB of GPU space,

and Python as the programming language (Keras and Tensorflow).

4.1 Dataset Description
This study uses datasets of four wells. Datasets are provided from the Tahe oil field in China. The data

wells were collected daily from the beginning of 2004 to the end of 2014 from many different wells [26,27]. The
first well (TK908DH) includes 3807 days from 31 May 2004, to 15 November 2014. The second well (T912CH)
has 2653 days of records from 16 July 2007, to 15 November 2014. The third well (TK922H) has more records
than the second, which is 3355 days from 04 September 2005, to 15 November 2014. Furthermore, the last oil
well (TK935) has less data, which is 2003 days of records from 04 November 2008, to 15 November 2014, as
shown in Fig. 6. The description of the main wells datasets is in Table 1.

Figure 6: The number of recorded data in the four wells, the original data is the whole data with unacceptable data.
Clean data is after removing all unacceptable data. Also, the size of the training and the testing set of each dataset

Table 1: Well dataset description

Dataset TK908DH T912CH TK922H TK935
Count 3807 2653 3355 2003
Mean 48.69 14.38 30.58 19.82

Std 50.89 11.90 33.19 20.32
Min 0 0 0.07 0
25% 5.83 2.48 9.94 6.98
50% 16.76 12.93 15.95 12.52

(Continued)
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Table 1 (continued)

Dataset TK908DH T912CH TK922H TK935
75% 91.75 22.10 41.01 25.54
Max 215.16 56.82 157.20 106.30

All datasets have unacceptable values like zeros or null values, so the first step was to clean the datasets.
The size of each dataset is reduced, as can be seen in Fig. 6. Figs. 1 and 2 show the descriptions of values in
each dataset and the outliers. The number of outliers is zero for the first well dataset, 12 for the second well
dataset, 263 for the third well dataset, and 167 for the last well dataset.

This study divided the dataset into training and testing, 80% as a training set and 20% as a testing set.
Additionally, mean squared error (MSE) was used during the training time as a loss function to improve
forecasting and accuracy, and Adam was the optimizer. The epoch number and batch size are 10 and 1.

4.2 Evaluation
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Root Mean Square Percentage Error

(RMSPE), and Coefficient of Determination (R2) are applied to assess the model efficiency.

MAE = 1/n
n
∑
i=1
∣ fi − f̂ i ∣ (19)

RMSE = (1/n
n
∑
i=1
( fi − f̂ i)2)

1
2

(20)

RMSPE (%) = (1/n
n
∑
i=1
(( fi − f̂ i)/ fi)2) × 100 (21)

R2 (%) = 1 − (
n
∑
i=1
( fi − f̂ i)2/

n
∑
i=1
( fi − f i)

2) × 100 (22)

where fi represents the actual values, f̂ i represents the predicted values, while f i represents the mean of the
actual values in the set. n is the number of records.

4.3 Experimental Results and Comparisons
If the dimension of dataset values is large, the training becomes more complicated. The figures in

this section show different distribution values for each dataset and different value dimensions between the
sequence’s beginning and ending values, which means this study deals with different kinds of datasets.
A. Comparison with Different Preprocessing

After cleaning the datasets from all zeros and unacceptable data like null and missing values, this study
used three different kinds of preprocessing on the four datasets (clean data) before feeding them into the
training network. There are three experiments: the first was without preprocessing methodologies, which did
not use any scaling method to transfer the data to a different shape. In the second experiment, MM scaling
was used as a preprocessing. The third experiment used Gaussian transformation (QT) to see the results of
each experiment and figure out the best way to deal with outlier values and skewed distribution, as shown
in Table 2.
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Table 2: The three experiments tested the model without scaling, with Minmax scaling, and with quantile transforma-
tion scaling (MAE, RMSPE, RMSE, and R2)

Dataset Without scaling With MM scaling With QT scaling

MAE RMSE RMSPE R2 MAE RMSE RMSPE R2 MAE RMSE RMSPE R2

First 0.006 0.006 0.288 99.999 0.022 0.022 1.038 99.988 0 0 0 100
Second 0.014 0.014 1.309 99.999 0.023 0.023 2.094 99.999 0 0 0 100
Third 0.004 0.004 0.337 99.999 0.044 0.044 3.709 99.992 0 0 0 100

Fourth 0.018 0.018 0.474 99.981 0.032 0.032 0.848 99.941 0 0 0 100

The Transfer LSTM to GRU model (TLTG) has two sequential models, and its structure is in Fig. 5. The
model has two LSTM layers with one unit. The second one takes the output of the first model with the input
data into the second model after freezing the weight of the first part to deny retraining them again in the
second part. The second model, or the second part of the TLTG, includes two GRU layers and one FC layer
with an ELU activation function and ten units. The input training set was fed into the first part after going
through the scaling process and splitting the dataset; the window size of the input data is 60.

The two layers of GRU in the second part optimize the last results of this TLTG model and extract the
best weight according to the input data and the output of the first part. GRU has a lower computation cost
than LSTM and a large memory, which helps to increase accuracy and reduce performance time. The trained
output of these layers was fed into a sequence of fully connected layers (FC) with an ELU activation function
to optimize the result more, avoid overfitting, and speed and normalize the training. The second FC has only
one unit to provide the final output. Fig. 5 shows the model structure.

From Table 2, the results of QT scaling (Eq. (4)) have the best accuracy because the Gaussian trans-
formation redistributes the input data and reduces outlier and skewed values; their distribution becomes
more normal, as can be seen in Fig. 1. Without using any scaling operation, we also obtained better results
than using the MM scaling (Eq. (1)) because, after using the MM scaling, the input data had more negative
values besides the existence of outliers and skewness, which complicated the training more and obtained less
accuracy. The MM scaling sped up the training and the tasting time more than the time of the QT method
used, as seen in Table 3.

Table 3: The training and testing time (seconds) of each method

Method

Dataset Without scaling With MM scaling With QT scaling

Train time Test time Train time Test time Train time Test time
First 646.962 47.356 619.926 50.415 668.042 55.007

Second 457.732 35.330 442.292 33.596 476.060 36.728
Third 578.974 43.814 554.530 43.240 597.427 46.641

Fourth 351.143 25.511 329.128 25.368 347.368 28.548

As shown in Table 2, the proposed model with QT scaling preprocessing (QT-TLTG) is the best, and
it matches the original data better than others. QT scaling optimizes the data distribution before feeding it
into the model. The model of this study runs to extract the perfect weights and more features by using the
deep network. Combining and transferring learning between the two networks, two parts helps to reduce
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the loss. The TLTG model combines the deep network to extract more features and the shallow network to
avoid losing and deal well with limited data. QT enhances the whole performance of the TLTG model by
improving the input data distribution to be more normal, as detailed in Figs. 1 and 2. It shows the advantages
of using transfer learning in deep models.

In summary, the QT scaling was successful, essentially creating a direct mapping between features and
target values, allowing the TLTG model to produce perfect results. In contrast, MM scaling slightly degraded
performance by altering the feature variances and did not improve the TLTG model’s results as effectively as
QT scaling did. The Comparison with Other Models subsection shows the effect of the proposed framework
(QT scaling with TLTG model) compared with well-known forecasting models.

B. Comparison with Other Models
This study compared its results with seven different models to see the efficiency of the TLTG model.

These models are autoregressive integrated moving average (ARIMA), recurrent neural network (RNN),
convolutional neural network-LSTM (CNN-LSTM), long short-term memory (LSTM1), gated recurrent
units (GRU1), two LSTM (LSTM2), two GRU (GRU2), and LSTMGRU.

The ARIMA is one of the old methods for time-series predictions [22]. The CNN-LSTM model consists
of two one-dimensional CNN (1D-CNN) layers with 60 filters, the kernel size is five, and the ReLu activation
function. The third layer is LSTM, with 60 units. Then, two dense layers (FC layers) with (30, 10) units each
and the ReLu activation function. The last layer is dense, with one unit for the output and final results. The
RNN model comprises two layers of RNN, each followed by a 30% dropout layer. The GRU1 model is a GRU
layer. In the LSTM1 model, there is only one LSTM layer. In contrast, the GRU2 model consists of two GRU
layers followed by a 30% dropout layer. Similarly, the LSTM2 model contains two layers of LSTM instead of
one, plus a 30% dropout layer after each layer to accelerate processing and prevent if there is any overfitting.
The LSTMGRU model has the same structure of the TLTG models but without transferring, one block. Two
LSTM layers (1, 60, 1), two GRU layers (1, 60, 1), one FC with ELU activation function, and the output layer
(FC). It also used MSE loss function and Adam optimizer.

All models are sequential models except the ARIMA method. The mean squared error is the loss
function in these sequential models, and Adam is the optimizer. The unit number is one, and the window
size is 60. Except for the GRU1 and LSTM1 models, which trained with the actual values without any
preprocessing, the other sequential models scaled the input data using MinMax scaling. The number of
trainable parameters in each model is in Fig. 7.

Figure 7: The trainable parameter number in each model

As shown in Tables 4 to 7, ARIMA is a simple method, so it achieved the lowest accuracy among all
models, likely due to its limitations in handling complex and non-linear data distributions. Because the
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CNN-LSTM model can combine convolutional feature extraction with sequential learning, it achieved a
good performance, particularly on the first and third wells. The same with the RNN model; it was also slightly
less consistent across all datasets compared to the others. So, the RNN model has a limited ability to manage
complex time dependencies in the data. The GRU model showed lower computational cost compared to the
LSTM model. Even though the GRU1 model with a single GRU layer outperformed the GRU2 model with
two GRU layers and the LSTM1 model, evidencing that deeper architectures do not always guarantee better
performance and may lead to overfitting; as seen in Table 7, the R2 is higher in some cases.

Table 4: The comparison between the eight models and the TLTG model by the MAE results of the four oil wells

Dataset ARIMA CNN-LSTM RNN GRU1 LSTM1 GRU2 LSTM2 LSTMGRU TLTG
First well 4.284 0.028 0.029 0.034 0.042 0.045 0.024 0 0

Second well 7.115 0.066 0.021 0.040 0.063 0.036 0.022 0 0
Third well 3.839 0.012 0.041 0.022 0.067 0.043 0.036 0 0

Fourth well 3.194 0.054 0.013 0.031 0.017 0.038 0.012 0 0

Table 5: The comparison between the eight models and the TLTG model by the RMSE results of the four oil wells

Dataset ARIMA CNN-LSTM RNN GRU1 LSTM1 GRU2 LSTM2 LSTMGRU TLTG
First well 4.684 0.038 0.044 0.034 0.048 0.065 0.025 0 0

Second well 8.532 0.199 0.021 0.069 0.090 0.036 0.022 0 0
Third well 4.878 0.018 0.041 0.035 0.079 0.043 0.036 0 0

Fourth well 3.493 0.054 0.014 0.036 0.030 0.038 0.012 0 0

Table 6: The comparison between the eight models and the TLTG model by the RMSPE results of the four oil wells

Dataset ARIMA CNN-LSTM RNN GRU1 LSTM1 GRU2 LSTM2 LSTMGRU TLTG
First well 55.235 2.081 3.485 1.625 1.958 2.800 1.421 0 0

Second well 57.522 8.501 1.985 2.938 3.653 3.345 2.021 0 0
Third well 62.730 4.438 3.247 6.563 8.668 3.753 3.054 0 0

Fourth well 45.229 1.407 0.329 0.992 1.354 0.971 0.326 0 0

Table 7: Comparison between eight models and the TLTG model by the R2 results of the four oil wells

Dataset ARIMA CNN-LSTM RNN GRU1 LSTM1 GRU2 LSTM2 LSTMGRU TLTG
First well −446.612 99.964 99.951 99.971 99.942 99.896 99.985 100 100

Second well 17.539 99.933 99.999 99.992 99.986 99.998 99.999 100 100
Third well −18.908 99.999 99.993 99.995 99.973 99.992 99.994 100 100

Fourth well −645.884 99.833 99.989 99.924 99.949 99.919 99.991 100 100
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The LSTM-based models, including LSTM1 and LSTM2, had slightly higher MAE values than the
GRU1 and GRU2 models, highlighting that GRUs may be better suited for handling smaller datasets with
lower computational complexity. However, the hybrid LSTMGRU model achieved competitive results for all
datasets, reflecting the benefit of combining LSTM and GRU in a sequential framework to provide a suitable
and flexible model for many different data distributions.

The TLTG model extracts input data features in-depth without incurring an additional loss. Conse-
quently, it yields the best outcomes, whether MM scaling or QT preprocessing is utilized. Figs. 1 and 2
illustrate how successfully QT preprocessing redistributes the data and improves it by minimizing the
number of outliers and skewness, which was the aim of our analysis. The QT preprocessing assists the TLTG
model in increasing the precision of all datasets. The results of the LSTMGRU and TLTG models with all four
datasets are presented in Tables 4 through 7, and it is easy to deduce that these models performed the best.

The fastest sequential model was the GRU, whereas the slowest one was the RNN model. Although the
CNN-LSTM model has the largest parameter number (Fig. 7), the two layers of the CNN worked to reduce
the size of the generated feature maps during the training time. That helped to accelerate the processing of
the CNN-LSTM model. The TLTG model was faster than the RNN and LSTMGRU models, which was 200 s
faster than the LSTMGRU model (Table 8). The difference between them is enormous; this is the advantage
of using transfer learning inside the TLTG model. The TLTG model provided the best performance, highest
accuracy, and adequate processing time (Tables 4–8).

Table 8: The training and testing time for all models (seconds)

Dataset First well Second well Third well Fourth well

Method\Time (s) Training Testing Training Testing Training Testing Training Testing
ARIMA 6.453 0.033 2.074 0.040 2.042 0.029 0.930 0.018

CNN-LSTM 448.055 41.631 284.574 29.895 370.767 37.544 213.497 22.566
RNN 4389.352 67.755 3127.853 50.342 3696.519 63.056 2159.912 36.104
GRU1 291.488 37.166 209.657 26.165 256.378 32.683 151.940 19.321

LSTM1 293.230 37.709 224.862 25.919 286.617 33.492 167.503 19.592
GRU2 483.800 44.588 340.181 30.405 420.228 39.231 240.322 22.124

LSTM2 528.242 42.574 360.929 29.336 451.157 37.186 266.871 23.225
LSTMGRU 859.532 50.087 613.598 34.993 777.274 44.061 452.197 26.613

TLTG 668.042 55.007 476.060 36.728 597.427 46.641 347.368 28.548

The TLTG model combines the deep network to extract more features and the shallow network (the first
part of the TLTG model) to prevent data loss and deal well with limited data by moving the weights of the
first section to the next. Therefore, the second part modifies and trains the network based on the input data
and weights of the first part to achieve optimal outcomes. Figs. 8 to 11 clearly demonstrate that our TLTG
model has been highly effective at extracting and forecasting the time series of all datasets. Consequently,
the suggested TLTG model surpasses all comparative approaches for all datasets in the Tahe field, proving
the method’s superiority over the eight other methods, including LSTMGRU.

Because of the findings of the study, we can say the framework (TLTG) can accurately forecast oil
production using small, complex datasets and can significantly improve reservoir management strategies.
By addressing challenges such as outlier values, skewed data distributions, and computational efficiency, the
TLTG model offers a robust tool for improving decision-making in resource allocation.
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Figure 8: Comparison of the original and predicted data by the TLTG model and the other eight models for the first
dataset

Figure 9: Comparison of the original and predicted data by the TLTG model and the other eight models for the second
dataset
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Figure 10: Comparison of the original and predicted data by the TLTG model and other eight models for the third
dataset. The enlarged side image shows the differences between the models clearly

Figure 11: Comparison of the original and predicted data by the TLTG model and the other eight models for the fourth
dataset

5 Other Comparison and Testing
Since the datasets used in this study are not publicly available, the performance of the proposed

Transfer LSTM to GRU (TLTG) model was evaluated using widely recognized time-series datasets that are
publicly licensed. A summary of these datasets is provided in Table 9. To ensure scientific rigor and facilitate
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comparisons, our study benchmarked the TLTG model against existing approaches that used these public
datasets, demonstrating its robustness across diverse data distributions.

Table 9: Specifics regarding the common time series datasets used to validate the proposed method

Time series datasets Description Record
AirPassengers Monthly totals of international airline passengers over time.

Between January 1949 and December 1960, for eleven years.
144

(https://www.kaggle.com/datasets/rakannimer/air-passengers)
(accessed on 26 December 2024)

Sunspots Time series for monthly mean relative sunspot levels between
1700 and 1988, spanning more than two centuries.

3265

(https://www.kaggle.com/datasets/robervalt/sunspots) (accessed
on 26 December 2024)

Nottem The average air temperature at Nottingham Castle has been
measured in Fahrenheit over two decades.

240

(https://github.com/jamovi/r-datasets/blob/master/data/nottem.
csv) (accessed on 26 December 2024)

Lynx Between 1821 and 1934, a period of 144 years, the annual number
of lynx caught in the MacKenzie River was recorded.

114

(https://github.com/vincentarelbundock/Rdatasets/blob/master/
csv/datasets/lynx.csv) (accessed on 26 December 2024)

Specifically, reference [28] provides a comparative study that utilized the AirPassengers, Sunspots, and
Nottem datasets, and reference [29] used the Lynx dataset. Consistent with their methodology, we used the
last 48 records as the test set and the remaining records as the training set. Both studies employed Root
Mean Squared Error (RMSE) as the evaluation metric, allowing for a direct performance comparison, as
summarized in Table 10.

Table 10: The results of the other six methods were taken from [30], and the number of samples in the test set was 48

Dataset Error measure ARIMA FFNN PSF DPSF Method 1 Method 2 TLTG
AirPassengers RMSE 113.72 78.72 97.8 83.09 42.19 65.31 10.047

Sunspots RMSE 103.07 32.24 52.29 42.51 47.03 59.34 0.268
Nottem RMSE 2.52 2.46 2.13 2.18 2.01 2.87 0.304

Similarly, reference [28] adopted a different evaluation approach by splitting the AirPassengers,
Sunspots, and Lynx datasets into 80% for training and 20% for testing, using Mean Absolute Error (MAE)
as the performance measure. We followed this setup to ensure alignment and comparability, with the results
outlined in Table 11. Fig. 12 illustrates the data distribution across these datasets, further validating the
robustness of our methodology.

https://www.kaggle.com/datasets/rakannimer/air-passengers
https://www.kaggle.com/datasets/robervalt/sunspots
https://github.com/jamovi/r-datasets/blob/master/data/nottem.csv
https://github.com/vincentarelbundock/Rdatasets/blob/master/csv/datasets/lynx.csv
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Table 11: The results of the other five methods taken from [31]. Test set size was 20% of each dataset

Dataset Error
Measure

BRKGA–NN GA–NN BPANN SVR ARIMA/SARIMA TLTG

AirPassengers MAE 23.743 64.936 39.048 23.668 46.437 10.841
Sunspots MAE 13.667 14.809 18.023 17.302 13.815 0.726

Lynx MAE 426.139 625.821 533.532 543.877 643.857 178.086

Figure 12: The data used to validate the proposed method (TLTG)

Tables 10 and 11 were extracted verbatim from [30,31], and we trained the identical datasets with the same
split of the training set and test set in both studies. Then, the TLTG method results were added to Tables 10
and 11. From the same Tables, it can be observed clearly that the TLTG model is demonstrably superior to all
other approaches.

The TLTG outperforms the best-compared approach, Method 1 in Table 10 from [30], by 32 times, and
SVR in Table 11 from [31] by 13 times. Fig. 12 depicts the TLTG results for the four different datasets.

In petroleum field studies, the results of the TLTG method were compared with previous oil pre-
diction models in Table 12. As can be observed, the TLTG is the best and most flexible model with any
data distribution.
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Table 12: Comparison of the TLTG method with other methods in the petroleum field

Method R2

ANN [32] 76.58
ANN [33] 92

The generalized boosted regression model (GBM) [34] 99.53
The conventional multiple linear regression (MLR) [34] 95.51

TLTG 100

6 Conclusion
This paper proposed a unique transfer LSTM to GRU (TLTG) model with QT preprocessing to enhance

time series forecasting for four oil wells in the Tahe Field in China. The TLTG model enhances the results by
transferring the output of the first part of the model to the second. Additionally, a Gaussian Transformation
was applied before training to normalize the input data, enhancing overall performance. The experiments
of the TLTG model demonstrated the following: 1) The TLTG model can provide high accuracy for the
different datasets with different distributions. 2) By employing transfer learning, the model demonstrated
exceptional capability in handling small and complex datasets. 3) Also, the transfer learning approach
optimized the TLTG model’s training process, reducing computational complexity without compromising
accuracy. The model proved that combining the advantages of deep and shallow networks helped achieve
higher accuracy with fewer data. 4) The Gaussian transformation in the preprocessing stage provides a
very effective way to deal with outlier values and skewness. 5) The results showed that the TLTG model
outperformed all other state-of-the-art models compared with them. Future work will focus on further
optimizing the performance time of the TLTG model while maintaining its high accuracy. Additionally, we
plan to improve the preprocessing stage to enhance the data distribution and forecasting execution.
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using aquila optimizer for oil production forecasting. Processes. 2021;9(7):1194. doi:10.3390/pr9071194.

27. Alalimi A, Pan L, Al-qaness MAA, Ewees AA, Wang X, Abd Elaziz M. Optimized random vector functional
link network to predict oil production from tahe oil field in China. Oil Gas Sci Technol-Rev IFP Energies Nouv.
2021;76(3):1–10. doi:10.2516/ogst/2020081.

28. Shende MK, Salih SQ, Bokde ND, Scholz M, Oudah AY, Yaseen ZM. Natural time series parameters forecast-
ing: validation of the pattern-sequence-based forecasting (PSF) algorithm; a new python package. Appl Sci.
2022;12(12):6194. doi:10.3390/app12126194.

29. Kokko H. Who is afraid of modelling time as a continuous variable? Methods Ecol Evol. 2024;15(10):1736–56.
doi:10.1111/2041-210x.14394.

30. Bokde ND, Tranberg B, Andresen GB. Short-term CO2 emissions forecasting based on decomposition approaches
and its impact on electricity market scheduling. Appl Energy, 2020;281:116061. doi:10.1016/j.apenergy.2020.116061.

31. Erzurum Cicek ZI, Kamisli Ozturk Z. Optimizing the artificial neural network parameters using a biased random
key genetic algorithm for time series forecasting. Appl Soft Comput. 2021;102(6):107091. doi:10.1016/j.asoc.2021.
107091.

32. Iturrarán-Viveros U, Parra JO. Artificial Neural Networks applied to estimate permeability, porosity and intrinsic
attenuation using seismic attributes and well-log data. J Appl Geophys. 2014;107(5):45–54. doi:10.1016/j.jappgeo.
2014.05.010.

33. Zolotukhin AB, Gayubov AT. Machine learning in reservoir permeability prediction and modelling of fluid flow
in porous media. IOP Conf Ser: Mater Sci Eng. 2019;700(1):012023. doi:10.1088/1757-899X/700/1/012023.

34. Al-Mudhafar WJ. Integrating well log interpretations for lithofacies classification and permeability modeling
through advanced machine learning algorithms. J Pet Explor Prod Technol. 2017;7(4):1023–33. doi:10.1007/s13202-
017-0360-0.

https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1109/ICSSIT48917.2020.9214160
https://doi.org/10.1109/ICSSIT48917.2020.9214160
https://doi.org/10.3390/pr9071194
https://doi.org/10.2516/ogst/2020081
https://doi.org/10.3390/app12126194
https://doi.org/10.1111/2041-210x.14394
https://doi.org/10.1016/j.apenergy.2020.116061
https://doi.org/10.1016/j.asoc.2021.107091
https://doi.org/10.1016/j.asoc.2021.107091
https://doi.org/10.1016/j.jappgeo.2014.05.010
https://doi.org/10.1016/j.jappgeo.2014.05.010
https://doi.org/10.1088/1757-899X/700/1/012023
https://doi.org/10.1007/s13202-017-0360-0
https://doi.org/10.1007/s13202-017-0360-0

	A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Other Comparison and Testing
	6 Conclusion
	References


