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ABSTRACT

With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually
receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot,
and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely
used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data,
which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the
distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur
generally have low execution efficiency and high communication overhead, which leads to their poor applicability.
To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery
threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature.
By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a
more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm
is designed, which reduces the communication overhead by clarifying the function distribution and building a
hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications,
this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that
supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to
solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature
aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results
indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme
effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading
to higher scalability and robustness.
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Nomenclature

ci The credibility of oraclei

c0 The initial value of ci
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SK The general private key of the oracle set
ski The private key of oraclei

skij The key share fragment from oraclei to oraclej

H(m) The hash result of message m
sig(H(m)) The aggregate signature for H(m) of the oracle set
sigi(H(m)) The signature for H(m) of oraclei

worki The professional experience of oraclei

scorei The performance score of oraclei

oi The data acquisition capability of oraclei

PK The general public key of the oracle set
pki The public key of oraclei

1 Introduction

Currently, the decentralization and the immutability of the blockchain have gradually attracted
attention, and blockchain has been widely used in various fields, such as data tamper prevention
[1,2], data reliable transmission protection [3], and data traceability management. Although the
smart contract of blockchain can verify and execute the terms of the agreement automatically in
the blockchain environment [4], but the usability of smart contracts is primarily limited to on-chain
data without access to the external systems (i.e., off-chain) where real-world data and events reside.
This connectability to off-chain data for smart contracts and blockchain is an open practical problem
referred to as the “oracle problem” and is defined as how real-world data can be transferred into/from
the blockchain. Hence, blockchain oracle mechanism is introduced and implemented in the form of
application programming interfaces connecting the real world to the blockchain for mitigating such a
limitation [5].

Oracle can obtain data from the real world and transmit it to the blockchain smart contract. As
a middleware connecting the two parties, its responsibility is to respond to data requests of smart
contracts and then access data sources to obtain data in the real world and transmit reliable data to
the blockchain. After the smart contract obtains the data transmitted by the oracle, it can perform
operations on these data. Therefore, the reliability of the data provided by the oracle directly affects
the credibility of the implementation of the smart contract.

Centralized oracle [6,7] has been widely used in the first wave of blockchain applications because
of its high execution efficiency and low cost. However, with the extensive application of blockchain,
the problems of centralized oracles also appear. First, the centralized oracle needs the support of a
centralized platform, which violates the decentralization of blockchain. Second, the centralized oracle
may suffer from a single point of failure [8], and it is difficult to guarantee the quality of the data. The
distributed oracle can solve the above problems, so it has attracted much attention from researchers.

The distributed oracle employs the multi-point deployment mechanism, which combines multiple
oracle agencies into one oracle set and makes them undertake the data acquisition task together. When
a smart contract issues a data request, the oracle agencies in the whole oracle set obtain data from
their own data sources and respond to the data request after data verification and data aggregation.
Attributed to the multi-point deployment, the distributed oracle scheme avoids the dependence on
a single oracle and eliminates the risk of a single point of failure. Meanwhile, compared with the
centralized oracle, data from multiple oracles has stronger reliability and accuracy after verification
and aggregation, so smart contracts can be supported by more reliable data.
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At present, many achievements have been made in the study of distributed oracles [9–11]. However,
there are many problems in existing distributed oracle schemes. First, the existing distributed oracle
schemes do not validate the obtained data off-chain, but instead transfer the data directly to the
blockchain, which cause a large burden of data validation for the blockchain, resulting in low
execution efficiency. Second, these schemes blindly feed data to the blockchain without effective data
screening mechanisms, which makes many redundant or invalid data transferred from the oracle to the
blockchain, resulting in high communication costs. Third, these schemes lack effective key recovery
mechanism, which is difficult to deal with the case of key loss, resulting in poor robustness.

To solve the problems with distributed oracles, this paper proposes a trusted distributed oracle
scheme based on threshold signature with share recovery mechanism. The main contributions of this
paper are as follows:

1. A data verification method of distributed oracle is designed based on threshold signature,
and the data verification of the oracle is integrated into the signature aggregation stage of
the threshold signature. The verification results of the data are determined by the signature
aggregation results, which avoids the frequent and complicated interaction between multiple
nodes during data verification, improving the efficiency of data verification. Meanwhile,
the threshold signature technology needs just threshold number of oracles to complete the
signature aggregation. This reduces the time cost and avoids efficiency reduction caused by
waiting, making the proposed oracle scheme more robust and expandable.

2. A credibility-based cluster head election algorithm is designed. The algorithm defines the
responsibilities of each oracle and assigns the functions of data acquisition, data verification,
data aggregation, and data transmission to different oracles, leading to reliable and efficient
data summaries. Also, the algorithm introduces the evaluation and stimulation mechanism
to evaluate the whole process of the distributed oracle, and it implements rewards and
punishments according to the evaluation results, thereby providing support for constructing a
dynamic and reasonable hierarchical technical architecture of distributed oracles.

3. Based on the Boneh-Lynn-Shacham (BLS) signature, a BLS share recovery threshold signature
algorithm is designed. All oracles in the algorithm execute as signers and finish the key
share generation, message signing, and signature verification in a distributed way. When
the algorithm generates the key share by using a secret sharing method, a share recovery
mechanism is integrated. The oracle can follow the mechanism to send the share recovery
request and recover the key share by receiving the response from other oracles.

The rest of the paper is organized as follows: Section 2 summarizes the related works on the oracle
and mainly introduces distributed oracle schemes. Section 3 presents the background knowledge and
mathematical principles used in this paper. In Section 4, the framework, design details, and function of
the proposed scheme are introduced in detail. In Section 5, the BLS share recovery threshold signature
algorithm is described in detail. Then, experimental results are analyzed in Section 6, and the safety
of the proposed scheme is proved in Section 7. Finally, Section 8 summarizes this paper.

2 Related Works

Blockchain oracle can be divided into centralized oracle and distributed oracle according to the
deployment mode. The former relies on a single oracle to obtain data from the data source and
complete the data verification task, while the latter adopts multi-point deployment of oracles and
relies on multiple oracles to complete the data acquisition and data verification tasks.
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2.1 Centralized Oracle

As a verification data feed oracle system based on Trusted Execution Environment (TEE), Town
Crier uses a hardware-based security enclave to verify data integrity. It employs the Software Guard
Extensions (SGX) of Intel to generate a digital signature, and by verifying this digital signature, it can
prove that the Town Crier instance is securely running in the SGX security zone, thereby guaranteeing
that the instance has not been tampered with and the data sent by Town Crier is reliable.

Provable [12], another representative centralized oracle scheme, provides centralized data transfer
services for platforms such as Ethereum, EOS, and Hyperledger Fabric, and it is responsible for
ensuring the security of the data transport layer of smart contracts. Provable takes external data from
an API or a data source specified by the smart contract and proves that the data is correct and was
obtained from the specified API or data source at a specific time, thus ensuring the verifiability and
availability of the data.

Although centralized oracle has been widely used, it also has problems such as single point of
failure. To solve these problems, the research of distributed oracles has been paid great attention to.

2.2 Distributed Oracle

Chainlink [13] is the first distributed oracle project based on the Ethereum platform. It uses rep-
utation mechanisms and on-chain aggregation models to achieve secure data transmission. However,
on-chain aggregation has a high cost, and frequent data submission brings much communication
overhead.

SCOs-Bos [14] aims to solve the problem of single-point failure in the construction industry.
In this study, a construction supply chain management system is studied to manage the data in the
construction process. However, the management system shows low execution efficiency in actual work.

BLOR [15] is a distributed oracle architecture with reinforcement learning mechanism. By using
the Bayesian cost-dependent reputation model and knowledge gradient algorithm, a new model is
constructed to identify untrustworthy and low-cost oracles and find the most rewarding ones. However,
it lacks effective key recovery mechanism to deal with the problem of single point of failure.

Literature [16] proposes a secure and trustworthy oracle scheme to obtain off-chain data. A novel
node selection algorithm is designed to select high-quality nodes, and a sliding window-based data
filtering algorithm is proposed to improve data consistency and data acquisition efficiency. However,
this scheme cannot guarantee the data accuracy in low acquisition time.

P2RP [17] proposes a novel protocol to maintain security and user privacy while ensuring the
trustworthiness of blockchain oracles by using decentralized identity-based reputation systems. How-
ever, this article lacks discussion of fault tolerance, which makes it difficult to deal with unexpected
situations.

Literature [18] proposes a novel approach utilizing Long Short-Term Memory (LSTM) neural
networks to forecast interest rate swaps. This article mainly focuses on the analysis of financial markets,
and neglects to study the robustness and scalability of oracles.

The analysis and comparison of the oracle schemes proposed in recent years are presented in
Table 1.
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Table 1: The comparison of oracle schemes

Scheme Decentralized Authentication Expandability Share
recovery

Efficiency Verifiers
dilemma
[19]

Provable × PKI Weak × High Nonexistent
Town crier × PKI Weak × High Nonexistent
Chainlink √ PKI Weak × Low Not

mentioned
Augur [9] √ PKI Weak × Low Partially
DOS
network [10]

√ Threshold
signature

Ordinary × Low Partially

Astraea [20] √ PKI Ordinary × Low Partially
Tellor [21] √ Not

mentioned
Weak × Low Vulnerable

Razor
network [22]

√ Not
mentioned

Ordinary × High Partially

Band [23] √ Not
mentioned

Ordinary × High Vulnerable

DIA [24] √ Not
mentioned

Ordinary × High Vulnerable

Kylin
network [25]

√ PKI Ordinary × High Vulnerable

SCOs-Bos √ MSP(PKI) Ordinary × Low Not
mentioned

BLOR √ PKI Ordinary × High Not
mentioned

Ours √ Distributed
key
generation;
Threshold
signature

Strong √ High Nonexistent

3 Preliminaries
3.1 Threshold Signature

The Threshold Signature Scheme (TSS) is an encrypted digital signature protocol. Within a set
of signers, a subset of signers, instead of the entire set, can sign a message. If the threshold is set to
(t, n), it implies that in a set of n signers, any t signers can sign the message on behalf of the whole set.
When using threshold signature in a distributed oracle scheme, each oracle in the oracle set is a signer
to obtain data and sign it separately. Then, the oracles in the set aggregate the data signatures. If the
number of signatures for the same data exceeds t, an aggregate signature can be formed for the data,
indicating that the data can be submitted to the blockchain.
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The BLS signature scheme was originally proposed by Boneh et al. from Stanford University
in 2001 [26]. In 2018, Boneh et al. from IBM Research Institute updated this signature scheme [27].
The BLS signature scheme adopts the elliptic curve matching technology based on bilinear mapping
for signature verification and aggregation. The threshold signature algorithm designed by the BLS
signature scheme is characterized by high aggregation efficiency and strong scalability.

Other commonly used signature schemes in blockchain include the ECDSA algorithm [28] and the
Schnorr algorithm [29]. Since the threshold scheme of the ECDSA algorithm is complicated and has
poor practicability, it is not suitable for distributed oracle schemes. The Schnorr threshold signature
algorithm has limited function and scalability. Given the three algorithms, this paper realizes the
threshold signature algorithm based on the BLS signature scheme, which is responsible for signing
and aggregating the data obtained by oracles.

3.2 Share Recovery

In distributed system schemes, attacks against oracles are frequent [19,30]. Through the attack, the
attacker can make the oracle lose the current state and key share, leading to the loss of the signature
capability of the oracle and reducing the execution efficiency of the whole oracle set. To solve this
problem, improve the ability to handle emergencies, such as reboot attack, and ensure the accuracy
of data verification, this paper designs a share recovery mechanism. In this scheme, the key share
consisting of key share fragments is generated in a distributed way. The key share fragments are
calculated by multiple oracles respectively and sent to the corresponding oracles, and then oracles
generate their own key share after summary. In this approach, when the key share is lost, the oracle
can send share recovery requests with identity to other oracles and recover the key share by collecting
share fragments.

3.3 Bilinear Mapping

Bilinear mapping is described as follows:

Let G1 and G2 be two multiplicative cyclic groups of order q, where q is a large prime number.
Then, e is a bilinear pair if the mapping e: G1 × G2→GT (where GT is a multiplicative cyclic group of
order q) has the following properties:

• Bilinear: Given g1 ∈ G1, g2 ∈ G2, a, b ∈ Zq, there is e(g1
a, g2

b) = e(g1, g2)
ab.

• Non-degenerate: If g1 is a generator of G1 and g2 is a generator of G2, then e(g1, g2) is a generator
of GT .

• Computable: For all g1 ∈ G1, g2 ∈ G2, there is an efficient algorithm to compute e(g1, g2).

The BLS threshold signature algorithm supporting share recovery is designed in this paper based
on bilinear mapping e: G1 × G2→GT , and it has the above three properties. These properties will be
used in subsequent algorithm descriptions and security proofs.

3.4 Security Properties and Hard Problem

Definition 1. (EUF-IBS-CMA) [31]: An identity-based signature scheme � = (G, E, S, V)

is secure against existential forgery on an adaptively chosen message and can identity attacks if
for all probabilistic polynomial-time adversaries A, the probability of the experiment EUF-IBS-
CMA�(A) = 1 defined below is a negligible function of η. During this experiment, A has access to
two oracles: a key-extraction oracle OE that takes an identity id as input and outputs E(mpk, msk,
id), and a signature oracle OS that takes an identity id and a message m as input and returns a
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signature S(mpk, skid, m).

EUF-IBS-CMA� (A) :
(
mpk, msk

) ← G (η)

(id∗, m∗, σ ∗) ← AOE (·),OS(·,·) (mpk

)
return V(mpk, σ ∗, m∗, id∗) (1)

It should be noted that the requirements id∗ and (id∗, m∗) cannot be equal to any query for the
oracles OE(·) and OS(·,·), respectively, and OE(·) cannot be queried twice for the same id. Based on this
property, an existential unfalsifiable (EU-CMA) model can be constructed.

Definition 2. Computational Diffie-Hellman Problem (CDH): Given g, ga, gb∈G, a, b ←R Z∗
q ,

compute gab. If there is an algorithm A with AdvCDH
G (A) = Pr[A(g, ga, gb) = gab] ≥ ε, then it can solve

the CDH problem with probability ε. In the process of randomly selecting a and b, the probability ε

is determined by algorithm A.

4 Framework
4.1 Framework Architecture

4.1.1 The Design of the Framework

In the existing distributed oracle schemes, data is usually processed in off-chain verification and
on-chain aggregation, i.e., the data obtained by the oracle will be verified off the chain, then submitted
to the blockchain, and aggregated on the chain finally. However, the original verification method
involves many oracle interactions and data submissions, resulting in much time and communication
cost, and the data aggregation process on the chain will consume lots of computing resources of the
blockchain. To solve these problems, this paper designs a trusted distributed oracle scheme based on
a share recovery threshold signature, as illustrated in Fig. 1.

Figure 1: The schematic diagram of the oracle scheme in this paper

To solve the problem that on-chain data aggregation consumes a large amount of blockchain
computing resources, a data verification method of distributed oracle is designed based on threshold
signature. Each oracle uses its key share to sign data to form a signature, and the correctness of the
signature can be verified by the public key of the oracle. In the signature aggregation stage, the signature
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shares that reach the threshold are aggregated, and the process of forming an aggregated signature also
verifies the reliability of the data. This method simplifies the verification process of data and improves
the execution efficiency of the system. Also, the process of data aggregation is implemented off-chain,
which effectively reduces the computing overhead of the blockchain.

Then, to address the issue of the limited capacity of centralized oracles, a credibility-based cluster
head election algorithm is designed when implementing the architecture of the distributed oracle. By
assigning functions to different oracles, each oracle can specialize in its own work, which reduces the
communication complexity of the whole set of oracles. Meanwhile, through constructing a hierarchical
technical architecture, the process of data transmission and data submission is clearly planned, which
reduces network communication overhead.

Meanwhile, this paper designs a BLS share recovery threshold signature algorithm, which allows
a threshold number of oracles to complete data aggregation. The share recovery mechanism allows the
oracle to actively recover its lost key share, thereby guaranteeing the execution of the system in case
of an emergency, ensuring the accuracy of data verification and the fairness of the oracle evaluation,
and improving the robustness of the scheme.

4.1.2 Implementation Process

In this paper, a trusted distributed oracle scheme is proposed based on a share recovery threshold
signature, which is a scheme with low delay and high robustness. The execution process of the scheme
is shown in Fig. 2.

Figure 2: The execution process of the oracle scheme proposed in this paper

Our proposed scheme mainly consists of the following four stages:

(1) Oracle initialization

Oracle initialization is performed before the scheme is executed. This process mainly involves two
parts: the authentication part and the key generation part. The former is responsible for verifying
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the identity of oracles, ensuring that they have the working ability and credible qualifications, and
collecting their working performance, such as work proficiency, equipment performance, and data
acquisition ability; the latter is responsible for organizing the oracles to complete distributed key
generation so that they can respond to data requests. During key generation, each oracle generates a
random t − 1-order polynomial and values the polynomial one by one according to the serial number.

Additionally, it is necessary to determine an appropriate threshold t according to the number
of oracles to ensure that the scheme does not lose robustness due to an excessively high threshold,
nor does it compromise the accuracy of the data due to an excessively low threshold. Specifically, the
setting of threshold during the initialization phase is dynamically adjusted according to the current
state of network communication. In good network conditions, the threshold will be adjusted higher to
pursue higher security and data accuracy. In poor network conditions, the threshold will be adjusted
lower, trying to ensure the data supply to the blockchain and the efficiency of the scheme. The dynamic
adjustment of the threshold further improves the robustness of our scheme.

Oracle initialization only needs to be performed once, unless there are oracles to join or leave.

(2) Cluster head election

In this paper, a credibility-based cluster head election algorithm is designed to perform cluster-
head election and hierarchy division for all the oracles in the set. First, the reporting node is selected
to be responsible for data aggregation and data submission. Then, the main node is selected from the
remaining nodes. Next, the remaining ordinary nodes are randomly grouped, and each main node is
responsible for messaging and data collection within a group. In this approach, a hierarchical technical
architecture of distributed oracles is formed, which transforms the original complex communication
mode between oracles to the centralized interaction mode of main nodes, significantly decreasing
the communication volume of signature aggregation of oracles and effectively reducing the network
burden. In this stage, the number of main nodes needs to be determined according to the number of
oracles to fully leverage the role of the main nodes.

(3) Data aggregation and data submission

The process of responding to data requests from the blockchain consists of three parts: data
acquisition, data aggregation, and data submission. First, the reporting node receives the data
request and transmits it, and then ordinary nodes are connected to the data sources to obtain the
corresponding data. The ordinary nodes sign the obtained data and send it to the main node of their
own group. Then, the main node collects the signed data of its group and sends it to the reporting node.
The reporting node aggregates all signatures received and judges whether the request can be completed
according to the aggregation results. If the data aggregation can be completed, the aggregation results
are submitted to the blockchain as a reply, and the feedback of each oracle is submitted together;
otherwise, the failure of the data request is reported to the blockchain, and the feedback of each node
is attached. Then, the signed message returned from the blockchain is passed down. Based on the
performance of each oracle in this process, the oracle stimulation mechanism evaluates each oracle
and implements rewards and punishments to promote oracles to provide more accurate data.

(4) Oracle set reset

To process applications of new oracles in a timely manner and remove negative oracles that affect
execution efficiency, the set of oracles is checked after each data request. First, it is checked whether
to add or delete oracles: if the number of authenticated oracle applications to join reaches a certain
number, or the set needs to eliminate the negative oracles with poor credit, then the oracle set is reset to
make all the oracles perform initialization and cluster head election, and then the newly formed oracle
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set is responsible for responding to data requests. If no add or delete operation is required, the share
recovery request is processed, and the next data request is responded to until the requests processed
by the current oracle set reach a certain threshold.

4.2 Credibility-Based Cluster Head Election Algorithm

4.2.1 Algorithm Design

A credibility-based cluster head election algorithm is designed in this paper to construct a
hierarchical technical architecture of trusted distributed oracles and decrease the communication
complexity of the oracle set. The design idea of the algorithm is: the value of m which is the number
of groups is determined first according to the number of oracles in the oracle set and the quality
of network communication. After that, the reporting node is elected from all oracles, and then m
main nodes are elected from the remaining ordinary oracles. Next, the remaining ordinary nodes are
randomly divided into m groups, and each group is randomly assigned to a main node. The reporting
node and the main nodes are selected according to their credibility and professional ability.

The credibility of an oracle is denoted as ci, which plays an important role in the probabilistic
selection of cluster head election, and its value reflects the trustworthiness of the oracle. In the
algorithm, the initial value of ci of the oracle is set to c0, and then it is increased or decreased according
to the data accuracy of the oracle to each data request. Each time the oracle set completes the data
request, the performance of each oracle will be evaluated according to the data submitted by this
oracle. For the oracle that provides correct data, its value of ci will be increased to increase the
probability of the oracle being selected as the reporting node and main node; for an oracle that provides
incorrect data or no data, its value of ci will be decreased. By measuring the performance of the oracles
in the whole process of implementing rewards and punishments, the scheme can stimulate oracles to
process data requests effectively.

Professional ability measures the performance conditions and data acquisition ability of an
oracle, which mainly includes the following factors: The first one is professional experience, which
is determined by the number of data request completed by the oracle; the second one is to obtain the
performance score according to the performance of each oracle to guarantee that it can work normally;
the third one is data acquisition capability. The main task of oracles is to provide rich and accurate
trusted data for the blockchain, and the ability to obtain data is critical. The algorithm measures this
ability on the number of authoritative databases connected to each oracle, and the above three factors
are denoted was workn, scoren, and on, respectively.

The cluster head election algorithm probabilistically selects the reporting node based on the
numerical value of various factors. It ensures that the better the performance in credibility and
professional ability, the higher the probability of the oracle being selected.

The probability of oraclei being selected is:

Pi = (ci − c0) × (1 + a × worki + b × scorei + c × oi)∑n

j=1[(cj − c0) × (1 + a × workj + b × scorej + c × oj)]
(2)

where, ci denotes the credibility of oraclei, c0 is the initial value of ci, and n is the number of oracles in
oracle set. The three weighted values a, b, and c need to be determined by the oracle set according to
the number and performance of oracles.

In the process of cluster head election, each oracle in the set has a determined function.
Specifically, the ordinary node is responsible for responding to data requests and providing replies
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by querying the database; the main node is responsible for transmitting data requests to its group and
collecting the replies to the reporting node; the reporting node is responsible for receiving and passing
data requests published by the blockchain, and aggregating and submitting the replies submitted by
the main node to the blockchain. The principle of the credibility-based cluster head election algorithm
designed in this paper is presented in Fig. 3.

Figure 3: The implementation of the oracle scheme proposed in this paper

To stimulate oracles to respond to data requests positively and ensure the execution efficiency
of the scheme, an evaluation and stimulation mechanism is designed in the cluster head election
algorithm, and it includes four modules. In addition to the already mentioned credibility ci, there are
also security deposits, reward and punishment measures, and a reporting mechanism. The credibility
ci plays an important role in cluster head election. Security deposit is a guarantee to maintain the
initiative of the oracle, and it can prevent the oracle from negatively responding to data requests and
thus ensure the efficiency of data aggregation. The reporting mechanism is a supervisory measure to
ensure fairness. To prevent the main node and reporting node from using their power for personal
gain and maliciously concealing the reply of ordinary nodes to maintain their leading position, the
scheme sets a complete message reply mechanism. Specifically, ordinary nodes determine whether their
feedback is submitted to the blockchain by comparing the response of superior nodes with the final
submission results and then report the malicious concealment nodes found.

After grouping, each oracle has a clear function and forms a hierarchical structure. Then,
according to the hierarchy, the data is transmitted and uniformly submitted by the reporting node.
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This reduces unnecessary data transmission and data submission, avoiding a lot of communication
costs and waiting time. Meanwhile, after the functions are clarified, the tasks of data verification and
data aggregation are assigned to the main node and reporting node, respectively, which effectively
improves the algorithm’s execution efficiency.

The design of the credibility-based cluster head election algorithm is shown in Algorithm 1.

During the cluster head election process, the operations of elections and hierarchy divisions are
performed by smart contract. Oracles first transmit their own information to the smart contract, who
will select the reporting node and the main nodes from them. Smart contract then divides the remaining
oracles into m groups and broadcasts the grouping results to all the oracles. After data submission, the
smart contract records the oracles’ performances based on the data accuracy, and there is no additional
communication overhead. The communication complexity of the cluster head election algorithm is
O(2n). Even in large-scale networks, it has no significant impact on system performance.

Algorithm 1: Credibility-based cluster head election algorithm
1: upon oracle_{i} joined do

// score the oracles to get their parameters
2: for i ∈ [1, n] do
3: (ci, worki, scorei, oi) ← oraclei

4: end
// elect the reporting node and main nodes

5: elect the reporting node from the set of oracles with the probability of Pi,

Pi = (ci − c0) × (1 + a × worki + b × sorcei + c × oi)∑n

j=1

[(
cj − c0

) × (1 + a × worki + b × sorcei + c × oi)
]

6: elect m main nodes from the remaining oracles with the probability of Pi

7: divide the remaining nodes into m groups randomly,

(group1, group2, . . . , groupm−1, groupm)

8: assign m groups to m main nodes randomly
// reward and punish the oracles according to their performance

9: upon data submission finished do
10: for i ∈ [1, n] do
11: if dataoraclei is correct then
12: ci = ci + �c, worki = worki + 1
13: end
14: else
15: ci = ci − �c
16: end
17: end
18: return (ci, worki, scorei, oi)

4.2.2 Diagram of Message Flow

According to the message reply mechanism, the diagram of message flow for each stage of the
oracle is illustrated in Fig. 4.
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Figure 4: The implementation of the oracle scheme proposed in this paper

1©∼ 3©: Data requests are passed from the blockchain to the reporting node, main node, and
ordinary nodes;

4©: The ordinary node signs data with its key and sends it to the main node;

5©: The main node replies to the ordinary nodes to confirm receipt of the message from the nodes
in the group;

6©: The main node sends all replies received in the group to the reporting node;

7©: The reporting node replies to the main node to confirm receipt of the message;

8©: The reporting node aggregates the replies received to obtain the result of the data request, and
then it sends the result and the reply of each node to the blockchain after signing with its key;

9©∼ 11©: After receiving the result, the blockchain signs the message and passes the signature to the
reporting node, main nodes, and ordinary nodes in turn. The main nodes and ordinary nodes confirm
this signature to judge whether their data replies have been concealed or underreported.

5 BLS Share Recovery Threshold Signature Algorithm
5.1 Algorithm Initialization

To enhance the execution efficiency of the scheme and reduce the time cost of waiting for messages,
this paper designs the BLS share recovery threshold signature algorithm based on the distributed
oracle. By combining the oracle and threshold signature, the number of threshold oracles that can
complete the data aggregation is decreased, thereby reducing the time cost of waiting for all the oracles.
Also, data verification is integrated into the signature aggregation process to improve the efficiency of
data verification. Meanwhile, the share recovery mechanism is introduced to design a secure share
recovery method, which not only guarantees that the owner can recover its key share by collecting
share fragments from other oracles but also ensures that non-key owner cannot recover the key share
it does not own. The algorithm adopts bilinear mapping G1 × G2→GT . The algorithm is initialized as
follows:

Given bilinear mapping e: G1 × G2→GT , where G1 and G2 are multiplicative cyclic groups of order
p, and their generators are g1 and g2, respectively, and GT represents the multiplicative cyclic groups
of order q. The safe hash function is H: {0, 1}∗→G1. The public parameters of the algorithm are (G1,
G2, GT , e, g1, g2, p, H).

5.2 Distributed Key Generation

To avoid the threat to the key security of oracles by introducing centralized elements in key
generation, this paper designs a distributed key generation algorithm. When the key is generated, each
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oracle generates its own polynomial and values the polynomial according to the sequence number,
and then the key share fragment is calculated. Subsequently, these key share fragments are sent to
the oracle with the corresponding sequence number so that each oracle can use the share fragments
generated by itself and those generated by other oracles to generate its own key share and then calculate
the corresponding public key based on the key share. In this process, each oracle participates in the
generation of the key share, which guarantees that the key generation process is not controlled by a
single oracle. Meanwhile, since the generation of the key share requires the shared fragment from each
oracle, including the one generated by the share owner for itself, if the share owner protects this share
fragment well, it can prevent other oracles from collecting fragments to obtain the owner’s key share.

Distributed key generation mainly includes the following processes:

(1) Key Share Generation

Let the key share of oraclej be skj, the number of oracles be n, and the threshold be t. In the process
of distributed key generation, oraclei generates a t − 1 polynomial fi(x) = ai,0 + ai,1 · x + ai,2 · x2 + . . . +
ai,t−1 . . . xt−1. The key share fragment sent by oraclei to oraclej is skij (1 ≤ i ≤ n, i �= j), which is the
value obtained when the polynomial f i(x) of oraclei takes x = j, so skij = f i(j). Oraclej can collect the
key share fragment skij from other oracles and combine the share fragment skjj generated by itself to
calculate skj, which is the key share of oraclej.

Polynomial f i(x) is: fi(x) = ai,0 + ai,1 · x + ai,2 · x2 + . . . + ai,t−1 · xt−1.

The key share skj of oraclej is: skj = ∑n

i=1 fi(j) = f1(j) + f2(j) + . . . fj(j) + . . . + fn(j).

The key share fragment of skj is: skij = fi(j) = ai,0 + ai,1 · j + ai,2 · j2 + . . . + ai,t−1 · jt−1 (1 ≤ i ≤ n).

The key share of oraclej is calculated: skj = ∑n

i=1 fi(j) = ∑n

i=1 skij.

(2) Polynomial Merging

Each oracle has its own polynomial. The polynomials of all oracles can be combined to obtain
the merged polynomial f (x) representing the entire oracle set, and the value at x = 0 is the general
private key SK of the whole set. At this time, the polynomial f i(x) of oraclei is a part of the combined
polynomial f (x), and its key share ski is the result of the combined polynomial f (i) at x = i. Therefore,
in theory, the general private key SK can be recovered by Lagrange interpolation using the key shares
held by multiple oracles. The recovery process is as follows:

The combined polynomial f (x) is: f (x) = b0 + b1 · x + b2 · x2 + . . . + bt−1 · xt−1.

The general private key SK is: SK = f (0) = b0.

The key share skj of oraclej is: skj = f (j) = b0 + b1 · j + b2 · j2 + . . . + bt−1 · jt−1.

According to Lagrange interpolation, there is: lj(x) = ∏t

i=1, i �=j

x − xi

xj − xi

.

When x = 0, there is: lj = lj(0) = ∏t

i=1, i �=j

xi

xi − xj

.

The value of the combined polynomial f (x) can be calculated through Lagrange interpolation:

skx = f (x) =
t∑

j=1

[f (xj) · lj(x)] =
t∑

j=1

[
f (xj) ·

t∏
i=1,i �=j

x − xi

xj − xi

]
=

∑t

j=1

(
skj ·

∏t

i=1,i �=j

x − xi

xj − xi

)
(3)

When x = 0, the general private key SK is: SK = sk0 = f (0) = ∑t

j=1

(
skj · ∏t

i=1,i �=j

xi

xi − xj

)
.
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xi and xj are the sequence numbers of oracles. From the above process, when the number of
collected oracle private keys reaches t, the general private key can be aggregated and recovered by the
aggregability of private keys. However, in the algorithm execution, for the sake of security, the general
private key SK cannot be recovered, and each oracle does not allow its own polynomial and key share
to be exposed. Therefore, the combined polynomial is not actually generated, and the recovery of the
general private key is only theoretically feasible.

The public keys and the signatures of the oracles generated by the private keys are also aggregable.
As a result, when the general public key is generated, the threshold number of public keys of oracles
can be collected, and the general public key can be formed by public key aggregation. This property
can also be exploited to aggregate the threshold number of signatures to generate aggregate signatures.

(3) Public Key Generation

After the process of distributed key share generation, each oracle uses its own key share to calculate
its public key pki, and then the general public key PK is calculated from multiple public keys.

The generation of the public key relies on group G2 in the BLS threshold signature algorithm.
For the bilinear pair mapping e: G1 × G2→GT , the generator of group G2 is g2, and the public key
generated by oraclei is: pki = g2

ski .

The general public key PK is calculated by using multiple public keys:

PK =
t∏

i=1

(pki
li) =

t∏
i=1

(g2
ski)li =

t∏
i=1

(
g2

ski ·li
) = g2

∑t
i=1(li ·ski) = g2

SK (4)

The generation of the keys for each oracle and the general public key for the oracle set is now
completed. The distribution mechanism of the algorithm’s key share fragments is demonstrated in
Fig. 5.

Figure 5: The BLS share recovery threshold signature algorithm

The design of the distributed key generation algorithm is presented in Algorithm 2.
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Algorithm 2: Distributed key generation for oraclei

1: upon setup finished do
2: oraclei choose a random homogeneous polynomial fi (x) of degree t − 1,

fi (x) = ai,0 + a∗
i,1x + a∗

i,2x
2 + . . . + a∗

i,t−1x
t−1

3: for j ∈ [1, n] do
4: skij ← fi (j)
5: end
6: oraclei send “send, skij, oraclei, oraclej

‘‘

to oraclej (1 ≤ j ≤ n, j ∈ Z)

7: upon oraclei receiving “send, skij, oraclei, oraclej” from oraclej do
8: oraclei set

9: ski =
n∑

j=1

skji

10: return ski;

5.3 Share Recovery

When the share needs to be recovered, the oracle sends a share recovery request to other oracles
to obtain the key share fragments to restore its key share: skj = ∑n

i=1 fi(j) = f1(j) + f2(j) + . . . fj(j) +
. . . + fn(j).

On receiving the share recovery request, other oracles generate share fragments and send them
to this oracle. After collecting the share fragments, this oracle aggregates them with its calculated
share fragment to recover its own key share. Since the share fragment f j(j) is not exposed, the key
of this oracle cannot be recovered by other oracles during the share recovery process because they
cannot obtain the share fragment f j(j). The design of the share recovery algorithm is presented
in Algorithm 3.

Algorithm 3: Share recovery for oraclei

1: upon oraclei lose ski do
2: oraclei send “help, oraclei” to oraclej (1 ≤ j ≤ n, j ∈ Z)

3: upon oraclej receiving “help, oraclei” from oraclei do
4: oraclej send “echo, skji, oraclej, oraclei”to oraclei

5: upon oraclei receiving “echo, skji, oraclej, oraclei”from oraclej do
6: oraclei set

7: ski =
n∑

j=1

skji

8: return ski;

Particularly, in our scheme, the scale of share fragments is small and only a very low commu-
nication bandwidth is required to transmit, which brings negligible communication overhead. Even
in the case of poor network conditions, as long as there is normal network communication, it has
no significant impact on the transmission of share fragments. If faced with extremely harsh network
conditions, oracle can report the loss of keys to the blockchain. In this case, due to the strong robustness
of our scheme, data aggregation and data verification can still be completed through the threshold
number of signature messages, so the failure of a small number of oracles will not affect the efficiency
of the scheme.
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5.4 Signature Aggregation

Message m is first hashed to convert it to a point H(m) in G1.

The message signed by oraclei is: sigi(H(m)) = H(m)ski .

The aggregate signature representing the entire set of oracles should be: sig(H(m)) = H(m)SK .

When an aggregate signature is generated, the sigi(H(m)) that reaches the threshold is collected
and aggregated to generate an aggregate signature sig(H(m)) for message m. In this approach, the
aggregate signature of message m representing the entire oracle set is obtained.

Based on the key aggregation theory of the BLS threshold signature algorithm, the signature
aggregation method of the algorithm is introduced as follows:

The signature sigi(H(m)) of oraclei is: sigi(H(m)) = H(m)ski .

The aggregated signature sig(H(m)) is:

sig(H(m)) = H(m)SK = H(m)
∑t

i=1(li ·ski) =
t∏

i=1

[H(m)li ·ski ] =
∏t

i=1
[sigi(H(m))]li (5)

Under the threshold (t, n), if more than t correct signatures can be collected, an aggregate signature
can be generated using these signatures.

In our algorithm, through using the threshold signatures aggregation, we also implement the
aggregation and validation of data from different oracles instead of performing these two operations
specifically. And the aggregation result can reflect the data correctness. For an aggregated signature,
using less signatures represents that the data correctness is higher. If the aggregation fails, it represents
the data from different oracles are various and cannot reach consensus, resulting in the failure of the
data validation. This design greatly improves the efficiency of our algorithm.

5.5 Signature Verification

Signature verification involves single signature verification and aggregate signature verification,
and they require the personal public key of the oracle and the general public key of the oracle set
respectively. The former corresponds to the private key share of a single oracle and can verify its
signature, while the latter corresponds to the general private key for the entire oracle set and can verify
the aggregated signature.

When verifying a single signature using a personal public key, the bilinear map e: G1 × G2→GT

has the property: e(Pa, Qb) = e(P, Qb)a = e(P, Q)ab = e(P, Qa)b = e(Pb, Qa).

Then there is:

e(Pi, H(m)) = e(g2
ski , H(m)) = e(g2, H(m)ski) = e(g2, sigi(H(m))) (6)

Here, g2 is the generator of G2. From the above deduction, the signature sigi(H(m)) can be verified
using public key pki.

When using the general public key to verify the aggregate signature, there is:

e(PK, H(m)) = e(g2
SK , H(m)) = e(g2, H(m)SK) = e(g2, sig(H(m))) (7)

From the above deduction, the aggregate signature sig(H(m)) can be verified using general public
key PK.
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6 Experimental Analysis
6.1 Experimental Environment

In this paper, the BLS share recovery threshold signature algorithm is designed for data signature,
aggregation, and verification in the oracle scheme, and its execution efficiency will directly affect the
execution efficiency of the oracle scheme. In the field of blockchain, the ECDSA algorithm, Schnorr
algorithm, and BLS algorithm are the three commonly used signature algorithms. Since the ECDSA
algorithm is difficult to implement threshold signatures and the corresponding threshold scheme is
very complex, it is not suitable for the scheme proposed in this paper. Therefore, the Schnorr threshold
signature algorithm was selected to conduct a comparison experiment with the proposed algorithm.

The scheme was simulated and tested in a virtual machine on the VMware Workstation Pro
platform. The virtual machine runs the Ubuntu 20.04 operating system, with 4 processor cores and 8
GB memory. The host computer was equipped with a 12th Gen Intel(R) Core(TM) i9-12900H process
(2.50 GHz). The algorithm proposed in this paper and the Schnorr threshold signature algorithm were
implemented using the Go language, and then the smart contract was deployed and tested on the Fabric
chain.

6.2 Experimental Analysis of Scalability

During the experiment, the proposed algorithm and the Schnorr threshold signature algorithm
were used to test the scheme respectively, and the execution time of the scheme with different numbers
of nodes was calculated to measure the scalability of the scheme. The experimental results are shown
in Figs. 6 and 7.

Figure 6: The execution time of the proposed algorithm with different number of nodes
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Figure 7: The execution time of the Schnorr algorithm with different number of nodes

Compared Figs. 6 with 7, as the number of oracle nodes in the scheme increases, the signature
aggregation time of the algorithm proposed in this paper is almost unchanged, while the verification
time of aggregate signature increases accordingly. This is because this algorithm is designed based on
the BLS threshold signature algorithm, which has no advantage in signature verification.

The Schnorr threshold signature algorithm can maintain a high signature generation rate, but as
the number of nodes increases, the time for signature aggregation and aggregate signature verification
gradually increases. Meanwhile, the curve shows that the execution time of the Schnorr algorithm
increases significantly faster than that of the proposed algorithm. This is because when the Schnorr
signature algorithm is adopted to implement threshold signature, a Merkle tree of the public key
needs to be constructed. When the number of nodes is small, the design of the Merkle tree makes
the algorithm have higher execution efficiency, but when there are numerous nodes, the constructed
Merkle tree has a large size, resulting in a significant decrease in execution efficiency. In contrast,
although the algorithm designed in this paper based on the BLS threshold signature algorithm has
low pairing efficiency and long signature verification time, its design is friendly to key aggregation, so
it can perform better in the signature aggregation and maintain stable performance when the number
of nodes increases.

6.3 Experimental Analysis of Execution Efficiency

In the experiment, the proposed algorithm and the Schnorr threshold signature algorithm are used
to simulate the scheme, and the execution time of the scheme in different execution rounds is counted
to obtain the average execution efficiency of the two algorithms. The obtained experimental results
are shown in Figs. 8 and 9.
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Figure 8: The execution time of the proposed algorithm in different execution rounds

Figure 9: The execution time of the Schnorr algorithm in different execution rounds

Compared Figs. 8 with 9, it can be found that with the increase in the number of execution
rounds, the average execution time of the schemes using the two algorithms fluctuates. Compared
with the Schnorr algorithm, although the proposed algorithm has lower efficiency in message signing
and a longer time in aggregate signature verification, it performs significantly better than the latter
in signature aggregation. This is because the BLS threshold signature algorithm is friendly to key
aggregation, and this advantage will be more prominent when the algorithm is applied on a large
scale.

It can be seen from Fig. 10 that with the continuous expansion of the node scale, the pro-
posed algorithm using the BLS signatures has more and more obvious advantages in execution
time compared with the Schnorr algorithm. Specifically, our algorithm has designed cluster head
election algorithm and share recovery threshold signature algorithm to perform the operations of
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key generation, signature aggregation, data verification and data submission, which uses off-chain
aggregation and off-chain verification to make our algorithm of great execution efficiency. Meanwhile,
the communication costs to transmit the data is also reduced significantly. These two advantages make
our algorithm more capable of dealing with large-scale nodes working simultaneously.

Figure 10: The execution time of the two algorithms in large-scale applications

From Figs. 6–10, we can find that the threshold signature algorithm in this paper has advantages in
scalability and signature aggregation. Meanwhile, it uses one point instead of two points on the elliptic
curve when signing, and the length of the signature formed by the same data is only half of the Schnorr
algorithm or ECDSA algorithm, which is more convenient for the transmission of a large amount of
data. More importantly, the threshold signature algorithm in this paper introduces the share recovery
mechanism, which gives the scheme better emergency handling ability and stronger fault tolerance.

6.4 Experimental Analysis of Fault Tolerance

In the experiment, we also compare our scheme with BLOR scheme in the performance of fault
tolerance. Based on the different election strategy for oracles, the fault tolerance of the scheme in
the execution stage will also change, which will be experimented in this section. Note that the share
recovery is temporarily not considered in the experiment process because of the complexity of the
fault’s types.

In Fig. 11, there is comparison of fault tolerance. We compare our scheme with BLOR scheme and
oracles selected randomly in the ability of fault tolerance. It can be found that our scheme and BLOR
scheme both have more advantages than oracles selected randomly. BLOR uses machine learning
algorithm to select oracles with high quality to maintain the data accuracy and our scheme use cluster
head election algorithm to achieve the result. Meanwhile, after adding the share recovery mechanism,
our scheme will have an additional increase in fault tolerance.
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Figure 11: The comparison of fault tolerance

7 Security Analysis

The BLS share recovery threshold signature algorithm designed in this paper is a digital signature
scheme based on bilinear mapping, and the security of the scheme is guaranteed by the CDH problem.
The following is the proof of the security of this scheme under the random oracle model.

Theorem. Under the random oracle model, suppose the hash function H is a random oracle. If
the CDH problem is difficult, the proposed scheme is provably secure in the EU-CMA security model
with a reduction loss L = qH , where qH is the number of hash queries to the random oracle.

The proof is given below:

Assuming that in the EU−CMA security model, there is an adversary A that can break the
algorithm in polynomial time, then a simulator B can be constructed to call adversary A to solve
the CDH problem.

CDH problem instances can be obtained according to Definition 2. Given g, ga, gb∈G, a, b ←R Z∗
q ,

compute gab.

Setup. Let H be a random oracle controlled by the simulator. B can call adversary A to query. B
sets the public key h = ga, where the secret key is a. The public key is available for the problem instance.
Though the simulator does not know the private key, it can construct a signature that can be simulated
without using the private key and design a signature that can be reduced for adversary A.

H-Query. The adversary A makes hash queries mi to simulator B in this phase. B queries the
random oracle to obtain the hash result H(mi) and returns it to the adversary. Before receiving queries
from adversary A, simulator B selects a random number i∗∈[1, qH ], where qH denotes the number of
hash queries to the random. Then, B prepares an empty hash list to record all queries and responds as
follows.
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Let the i-th hash query be mi. If mi is already in the hash list, B responds to this query following
the hash list; otherwise, B randomly chooses wi from Zp and sets H(mi) as:

H (mi) = gb+wi if i = i∗

H(mi) = gwi otherwise (8)

Simulator B responds to this query with H(mi) and adds (i, mi, wi, H(mi)) to the hash list.

Query. Adversary A makes signature queries in this phase. For a signature query on mi, if mi is the
i∗-th queried message in the hash list, abort, and otherwise, H(mi) = gwi.

B computes σmi = (ga)wi .

According to the signature definition and simulation, we have σmi = H(mi)
a = (gwi)a = (ga)wi .

Therefore, σmi is a valid signature of mi.

Forgery. The adversary returns a forged signature σm∗ on certain m∗ that has not been queried. If
m∗ is not the i∗-th queried message in the hash list, abort, and otherwise, H(m∗) = gb+wi∗ . According to
the definition and simulation, we have σm∗ = H(m∗)a = (gb+wi∗ )a = gab+awi∗ .

Then, based on this signature, simulator B can calculate
σm∗

(ga)wi∗
= gab+awi∗

(ga)wi∗
= gab.

In this way, the solution gab to the CDH problem instance is obtained.

It can be found that if there is an adversary that can break the algorithm in polynomial time

with probability
1

qH

, then there is a method that can break the CDH problem with probability
ε

qH

in

polynomial time. Since the CDH problem is difficult, no algorithm can solve it in polynomial time, so
the contradiction with the fact shows that the assumption is invalid. Thus, no adversary can break the
scheme in polynomial time.

8 Conclusion

The existing oracle schemes all have some problems: Centralized oracles have a single data source
and are easy to produce a single point of failure, while distributed oracles have low execution efficiency
and high communication cost. To solve these problems, this paper proposes a trusted distributed
oracle scheme based on a share recovery threshold signature, which provides an efficient, secure, and
stable scheme for the trusted use and large-scale development of distributed oracles. First, a data
verification method of distributed oracles is designed based on threshold signature, which aggregates
data signatures through threshold signature and verifies data reliability in the aggregation, enabling the
proposed scheme to eliminate the previous interactive data verification mode. Second, a credibility-
based cluster head election algorithm is proposed, which assigns the functions of data acquisition,
signature aggregation and data submission to different oracles to enhance the execution efficiency
of the proposed scheme. Also, the network communication overhead is reduced by constructing a
hierarchical technical architecture. Finally, a BLS share recovery threshold signature algorithm is
designed to improve the robustness and scalability of the proposed scheme through share recovery and
threshold signature. In the future, we will further improve the proposed threshold signature algorithm
to make it have higher execution efficiency and a stronger ability to resist attacks.
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