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ABSTRACT

The growing spectrum of Generative Adversarial Network (GAN) applications in medical imaging, cyber security,
data augmentation, and the field of remote sensing tasks necessitate a sharp spike in the criticality of review
of Generative Adversarial Networks. Earlier reviews that targeted reviewing certain architecture of the GAN or
emphasizing a specific application-oriented area have done so in a narrow spirit and lacked the systematic com-
parative analysis of the models’ performance metrics. Numerous reviews do not apply standardized frameworks,
showing gaps in the efficiency evaluation of GANs, training stability, and suitability for specific tasks. In this work,
a systemic review of GAN models using the PRISMA framework is developed in detail to fill the gap by structurally
evaluating GAN architectures. A wide variety of GAN models have been discussed in this review, starting from the
basic Conditional GAN, Wasserstein GAN, and Deep Convolutional GAN, and have gone down to many specialized
models, such as EVAGAN, FCGAN, and SIF-GAN, for different applications across various domains like fault
diagnosis, network security, medical imaging, and image segmentation. The PRISMA methodology systematically
filters relevant studies by inclusion and exclusion criteria to ensure transparency and replicability in the review
process. Hence, all models are assessed relative to specific performance metrics such as accuracy, stability, and
computational efficiency. There are multiple benefits to using the PRISMA approach in this setup. Not only does
this help in finding optimal models suitable for various applications, but it also provides an explicit framework for
comparing GAN performance. In addition to this, diverse types of GAN are included to ensure a comprehensive
view of the state-of-the-art techniques. This work is essential not only in terms of its result but also because it
guides the direction of future research by pinpointing which types of applications require some GAN architectures,
works to improve specific task model selection, and points out areas for further research on the development and
application of GANs.
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1 Introduction

Generative adversarial networks, one of the most transformative developments in machine
learning and artificial intelligence since the concept of Goodfellow et al. in 2014, GANs constitute
two competing neural networks: a generator that will create synthetic data possibly looking sim-
ilar to actual data and a discriminator that discriminates between actual and generated samples.
These adversarial frameworks have shown immense success in various applications ranging from
the computer vision application domain to image synthesis and natural language processing to
healthcare. However, as GANs evolve further, the sheer number of variants and models becomes
prohibitive for researchers and practitioners looking to choose the optimal architecture for specific
tasks. Several GAN architectures were implemented, which included the conditional GAN (CGAN),
Deep Convolutional GAN (DCGAN), and the Wasserstein GAN (WGAN) [1,2], to counter some
of the weaknesses inherent in the basic GAN architecture, such as instability during training, mode
collapse, and failure to generate high-resolution images [3,4]. Each model improves on one of the
weaknesses cited but introduces others simultaneously. For example, WGAN uses the Wasserstein
distance metric in its architecture to stabilize the training and handle issues concerning gradient
vanishing. At the same time, CGAN adds conditional input to produce better-controlled outputs.
Despite their broad application, there is a shortage of comprehensive and systematic comparisons of
these models in different domains. Most of the reviews in place are either application-specific to the use
case, for example, image generation or anomaly detection, or do not have proper evaluation metrics,
which makes it cumbersome to state the various models’ adaptability to different applications. This
paper tries to do an iterative review of GAN models using PRISMA to fill the gap in the literature.

The PRISMA approach ensures a transparent, replicable process for systematically identifying
and evaluating GAN models according to a well-defined set of criteria. This paper gives an overall
view of the performance and applicability of such architectures, coupled with some knowledge about
comparing models across different domains, such as CGAN, WGAN, and DCGAN. Each model is
discussed in detail regarding its advantages and limitations, along with performance metrics such as
accuracy, computational efficiency, and stability in training. Such a detailed comparison is bound
to guide researchers and practitioners as to which GAN architecture will be the most suitable for
their task. With the widespread expansion of GANs to new applications such as medical image
analysis, cybersecurity, fault detection, and data augmentation, there is an ever-growing need for a
structured evaluation of such models. This paper addresses the shortcomings of the current reviews
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using the PRISMA methodology and lays the foundation for future research on task-specific GAN
optimization [5].

From GANs to one of the most transformative developments that exist today image, to processing
natural language, to diagnosing medical issues, and even to autonomous systems, innovation via
GANs in artificial intelligence has come out to be quite remarkable since its inception, when was
able to generate realistic data learned from existing datasets. From generating realistic images with
good quality to improving medical image segmentation, GANs have made tremendous strides in
modeling complex data distributions. However, along with the huge leaps GANs have taken in such a
short period, it has resulted in various architectures and methods of implementing these models, one
after another, each having its strengths and weaknesses. Therefore, it presents an immense growth
in diversity and appeals to a systematic analysis of GAN models concerning identifying optimal
architectures for applications [6–8].

Most existing reviews of GANs focus on specific application areas or provide a high-level overview
without examining the comparative performance of different models. In such research, most studies do
not adopt a structured review process, making it rather difficult to synthesize findings across different
fields or assess the generalizability of certain GAN models. However, the lack of structured analysis
raises several questions: for example, which GAN variants are more effective for some tasks, where
potential improvements need to be found, and where gaps in existing research lie? Effectiveness in
GANs often depends on the architecture used, the training stability of the model, and its ability to
generalize to unseen data. However, efforts have been made to systematically review and quantify
the performance of such models across multiple domains using robust frameworks such as PRISMA,
which stands for Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

There are several gaping research lacunas in the existing literature. First, how do different
architectures of GANs perform across domains in a statistically sound manner? While a huge number
of models are available, there are very few comparative studies based on robust performance metrics.
Second, is it possible to optimize GANs for data-scarce environments, such as medical imaging or rare
event detection, where data availability is a severe bottleneck? Third, are there best practices for dealing
with mode collapse and instability, two of the leading problems haunting the development of GAN,
especially for big and large-size datasets? Fourth, do GANs work well for multi-modal data fusion?
Combining different types of data, for example, using text data combined with images or sound,
can further enhance performance in applications like autonomous driving or intelligent surveillance.
Thirdly, as the high computational costs of GANs often hinder their practical application in real-
time scenarios, which model performance, if any, would result from improving their computational
efficiency?

A comprehensive review of GAN models on different broad applications will be proposed in
this paper to bridge the gaps. From the comparison of performance metrics, a statistical-in-depth
comparison of the usage of different architectures of GANs in terms of signal-to-noise ratio, accuracy,
precision, recall, and F1 scores will be reported. This aims to develop a structured, transparent, and
replicable assessment of GAN models by applying the PRISMA methodology, filling the current
gap in this field of systematic reviews. Method summaries range across several domains, including
image synthesis, medical diagnosis, and cybersecurity, to offer a holistic view of how different fields
apply GANs.

The rapid proliferation of Generative Adversarial Networks (GANs) across diverse domains,
including image processing, medical diagnostics, cybersecurity, and others, creates a pressing need
for systematizing the evaluation of these architectures. This gives rise to a challenge in researcher
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practice. Determining the right architecture for particular applications is a challenge among the ever-
growing number of GAN models, from basic GANs to variants such as Conditional GANs (CGANs)
and Wasserstein GANs (WGANs). Most of the existing reviews are insightful but narrow in scope,
as they try to focus narrowly on a specific domain or a fixed, non-standardized methodology for
systematically evaluating GAN models. This approach unaddressed fundamental issues, such as a
lack of understanding concerning training stability, performance under sparse data conditions, and
associated computational efficiency. For instance, because the review does not present a comprehensive
comparative analysis, it leaves questions on which GAN architectures outperform others in tasks such
as high-resolution image synthesis, fault detection, or multimodal data fusions.

To address these gaps, this review adopts a PRISMA-based framework to systematically evaluate
more than 60 GAN architectures in various domains. The study aims to answer critical research
questions (Fig. 1): (1) Which GAN architectures perform optimally regarding accuracy, stability, and
computational efficiency for specific applications? (2) How can GANs be optimized for data-scarce
environments, such as medical imaging and rare event detection? (3) What strategies effectively address
persistent issues like mode collapse and training instability in GANs? (4) Can GANs be applied
successfully for complex tasks such as data fusion in multiple modes and real-time applications?
Addressing these questions systematically allows the review not only to give a comprehensive descrip-
tion of the performance metrics of GANs, but also actionable insights and future research directions
that can bridge the gaps in the development and application of GANs.

Figure 1: GAN operations

It synthesizes performance results and identifies the strengths and weaknesses of various GAN
models to provide insight into their applicability in different tasks. Systematic comparison of models
lets this review provide practical recommendations for researchers and practitioners interested in
choosing or designing the most apt GAN architecture. More importantly, it has highlighted areas
for future research, such as stabilizing better training of the model, generalization in low-data
environments, and incorporation with newly available technologies such as transformers and neural
architecture search with GANs.

1.1 Review Process

This systematic PRISMA-based review of existing studies was chosen based on a structured
selection process to include relevant and highly quality studies. The search process involves several
steps, explained below, including defining search keywords, setting inclusion and exclusion criteria, and
evaluating the quality of studies based on specific performance metrics. The inclusion and exclusion
criteria are presented below in Fig. 2.
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Figure 2: Screening process

Following the criteria in Figs. 3 and 4, the review focused on selecting only the best quality
and relevant studies, which would afford a deep understanding of GAN models’ performance and
efficiency in divergent applications.
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Figure 3: Overview of studies selection for the survey
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Figure 4: Process followed for selection of papers

1.2 Ethical Constraints

Medical diagnostics and network security are essential to adopting GANs in critical domains.
While medical applications of GANs are vast, including data augmentation, image synthesis, and
anomaly detection, the model is only as biased or unbiased as the training data samples. Whenever
GANs are trained on datasets biased towards a particular demographic or condition, the synthetic
data may unintentionally propagate these biases and even amplify them. For instance, a GAN trained
on skin lesion images predominantly by lighter skin tones will fail to generalize well to patients with
darker skin tones, potentially resulting in diagnostic or treatment errors. To this end, careful curation
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of training datasets concerning diversity, fairness, and fairness-aware training methodologies in GAN
design is recommended.

In network security applications, GANs will be used for synthetic traffic data generation to
build intrusion detection systems or for the construction of adversarial samples for testing system
robustness. Such applications have apparent benefits but also some significant ethical concerns.
Synthetic data can be used for malicious actions if not utilized rightly, for instance, generating
advanced phishing attack patterns or evading security systems. Samples generated with the help of
GANs can leak out or misapplied; thus, bad actors can evade detection systems. Strict governance and
security practices in developing GAN-based systems in sensitive environments should be emphasized.

Further ethical issues arise at the level of broader implications of GAN technology in use.
The public has sensationalized GAN technology regarding its use for deepfakes, synthetic media,
etc. Healthcare analogs might be used to fake medical images or records in healthcare systems.
Such practices will lead to the untrustworthiness of diagnostic systems. To this end, traceability
in GAN workflows and mechanisms for explainability should be stressed for the process. Ethical
considerations, such as data privacy, consent, and fairness, should also guide development and
deployments. These measures provide a solution for preventing risks concerning proper outcomes and
public trust in applications where GANs play a significant role in the process.

1.3 Motivation

This motivation comes from the proliferation of GAN models in many domains and the challenge
of selecting the most appropriate architecture for specific applications. The diversity of GAN models
varies from basic GAN to advanced variants like CGAN, WGAN, and DCGANs, which present
a complex land for researchers and practitioners. Although each of these models offers some new
innovative feature to address one limitation, for instance, instability or low-resolution output, com-
prehensive study and comparison of these models against other performance metrics is conspicuous
by its absence. The existing reviews are narrow and focus on specific applications, or they do not have
transparent and systematic frameworks to analyze the individual models in detail. This leads to a
problem of suboptimal model choice, limiting the adequacy of GANs for real-world applications. To
fill this gap, this paper aims to apply the PRISMA review framework for systematically, transparently,
and reliably evaluating GAN models across various domains. The contribution of this work is as
follows: The first benefit is that it compares the variants of GAN—from CGAN and WGAN to
DCGAN—based on the performance metrics of accuracy, stability, computational efficiency, and
domain specificity. The second benefit is that it offers action insight into the most suitable models
for specific GAN tasks to help further research and application. Taking advantage of this PRISMA
framework thus guarantees great rigor and reproducibility so that further research could rely on the
critical base presented in this paper. This work discusses the strengths and weaknesses of existing GAN
models and informs important areas to be developed, such as achieving stability and scalability for
high-resolution data generation.

1.4 Contributions & Structure of Paper

Based on the contributions provided, here are four objectives framed for the paper:

1. To conduct a structured review of Generative Adversarial Networks (GANs) applicable in
various fields such as image processing, medical diagnosis, and network security, using PRISMA-
based guidelines for rigorous and comprehensive analysis.
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2. To perform a detailed comparative analysis of over 60 GAN models using statistical evaluation
metrics like accuracy, precision, and SNR, identifying task-dependent performance improvements
across diverse application areas.

3. To determine the most efficient and optimal GAN architectures for specific use cases such
as medical image classification, fault detection, and image synthesis, focusing on computational
efficiency, training stability, and generalization capability.

4. To outline potential research directions for the future, particularly focusing on optimizing
GANs for complex tasks like multi-modal data fusion and addressing challenges in data-scarce
environments.

The document is organized as follows: The introduction summarizes GANs, discusses the
importance of a structured review, and points out shortcomings in previous reviews. This is followed
by the motivation and contributions section, which underscores the paper’s main contributions to
evaluating GAN models in various fields. The methodology section explains the PRISMA framework,
including criteria for inclusion/exclusion and categorization of papers. The statistical review and
analysis thoroughly evaluate more than 60 GAN models through statistical measures. Ultimately, the
section results and discussion highlight the main discoveries. In contrast, the section conclusion and
future scope suggest ways to enhance GAN performance in training stability and handling complex
data tasks.

2 Overview of GAN Architectures and Datasets
2.1 Basic GAN Architecture

A Generative Adversarial Network (GAN) consists of two main components: the Generator (G)
and the Discriminator (D), both of which are neural networks. The Generator creates synthetic data
samples (such as images) that mimic real data by transforming random noise input into realistic
outputs. On the other hand, the Discriminator distinguishes between real data samples and fake
samples by the generator. This setup creates a competitive scenario where the Generator tries to fool
the discriminator, and the discriminator works to correctly identify real vs. fake data. Both networks
improve their abilities through adversarial training, updated iteratively based on their performance
against each other. The basic working principle of GAN is illustrated in Fig. 5.

Figure 5: Working principle of GAN



CMC, 2025, vol.82, no.2 1765

The training process involves the generator minimizing its loss function by producing more
realistic fake samples, while the discriminator maximizes its accuracy to classify real vs. fake. The
overall objective of a GAN is to reach a point where the generator’s synthetic outputs are so realistic
that the discriminator cannot reliably distinguish them from real data. The combination of these two
networks allows GANs to generate high-quality data across various domains, such as image synthesis,
data augmentation, and even cross-domain data translation (e.g., converting CT images to MRI). This
architecture is at the core of many advancements in deep learning, especially in fields where generating
realistic synthetic data is crucial, such as medical imaging, autonomous driving, and creative arts.

Over the years, different GAN architectures have been introduced, with their release dates
visualized in Fig. 6, providing a timeline of their development. Table 1 details these GAN architectures,
highlighting key components such as their main building blocks, the loss functions they employ, and
their specific applications. Each of these architectures has been designed to address various es in GAN
training, ranging from roving the quality of generated outputs to stabilizing the training process. The
table offers a comprehensive view of how different types of GANs have evolved and adapted to meet
the needs of diverse fields, from image generation and super-resolution to medical applications and
beyond.

Figure 6: Timeline of GAN architectures
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Table 1: Comparative analysis of different GAN architectures

GAN architecture Key features Main components Loss functions Applications

Dynamically
Grown GAN
(DGGAN) [9]

Dynamically grows
network layers
during training,
enhancing capacity
as needed.

Generator,
discriminator

Adversarial loss,
capacity growth
penalties

Image synthesis,
video
generation

StyleGAN [10] Style-based
generator that
controls image
features at multiple
levels, enabling
high-quality image
synthesis with style
transfer
capabilities.

Style-based
generator,
discriminator

Adversarial loss,
perceptual loss

High-resolution
image synthesis,
art generation

Alias-Free GAN
[11]

Eliminates aliasing
artifacts in
generated images,
allowing for
high-quality image
synthesis across
different
resolutions.

Generator,
discriminator

Adversarial loss,
alias-free
reconstruction loss

Image synthesis,
video
generation,
high-fidelity
image
generation

Self-Attention
GAN (SAGAN)
[12]

Incorporates
self-attention
mechanisms to
capture long-range
dependencies,
improving the
generation of
complex images.

Self-attention
generator,
discriminator

Adversarial loss,
attention loss

Complex image
generation,
text-to-image
synthesis

BigGAN [13] Large-scale GAN
designed for
high-resolution
image generation,
utilizing
class-conditional
generation and
large batch sizes
for improved
quality.

Class-conditional
generator,
discriminator

Adversarial loss,
classification loss

High-resolution
image synthesis,
class-
conditional
image
generation

(Continued)
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Table 1 (continued)

GAN architecture Key features Main components Loss functions Applications

Your Local GAN
(YLGAN)

Focuses on local
image features to
improve image
quality, allowing
for personalized
image generation.

Local
feature-based
generator,
discriminator

Adversarial loss,
local feature loss

Personalized
image
generation,
local feature
enhancement

Classification
Enhancement
GAN (CEGAN)
[14]

Aims to improve
classification
performance by
generating
synthetic samples
for
underrepresented
classes.

Generator,
discriminator,
classifier

Adversarial loss,
classification loss,
synthetic data loss

Data
augmentation,
class imbalance
correction in
datasets

SSD-GAN [15] Combines GANs
with Single Shot
Multibox Detector
(SSD) for
enhanced object
detection by
generating
synthetic images to
improve detection
performance.

Generator,
discriminator, SSD
detector

Adversarial loss,
detection loss,
localization loss

Object
detection,
augmented
training
datasets

Mobile Image
Enhancement
GAN (MIEGAN)
[16]

Optimized for
mobile devices,
focusing on
enhancing image
quality under
constraints like low
light, noise, and
compression
artifacts.

Lightweight
generator,
discriminator

Adversarial loss,
perceptual loss

Mobile
photography,
Real-time image
enhancement,
low-light image
processing

2.2 Datasets used in GAN Models

Some popular datasets commonly used for training and evaluating GANs (Fig. 7), particularly in
fields such as image generation, medical imaging, text-to-image synthesis, and video generation are:

• MNIST dataset [17]: It contains handwritten digits (grayscale,) and the size of the dataset is
70,000 for each image of size 28 × 28.

• CIFAR10/CIFAR-100 [18]: It contains RGB images of different objects, and the size of the
dataset is 60,000.
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• CelebA dataset [19]: It contains Celebrity face images (RGB), and the dataset size is 200,000+
images with 40 attribute labels.

• LSUN dataset: Large-scale Scene Understanding Dataset. It contains High-resolution images
(e.g., bedrooms, churches, towers) and millions of labeled images across different categories.

• ImageNet dataset: It contains a Large-scale object recognition dataset (RGB), and the dataset
size is 14+ million labeled images across 1000 classes.

• Fashion-MNIST [20]: It contains Fashion item images (grayscale), and the size of the dataset
is 70,000 28 × 28 images.

• Stanford Dogs Dataset: It contains Dog breed images (RGB), and the dataset size is 20,580
images across 120 classes.

• Cityscapes Dataset: It contains Urban street scenes (RGB), and the dataset size is 25,000 high-
resolution images.

• PASCAL VOC: It contains an Object detection dataset (RGB), and the size of the dataset is
20,000 images across 20 object classes.

• LSUN-Bedroom/LSUN-Church: It contains High-resolution indoor scenes (RGB), and the
size is over 3 million images of bedrooms and churches.

• Oxford-102 Flowers Dataset: It contains Flower images (RGB), and the dataset size is 8189
images across 102 flower categories.

• COCO (Common Objects in Context): It contains an Image dataset with objects in natural
contexts, and the size is 330,000 images across 80 object categories.

• Medical Datasets (e.g., BraTS, LUNA, CheXpert): They contain MRI, CT, and X-ray images
for medical applications.

• FFHQ (Flickr-Faces-HQ): It contains High-quality face images (RGB), and the dataset size is
70,000 images at 1024 × 1024 resolution.

• Places Dataset: It contains Scene images, and the size of the dataset size+ a million images
across 365 categories.

Figure 7: Overview of datasets used in GAN models
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3 Review of Existing Models for Different Applications

GANs have been considered significant contributions to deep learning, having been utilized to
address problems of various complexity in domains such as image generation, medical imaging, fault
diagnosis, and augmentation of data samples. It is presented as a review of the key contributions and
important advancement of GAN architectures to diverse domains such as image processing, source
separation, and generation of synthetic data samples. The PRISMA guidelines guide the systematic
review toward a clear, structured analysis literature analysis of GAN applications (Fig. 8).

Figure 8: Overview of GAN’s applications

GANs hold very promising applicability in the medical imaging domain, addressing many of the
above problems: scarcity of data, high-resolution image reconstruction, and anomaly detection. For
example, GANs have been used with good efficacy for breast cancer detection data augmentation.
Smart GAN has applied reinforcement learning on the synthetic data generated by GANs to augment
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the precision of the classifiers for detecting abnormal tissue. Likewise, multi-attention GAN models
have been used to segment fundus images to diagnose diabetic retinopathy. The progress in the accuracy
due to the focus on lesion-specific features was remarkable. Its applications can also be seen in brain
MRI inpainting. Missing regions in scans are reconstructed by architectures GAN such as ER-GAN,
which help diagnose when complete data is unavailable. Such demonstrations also show how GANs
improve data generation and make diagnostics more workable in live clinical practice, thus promoting
better patient outcomes and fewer diagnostic failures.

In the network security domain, GANs have addressed some crucial challenges: intrusion detec-
tion, a defense mechanism against adversarial attacks, and detecting anomalies in real-time systems.
For example, GAN-based IDS uses the Wasserstein loss functions to generate synthetic traffic data
to detect minority class attacks like DDoS. The hybrid architecture of GAN-GRU has proved useful
in enhancing detection accuracy while minimizing network vulnerability against distributed denial-
of-service attacks by analyzing the temporal features in network traffic. In the cybersecurity world,
EVAGAN is a variant of Evasion GAN, which is effective for generating adversarial samples for
robust model training in low-data settings. These use cases have explained how GANs can contribute
to resilience against evolving cyber threats and thus have hardened up next-generation communication
systems by safeguarding data across different industries & deployments.

Apart from these domains, GAN has shown its applicability in complex, multifaceted applications
such as environmental monitoring and autonomous systems. Conditional GANs with transfer learning
have been well applied in oceanic DEM reconstruction for remote sensing applications from low
datasets, which have improved geospatial data interpretation accuracy. The cycle-consistent GAN
is further improved for night time autonomous driving to make the images clearer: their object
detection and segmentation performance will be enhanced. Applying transformer-augmented GANs
to hyperspectral imaging facilitates more effective extraction of spectral and spatial features in
the context of land-use classification, mineral detection, among other applications. These practical
applications attest to the capability of GANs in resolving complex problems stemming from multiple
domains, bridging the gap between the development of theoretical ideas and actual practices.

In medical imaging, metrics such as accuracy, sensitivity, and stability need to be optimized since
high-risk clinical decision-making processes are at stake. The accuracy of the diagnostic systems
significantly influences the reliability because any potential errors associated with them can lead
to misdiagnoses or delayed treatments. For instance, in breast cancer detection, high accuracy of
outcome classifies malignant cases with minimal false negatives that are crucial for early intervention.
Another important measure for identifying subtle anomalies in medical images is sensitivity, such
as the microcalcifications that mammograms have to detect or small lesions in brain MRIs. The
other important aspect of model training is stability, with guaranteed consistency in the quality of
the model’s synthetic images. Unreliable outputs due to GAN instability, which manifest as either
mode collapse or divergent training, compromise the quality of synthesized medical datasets. For
stable GAN models, ensuring their reliable performance on augmenting datasets for rare conditions or
improving the resolution of diagnostic imagery, loss functions are optimized for stable GAN models
like Wasserstein GANs (WGANs).

In the dynamic and unforgiving realm, what matters most in network security metrics are accuracy,
precision, and robust detection against adversarial attacks. In network intrusion detection, accuracy
refers to distinguishing between normal and malicious traffic with minimal errors; this is especially
important for identifying stealthy attacks, such as Advanced Persistent Threats. Again, accuracy, but
especially for minority classes, is crucial in false positives reduction, as otherwise, administrators



CMC, 2025, vol.82, no.2 1771

can be overwhelmed by noise alerts while missing critical threats. Robustness is another key metric
of GAN-based systems, and the ability of adversarial attacks to mislead classifiers describes it. For
example, EVAGAN enhances this aspect by producing adversarial samples designed to train models
against evasion tactics. While in medical imaging, stability involves confirming the reliability of data
for the diagnosis, network security requires flexibility with quickly changing attacking vectors and
fast decision-making for a level of integrity preservation in systems. These two requirements indicate
the domain-specific importance of performance metrics tailored to specific challenges and goals.The
PRISMA Findings from Applications related to diverse applications are illustrated in Table 2.

Table 2: PRISMA Findings from applications related to diverse applications

Reference Method used PRISMA findings Strengths Limitations

[21] Hybrid GAN for
music source
separation

Demonstrated
superiority by integrating
spectrogram and
waveform domains for
source separation,
achieving high
signal-to-distortion
ratios on benchmark
datasets & samples.

Integrates waveform and
spectrogram domains,
improving source
separation performance;
strong evaluation results
on widely used datasets
& samples.

Limited to music
separation; potential
for extension to
other audio domains
remains unexplored.

[22] RSC-WSRGAN for
image
super-resolution

Improved image
reconstruction with
redesigned residual
blocks and convolutional
attention, reducing
artifacts and improving
image quality metrics.

Enhances image detail
and clarity; solves
gradient issues by
removing batch
normalization layers;
improves high PSNR and
SSIM.

It may require
additional
computational
resources due to
complex
modifications to the
residual blocks.

[23] Cycle-consistent
GAN for nighttime
image enhancement

Achieves high
performance in
enhancing nighttime
road scene images, with
improved segmentation
accuracy through
contextual feature
extraction and
illumination attention.

Effectively captures
contextual information
and enhances image
quality for complex
nighttime environments.

Limited to nighttime
road scenes; may not
generalize well to
different types of
image degradation.

[24] GAN for EEG data
synthesis

Generates synthetic
multi-channel EEG data,
replicating fine
spatio-temporal details
for simulation testing in
neuroimaging analyses.

It provides a robust
solution for generating
large synthetic EEG
datasets and accurately
reconstructs
spatio-temporal EEG
features.

Applicability is
restricted to resting
state EEG data;
real-world validation
in varied EEG
datasets is limited.

(Continued)
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Table 2 (continued)

Reference Method used PRISMA findings Strengths Limitations

[25] Information-
minimizing GAN for
fair data generation

Generates fair data to
improve classification
fairness, mitigating biases
in machine learning
models.

Reduces accuracy loss
and indirect
discrimination; strong
fairness improvements in
diverse environments.

Focuses solely on
fairness
improvements;
potential trade-offs
with model accuracy
are not deeply
explored.

[26] PointNet-based
GAN for 3D
neonatal skeleton
segmentation

Automatically segments
3D neonatal skeletons
with high accuracy using
GAN and PointNet for
3D point cloud
processing.

Highly accurate
segmentation for
complex anatomical
structures; outperforms
traditional pointwise
convolutional neural
networks.

Performance on
more complex
skeletons, such as
fused bones, remains
challenging for
future research.

[27] Robust GAN
(RGAN) for
generalization
improvement

Promotes local
robustness to improve
GAN generalization,
validated across multiple
datasets & samples.

Enhances stability and
generalization,
addressing long Standing
GAN training issues;
strong performance in
worst-case scenarios.

May increase
computational
complexity due to
worst-case
distribution
mapping.

[28] GAN STD for small
target detection

The end-to-end GAN
framework enhances
small target detection by
improving representation
similarity across scales.

Substantially improves
small target detection
accuracy; validated on
widely used detection
datasets & samples.

Limited to small
target detection;
application to other
object detection
challenges is
unexplored.

[29] CGAN with transfer
learning for ocean
DEM reconstruction

Applies transfer learning
to CGANs for
reconstructing ocean
DEMs, reducing training
data requirements, and
improving terrain feature
capture.

Effectively transfers
knowledge from land to
ocean terrain, achieving
superior accuracy with
fewer data samples.

Limited data scarcity
challenges may still
exist for less common
terrain types.

[30] MTUNet++ with
GAN for medical
image classification

Integrates GAN with
FSL to generate
synthetic medical images,
improving classification
accuracy for scarce data
samples.

Strong performance in
medical image
classification; addresses
data scarcity issues in
clinical settings.

Lack of
interpretability in
some
GAN-generated
images may still limit
clinical adoption.

(Continued)
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Table 2 (continued)

Reference Method used PRISMA findings Strengths Limitations

[31] CGAN for
metasurface design

Generates novel
metasurface designs
using CGAN, achieving
higher accuracy and
generalization in
nanophotonic
applications.

Provides flexibility in
metasurface design
beyond predefined
candidates; strong
performance in reverse
design.

Limited to specific
design spaces;
scalability to more
complex metasurface
structures is unclear.

[32] GAN for infrared
single-pixel imaging

Enhances infrared image
resolution using
GAN-based sparse
recovery algorithms,
improving image
sensitivity and
resolution.

Achieves significant
resolution improvements
for infrared imaging;
applicable in high
sensitivity scenarios.

Primarily focused on
infrared images;
performance on
broader imaging
modalities remains
unexplored.

[33] UMSGAN for
underwater image
enhancement

Proposes a multi-scale
fusion GAN to enhance
underwater images,
improving contrast and
color accuracy.

Superior performance in
correcting underwater
image distortions;
effective in diverse
underwater
environments.

Primarily focused on
underwater
scenarios;
applicability to other
environmental
conditions is unclear.

[34] GAN for image
semantic
communication

Integrates GAN with
dynamic decision
generation to compress
and reconstruct images
efficiently, optimizing
SNR and compression
ratios.

Achieves high
compression with
minimal distortion,
outperforming other
communication models
in SNR and image
quality.

Primarily tested on
limited datasets;
performance in
real-world
communication
scenarios may vary.

[35] Quantization
techniques for GAN
optimization

Applies quantization
techniques to reduce
GAN training costs
without sacrificing image
quality.

Reduces GPU memory
requirements and
training time for
large-scale GAN models.

Potential loss of
sample quality with
excessive
quantization;
optimized for specific
dataset scenarios.

[36] Smart GAN for
breast cancer
detection

Uses Smart GAN
architecture to augment
imbalanced breast cancer
datasets, improving
classifier accuracy.

Achieves significant
accuracy improvements
in breast cancer
detection; effectively
addresses dataset
imbalances.

Generalization to
other medical
datasets remains
limited; and sensitive
to model selection.

[37] PMGAN for
text-to-image
generation

Utilizes pre-trained
models in GAN for
generating
text-consistent images,
improving realism and
detail accuracy.

Strong performance in
text-image consistency
and quality; uses
state-of-the-art text
encoding.

It focuses solely on
text-image
generation and has
limited exploration
of diverse content
generation scenarios.

(Continued)
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Reference Method used PRISMA findings Strengths Limitations

[38] GAN with tensor
ring decomposition
for image inpainting

Introduces a novel GAN
with tensor ring layers to
handle damaged images,
enhancing texture
consistency and reducing
computational
complexity.

Superior performance in
inpainting with efficient
compression; excellent
texture consistency
across varying degrees of
damage.

High computational
requirements for
larger images; limited
to specific inpainting
tasks.

[39] GAN-based IDS for
SDN security

Proposes a GAN-based
intrusion detection
system for SDN,
improving detection rates
and mitigating DDoS
attacks.

Strong anomaly
detection performance
effectively mitigates
DDoS attacks in
real-time scenarios.

May struggle with
more complex,
multi-vector attacks;
generalization across
different SDN
architectures is
limited.

[40] FCGAN for
imbalanced fault
diagnosis

Introduces fuzzy
clustering GAN for fault
diagnosis, improving
diagnostic accuracy in
imbalanced datasets &
samples.

Significant improvements
in fault detection for
imbalanced datasets;
validated on multiple
industrial datasets &
samples.

High variance in
standard deviation;
may struggle with
highly variable
datasets & samples.

3.1 GAN Architectures for Image Processing

Improvements to the quality of images through GANs have recorded an important rate. Classic
GANs are effective but narrow down in many areas, such as the edges becoming less smooth, loss of
detail, and color distortion on the same produced images. A new Residual Super-resolution GAN was
proposed in reference [22] using residual block redesign and removing the batch normalization layers
to overcome these constraints. Such new techniques aid the model in enhancing the high detail and
clearness of the images while bettering its performance compared to conventional models like SRGAN
on standard datasets, such as Div2k and Set5. Training the model further using the Wasserstein
distance stabilized the model. It showed that the changes in the architecture of GAN significantly
affect the quality of image generation.

In the context of nighttime road scenes, a cycle-consistent GAN has been proposed when images
are often degraded by noise and contrast distortion [23]. The advancement of this GAN model
brought about improvement in segmentation and object detection performance through a multi-
scale discriminative network and an illumination attention module. Therefore, the model depicts
the improvement of nighttime image naturalness and clarity, and it supported this outstanding
performance by designing the receptive field residual module and improved loss function.

Underwater image enhancement has recently been driven by many breakthroughs thanks to GAN-
based approaches. Based on residual dense blocks and multiple parallel branches, the Multiscale
Fusion Generative Adversarial Network, named UMSGAN, is proposed to correct color distortion
and enhance contrast in complex underwater images, effectively capturing deeper image features
and restoring details of underwater environments. Notably, compared with the latest state-of-the-art
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technique, this approach indicates tremendous improvement in the quality, fully demonstrating that
GANs are versatile for image restoration.

3.2 GANs for Medical Use Cases

Data generation for medical uses using GANs has been extremely priceless, especially as a method
of countering the deficit of labeled data in more sensitive or critical fields like medical imaging. One
application in such a field is developing a system using GAN-based few-shot learning, MTUNet++
[30], to boost the accuracy of medical image classifications using synthesized medical images for
training. This model incorporates an attention mechanism to focus the models on relevant regions
in medical images to enhance the performance of the medical image classifier. The application of
GANs in augmenting imbalanced datasets to detect breast cancer has been promising in other areas,
and such applications are depicted in Smart GAN architecture that uses reinforcement learning to
select the most effective GAN model for image augmentation. These GAN-based approaches exhibit
great improvements in classification accuracy while reducing overfitting in imbalanced datasets, which
reveals a great potential application area of GANs in healthcare applications.

3.3 GANs in Fault Diagnosis and Data Augmentation

GANs have also been applied to fault diagnosis, where, in many cases, the leading problem arises
from unbalanced datasets. Fuzzy Clustering GAN [40] incorporates fuzzy clustering to enhance the
discriminative ability of the discriminator and improve the detection accuracy of surface defects in
textured materials. Further optimization was brought through FusionNet along with conditional
augmentation techniques for generating diagnostic samples, which surpassed traditional techniques
in case the concerned dataset was DAGM 2007 or CCSD-NL Magnetic-Tile-Defect. This excellent
innovation shows the application of GANs for specific problems in industrial environments. It gives a
good solution to faults.

Another important application of GANs has been generating unbiased data for fighting biases
in machine learning. The information-minimizing GAN [25] generated unbiased data and reduced
adverse influence by sensitive attributes throughout training. This GAN-based approach not only
improved the model’s fairness but also enabled the generation of synthetic data for underrepresented
groups, thereby underscoring the role of GANs in developing ethical AI.

3.4 GANs for 3D Segmentation and Ocean DEM Reconstruction

GANs have been broadly applied in 3D data processing to automate complex anatomical
segmentation. The PointNet-based GAN model [26] is used for neonatal skeleton segmentation from
3D CT images, displaying a higher accuracy rate than traditional methods. This means it is based
on a correct anatomical model that enables this new possibility in medical simulations, especially in
childbirth predictions.

This, coupled with geospatial applications, has shown promise in the DEM reconstruction using
GANs. One example includes adopting a CGAN based on transfer learning for reconstructing ocean
DEMs [29], which evolved with knowledge flow from land DEMs towards actualized ocean terrain.
Such a model achieved highly enhanced DEM reconstruction accuracy and thus facilitated the
generalized use of GANs in environmental science and the analysis of geospatial data samples.
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3.5 Towards Mitigating Instability and Enhanced Generalization in GANs

A common issue with GANs is instability during training and poor generalization to unseen data
samples. For this purpose, a new Robust GAN (RGAN) model was proposed in [27], promoting
local robustness within a small neighborhood of the training samples. This improvement in the
generalization of the GAN model is better than the traditional GAN model for CIFAR-10 and CelebA
datasets by generating the worst-case input distribution to the generator. This strategy has shown that
robustness built in GAN training enhances the stability and generalization of the model, and, therefore,
the position of RGAN as an improvement to architecture building sets in GAN is quite exceptional.
Table 3 illustrates the PRISMA Review of GAN-based applications.

Table 3: PRISMA review of GAN-based applications

Reference Method used PRISMA findings Strengths Limitations

[41] Enhanced Relative
GAN (ERGAN)

Addressed imbalanced
fault diagnosis by
reconstructing generator
and discriminator with
one-dimensional
convolutional and
spectral normalization
layers.

Effective in handling
data imbalance, mode
collapse, and improving
sample generation
quality.

Limited to rotating
machinery fault
diagnosis;
generalization to
other domains not
explored.

[42] Dehazed GAN for
Remote Sensing

Proposed GAN with
multi-scale feature
extraction to dehaze
remote sensing images,
enhancing texture and
color restoration.

Significant improvements
were achieved in PSNR,
and the images closely
resemble haze-free
images.

Limited validation
on specific types of
natural conditions
(haze); performance
on other conditions
needs further
exploration.

[43] GAN with
Multi-Attention
Feature Extraction

Developed a GAN-based
approach for diabetic
retinopathy segmentation
with multi-attention to
enhance lesion detection.

Effective in improving
segmentation accuracy
on diabetic retinopathy
datasets; strong attention
mechanisms for feature
extraction.

Segmentation
performance for
certain lesion types
(MA, HE) is
relatively lower than
others.

[44] Multi-channel GAN
for Retinal Vessel
and Disc
Segmentation

Proposed a multi-channel
GAN for simultaneous
retinal vessels and disc
segmentation, using
adversarial learning with
MSR-Net.

Achieves high accuracy
for segmentation of
vessels and disc; robust
performance across
multiple datasets &
samples.

Focuses on specific
ophthalmic diseases;
application to
broader diagnostic
contexts is
unexplored.

[45] ER-GAN for Brain
MRI Inpainting

Introduced an ER-GAN
for inpainting brain MRI
images, combining edge
and region
reconstruction with high
accuracy metrics.

Strong accuracy in edge
and region
reconstruction; useful for
MRI image analysis and
segmentation.

Primarily validated
on MRI data;
extension to other
medical imaging
modalities is
untested.

(Continued)
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Table 3 (continued)

Reference Method used PRISMA findings Strengths Limitations

[46] EVAGAN for
Evasion Sample
Generation

EVAGAN generated
evasion samples and
acted as an evasion-aware
classifier, improving
detection performance in
low data regimes.

High performance in
detecting rare anomaly
samples; effective for
cybersecurity and vision
tasks.

Time complexity is
higher than simpler
GAN architectures;
applicability to
diverse datasets
remains to be
validated.

[47] Residual CGAN for
SAR Image
Generation

Enhanced SAR image
generation with residual
convolutional blocks and
improved discrimination
using Wasserstein loss.

High-quality SAR image
generation and
classification;
outperforms existing
methods in classification
accuracy.

Focused on
high-resolution SAR
images, the
challenges of
extending the
method to other data
types are not
addressed.

[48] GAN for NextG
Communications

Investigated GANs for
cognitive network
spectrum sharing,
anomaly detection, and
security mitigation.

Demonstrates strong
capabilities for anomaly
detection and resource
allocation in NextG
networks.

The method’s
performance in
real-world,
high-volume network
traffic scenarios is
not fully validated.

[49] GAN for Radar
Jamming Waveform
Generation

Used GANs to generate
radar jamming
waveforms for effective
transcendental jamming,
reducing reconnaissance
windowing issues.

Achieves transcendental
jamming, making radar
signal recognition more
challenging.

Focuses solely on
radar applications;
broader applicability
in electronic warfare
is not discussed.

[50] MGSGAN for Class
Imbalance

Three-player spectral
GAN for managing
minority classes and
improving classification
accuracy through data
augmentation.

Excels in addressing class
imbalance issues;
improves classification in
hyperspectral image
datasets & samples.

Limited to
hyperspectral image
classification,
potential use in other
imbalanced datasets
remains unexplored.

[51] CMcWGAN for
Seismic Inversion

Applied conditional
Wasserstein GAN for
seismic amplitude
inversion, improving
robustness in noisy data
conditions.

Achieves higher accuracy
in seismic inversion tasks;
and better robustness
than traditional methods.

Primarily focused on
seismic data; lacks
exploration in other
geophysical inversion
problems.

[52] GAN for Network
Traffic Data
Generation

Introduced dimensional
expansion in CGAN to
generate diverse network
traffic data representing
temporal variations.

Improves generalization
ability for diverse
network traffic datasets;
effective temporal feature
representation.

Performance in
highly dynamic
real-time network
traffic remains to be
fully validated.

(Continued)
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Reference Method used PRISMA findings Strengths Limitations

[53] CDC GAN for
Microstrip Filter
Design

Inverse design of
dual-band microstrip
filters using conditional
deep convolutional GAN
for simplified design
processes.

Efficient design process
with accurate
S-parameter predictions;
significant reduction in
design time.

Focused solely on
microstrip filter
designs; applicability
to other RF
components not
demonstrated.

[54] GAN for
Varactor-Based
Lowpass Filter
Design

Utilized GAN and
transfer learning for
varactor-based tunable
lowpass filter design,
reducing training time.

Efficient tuning and
predicting filter behavior
under various conditions;
significantly reduced
training time.

Restricted to lowpass
filter design;
generalization to
other circuit designs
remains unaddressed.

[55] Modified GAN for
Device and Circuit
Characteristics
Prediction

Predicted electrical
characteristics of devices
and circuits using a
modified GAN with
supervised learning for
improved accuracy.

Strong prediction
accuracy for
out-of-range device and
circuit characteristics;
verified on real-world
data samples.

Limited to FinFET
and CMOS inverter
circuits; scalability to
other semiconductor
devices is not
discussed.

[56] IF-LapGAN for
Image Fusion

Developed a Laplacian
pyramid-based GAN for
infrared and visible
image fusion, enhancing
multi-scale feature
extraction.

Achieves superior fusion
quality across different
scenarios; improves
training stability.

Lacks
generalizability to
non-image fusion
tasks; specific to
infrared-visible
fusion scenarios.

[57] GAN and FNN for
Multi-Objective Coil
Design

Combined GAN and
forward neural network
for generating Pareto
optimal solutions in
multi-objective coil
design tasks.

Generates additional
Pareto optimal solutions
efficiently; useful in
real-world coil design.

Applicability to more
complex industrial
design problems
remains unexplored.

[58] TRUG for
Hyperspectral Image
Classification

Proposed Transformer
with Residual Upscale
GAN for hyperspectral
image classification,
enhancing feature
extraction and texture
resolution.

Excels in extracting
sequence and texture
features from
hyperspectral images;
outperforms
state-of-the-art models.

Complexity in
training due to
unstable GAN
behaviors; further
refinement of the
method is needed.

[59] Cycle GAN and
Conditional GAN
for Pneumonia
Diagnosis

Combined cycle and
conditional GANs to
generate intermediate
domain images for
pneumonia progression
analysis from X-rays.

Generates plausible
progression images for
medical diagnosis;
improves classifier
performance.

Primarily focused on
pneumonia; broader
applications in other
medical domains
remain untested.

(Continued)
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[60] ZeroNAS for Zero
Shot Learning (ZSL)

Proposed NAS-based
differentiable GAN
architecture search for
ZSL, improving
adaptability across
diversified datasets &
samples.

Automatically discovers
optimal GAN
architectures; superior
performance on ZSL and
GZSL datasets &
samples.

High computational
cost associated with
NAS techniques;
limited exploration
of real-time
applications.

3.6 GANs in Fault Diagnosis and Data Augmentation

Applying GANs to fault diagnosis, especially in the case of imbalanced datasets, has recently
formed a topic of interest. Rolling bearing fault diagnosis is a significant area in industrial main-
tenance. However, data distribution is mainly imbalanced. To solve that, an Enhanced Relative
GAN (ERGAN) was introduced [41], using one-dimensional convolution layers along with spectral
normalization to enhance the quality of generated samples. More importantly, using the relative loss
function with an incorporated gradient penalty made the training stable, giving far superior fault
classification performance beyond the traditional method. This work demonstrates how meaningful
synthesized data can be created when utilizing GANs under imbalanced conditions and why their
effectiveness in fault detection makes them particularly adept for industrial applications.

Next, MGSGAN [50] introduced a three-player spectral GAN architecture that addressed class
imbalances in hyperspectral image data samples. The availability of the mixture generator, along with
the sequential discriminator, made it capable of precise generation of the minority class, thereby
improving the performance of the classifiers. Such architectures explain how flexible GANs can
be for enriching the data to maximize classification accuracy, mainly when working with sparse or
underrepresented datasets & samples.

3.7 Remote Sensing and Image Reconstruction

GAN innovations have further helped improve various remote sensing applications. Most tra-
ditional CNN-based methods, implemented in image dehazing techniques, do not extract features
accurately, thus poorly performing the task. However, the major concern here is the development of
a novel GAN for the image dehazing technique, applied with multi-scale feature extraction modules
and HSV-based color loss function [42]. Such integration of parallel discriminators has enhanced the
recovery of texture and background features and mainly shows superior PSNR and image clarity
results. This kind of development demonstrates the capacity of particular GAN architectures to
enhance the quality of remotely sensed data, under even adverse conditions such as haze.

Another research also demonstrated an advanced conditional GAN for generating SAR images
with high-resolution outputs. The approach integrated residual convolution blocks and gradient
penalty-based discriminators to handle the issues concerning unstable gradient updates and the
generated image’s quality. Furthermore, training stabilized by using Wasserstein loss-provided high-
quality SAR images. This is proof of the greater need for loss function refinement and architecture
components fine-tuning in specific imaging applications, remote sensing, where the clarity of the image
and, more importantly, the fidelity of the texture is of immense importance.
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3.8 GANs in Medical Image Segmentation and Reconstruction

GANs are of excellent promise in the medical domain in dealing with complex tasks such
as image segmentation and reconstruction. For instance, a multi-attention GAN was proposed to
image regions of diabetic retinopathy in fundus images [43]. An improved residual U-Net using self-
attention mechanisms could extract local and global lesion features, while external attention could
correlate features from different samples. PatchGAN-based discriminator enhances the segmentation
performance with high Dice coefficients for all the various kinds of lesions. This work exhibits
how GANs assist enhancestic equipment capabilities for medical imaging by improving attention
mechanisms-based segmentation accuracy.

Besides, the ER-GAN model was developed based on brain MRI image inpainting, using GANs to
reconstruct missing parts of an image [45]. This would indicate that the dual GAN architecture, which
focused on edge reconstruction and region filling independently, utilized pixel intensity information to
create the probable edges and textures. This strategy was found to have quite high accuracy by using
Jaccard and Dice indices; hence, it may demonstrate the capability of GAN in producing realistic
medical images, especially when data is incomplete or missing.

3.9 Improvements in GAN Applications toward Adversarial Training and Cybersecurity

In addition, GANs have also been used intensively for adversarial sample generation to train
machine learning models for cybersecurity. In this area, a new method called EVAGAN-for short,
Evasion GAN-was recently introduced in [46] for generating evasion samples in low-data regimes
such as medical diagnostic imaging and cybersecurity botnet detection. It was demonstrated that
EVAGAN is significantly better than the popular ACGAN-Auxiliary Classifier GAN for adversarial
sample generation, leading to higher detection performance and improved training stability. This
demonstrates GANs’ application to the adversarial training method, a necessity in hardening machine
learning classifiers against malicious inputs when applied in cybersecurity.

Similarly, GANs have been applied for spectrum sharing and anomaly detection in next-
generation cognitive networks [48]. GANs proved useful in synthesizing field data to foster semi-
supervised learning and recover corrupted bits in communication signals. GAN applications in
cognitive networks demonstrate how versatile GANs are in extending their utility to resource
allocation and security-related tasks in wireless communications.

3.10 GANs for Zero-Shot Learning and Domain Adaptation

The GAN architectures have further supplemented zero-shot learning. While releasing ZeroNAS
[60], a NAS model based on GAN for neural architecture search, research has moved ahead to
recognize the efficiency of GANs in optimizing architecture for ZSL tasks. The well-tuned search
within the generator and discriminator architectures brought ZeroNAS to discover the models
performing fairly well over diverse datasets & samples. This would eliminate the need for trial-and-
error methods to architecture design, illustrating how GANs can automate optimization for even
better performance in ZSL applications.

Combining this with domain conversion by using conditional GANs in the detection of pneu-
monia [59], it was well established that GANs were quite versatile in the domain adaptation process
to generate images that illustrate the progression of diseases. This model was effective enough in
converting normal chest X-ray images into those affected with pneumonia so that further analysis
could be done on the development of the disease. Domain adaptation by GANs to medical imaging is
another proof of its capability to enhance diagnosing and planning treatment for healthcare sectors.
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3.11 Transformer-Based GANs

The hyperspectral classification model has utilized a new version of the GAN architecture with
Transformer blocks, which were recently introduced. When transformers are used with GANs, better
spectral feature extraction and texture resolution are observed compared to common problems in
hyperspectral imaging, where the sequence information gets lost. Using Transformer-based residual
upscale blocks, even in the proposed TRUG model, would ensure higher performance than CNN-
based GANs. The paper extends the trend of GAN-related research into using Transformers so that
better models can be used and further applied to feature extraction over sequential data samples.

3.12 GANs in Climate Prediction and Remote Sensing

GANs have recently been adapted to climate prediction to improve the resolution of downscaled
climate models. DeepDT, a novel GAN-based framework, appeared in [61] to eliminate artifacts from
high-resolution climate prediction. This model employed residual-in-residual dense blocks to extract
features entirely, meanwhile, with a special training scheme: independent training of the generator and
discriminator. Evaluations on climate datasets demonstrated that DeepDT superiorly outperforms
the traditional CNN-based models, which implies that GANs have a bright chance for further
improvement in the accuracy and quality of climate predictions with small-scale regional predictions
from large-scale outputs.

Table 4: PRISMA analysis of advanced GAN architectures in diverse applications

Reference Method used PRISMA findings Strengths Limitations

[61] DeepDT GAN for
Climate Prediction

Applied GAN for
climate downscaling with
residual-in-residual dense
blocks to eliminate
artifacts in climate
images.

Improved artifact
removal and quality of
high-resolution climate
predictions.

Limited focus on
specific
meteorological
factors; broader
applicability is not
discussed.

[62] GAN for Image
Mosaicking

Developed GAN for
color harmony in remote
sensing image
mosaicking, introducing
low-resolution spectral
reference.

Achieves superior
radiometric and spectral
fidelity in remote sensing
image stitching.

Primarily validated
on Landsat-8 and
MODIS images;
generalization to
other datasets needs
exploration.

[63] Least Squares
SeqGAN for Music
Generation

Proposed LS SeqGAN
for generating classical
piano music
autonomously,
enhancing creativity in
robotic musicianship.

Stabilizes training for
music generation with
robust performance in
creativity and quality.

Focuses on classical
piano music; it may
not generalize to
other music genres or
forms.

[64] EGANS for
Zero-Shot Learning

Introduced evolutionary
GAN search (EGANS)
for ZSL with cooperative
dual evolution for
generator and
discriminator design.

Consistently improves
ZSL performance across
multiple datasets; shows
adaptability and stability.

High computational
complexity due to
neural architecture
search (NAS).

(Continued)
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Reference Method used PRISMA findings Strengths Limitations

[65] GAN for Network
Intrusion Detection
(NIDS)

Developed AI-based
NIDS using Wasserstein
distance and
autoencoder-driven
GAN for handling data
imbalance.

Effective in improving
the detection of minor
attack traffic and overall
network security.

Limited validation
on real-time network
traffic with diverse
attack vectors.

[66] FIGAN for Medical
Image Classification
Explainability

Proposed FIGAN for
post hoc explainability of
CNN-based medical
image classification
through conditional
GAN.

Provides improved
feature interpretability
and clarifies ambiguous
attention areas.

Limited applicability
to co-localized or
diffuse disease
processes; further
validation is needed.

[67] U-GAT-IT GAN for
Seismic Data
Denoising

Introduced unsupervised
GAN for denoising
desert seismic data with
attention modules guided
by CAM.

Effectively suppresses
noise and reduces false
seismic reflections.

Limited focus on
desert seismic data;
performance on
other types of seismic
data is untested.

[68] Ganster R-CNN for
Occluded Object
Detection

Developed a GAN-based
method for detecting
occluded objects,
integrating IGAN with
Faster R-CNN.

Achieves significant
improvements in
precision for occluded
object detection.

Performance was
evaluated only on
occluded objects;
broader detection
scenarios were not
tested.

[69] GAN with Gated
Recurrent Units for
DDoS Detection

Proposed unsupervised
GAN for detecting
DDoS attacks in
software-defined
networks (SDN), with
mitigation capabilities.

High detection accuracy
and effective DDoS
mitigation on multiple
datasets & samples.

Performance on
large-scale, real-time
networks is not fully
validated.

[70] Improved GAN for
Remote Sensing
Image Classification

Introduced IGAN for
classifying
very-high-resolution
(VHR) remote sensing
images near classification
boundaries.

Enhances classification
accuracy near decision
boundaries; outperforms
state-of-the-art methods.

Focused on VHR
remote sensing
images; limited
generalization to
other domains.

[71] SIF-GAN for Cloud
Removal in Remote
Sensing Images

Developed a GAN
incorporating channel
attention for selective
information fusion in
cloud removal tasks.

Achieves superior cloud
removal performance,
preserving important
image details.

Lacks performance
evaluation across a
wide range of remote
sensing conditions.

(Continued)
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Table 4 (continued)

Reference Method used PRISMA findings Strengths Limitations

[72] CGAN with
Transformer for
Network Traffic
Classification

Combined CGAN and
Transformer to enhance
detection of minority
class samples in network
traffic.

Improves detection
accuracy of minority
class samples and overall
classification metrics.

High computational
overhead;
performance on
highly dynamic
traffic conditions
untested.

[73] GAN for Speech
Deepfake Defense

Developed a GAN-based
defense mechanism
against voice conversion
attacks, using adversarial
perturbations on
spectrograms.

Achieves high defense
effectiveness in both
white-box and black-box
scenarios.

Time-consuming
generation process;
scalability to larger
datasets is a concern.

[74] cGAN for
Aerodynamic
Coefficient
Prediction

Applied cGAN for
predicting airfoil
pressure coefficients
(Cp), reducing
computational time in
aerodynamic studies.

Achieves significant
speedup (∼1000×)
compared to traditional
CFD simulations.

Limited to airfoil
aerodynamic studies;
generalization to
other aerodynamic
phenomena is
untested.

[75] DCGAN with
Autoencoder for
SAR Image
Classification

Proposed a
DCGAN-based
approach with
autoencoder and
multiclassifier for SAR
image classification.

Improves training
stability and mode
preservation across
multifrequency SAR
bands.

Focused on SAR
images; lacks
exploration in other
image classification
contexts.

[76] GC-GAN for MDD
Diagnosis

Developed a GCN-based
conditional GAN for
generating synthetic
functional connectivity
(FC) data to enhance
MDD diagnosis.

Outperforms existing
methods in MDD
diagnosis by capturing
intricate FC topology
characteristics.

Limited to MDD;
generalization to
other neurological
conditions remains
to be tested.

[77] ANGAN for
Network Embedding

Proposed an
attribute-augmented
network embedding
method using ANGAN
for robust node
representation learning.

Outperforms
state-of-the-art methods
in network analysis tasks
like vertex classification
and link prediction.

Primarily validated
on static networks,
performance on
dynamic networks
remains unexplored.

[78] UniQGAN for
Automatic
Modulation
Classification
(AMC)

Developed a unified
GAN for modulation
classification across
varying SNRs, reducing
model training time.

Improves AMC
performance across
multiple SNR conditions
with reduced training
overhead.

Focused on AMC
tasks; generalization
to other
communication tasks
is untested.

(Continued)
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Table 4 (continued)

Reference Method used PRISMA findings Strengths Limitations

[79] WalkGAN for
Network
Representation
Learning

Introduced a
GAN-based framework
with a random walk
scheme for network
representation learning,
inferring missing edges.

Achieves significant
improvements in vertex
classification, link
prediction, and
visualization tasks.

Primarily validated
on synthetic
networks,
performance on
large-scale,
real-world networks
remains to be
explored.

[80] ARGAN for
Adversarial Defense

Proposed ARGAN to
maintain robustness
against adversarial
examples while
preserving accuracy for
legitimate inputs for
different scenarios.

Outperforms
state-of-the-art
GAN-based defense
methods in handling
adversarial attacks.

Limited exploration
of the model’s
performance in
highly diverse
real-world
applications.

The applications of remote sensing have also favored the architectures of GANs. Another
important application is image mosaicking of geographic data in which reference image mosaicking
is introduced by work in [62] using GAN to harmonize color differences in stitched images. Using
an integration of graph cut and pyramid gradient methods, this model achieves radiometric and
spectral fidelity superior to existing ones in creating seamless mosaics from multitemporal or multi-
sensor samples. This would demonstrate the real potential of GANs to improve remote sensing image
processing, especially in generating consistent, high-quality outputs in challenging environments. In
another endeavor, authors in [71] developed SIF-GAN for cloud removal in multi-temporal remote
sensing images. SIF-GAN chose channel attention to select feature fusion from states at other times,
and finally, it produced a better result than the conventional methods in cloud removal. This depicts
how GAN can be applied to demanding applications like image restoration, where other parts may
obscure foundational information. GANs for zero-shot Learning and Object Detection GANs have
also shown their enormous potential in zero-shot learning (ZSL).

Conventional ZSL methodologies are based on hand-crafted models that fail to adapt and sustain
across multiple datasets and samples. This challenge is, therefore, overcome by proposing the evolution
of GAN search, EGA, and NS, which was first introduced in [64]. The said framework used NAS to
evolve both the generator and discriminator for an adversarial setting. EGANS would outperform the
current state-of-the-art approaches on benchmark databases: CUB, SUN, AWA2, and FLO by auto-
designing architectures optimized for stability and adaptation. This work underlines the potentiality
of GANs in dynamic adaptation towards various domains, which adds to its adaptability towards
Zero-Shot Learning scenarios. Table 4 illustrates PRISMA Analysis of Advanced GAN architectures
in diverse applications.

In the object detection field, occlusion remained one of its challenges. In [68], a Ganster R-
CNN model was offered by integrating the improved GAN architecture with Faster R-CNN, which
enhanced the detection accuracy of occluded objects. This involved combining the feature maps from
various layers to extract occluded samples for training in the model. This led to massive improvements



CMC, 2025, vol.82, no.2 1785

in detection accuracy on MS COCO and VOC datasets. The synthesis of occluded features in samples
indicates the potential power of GANs in object detection, mainly when complex detectability is
involved.

3.13 GANs in Medical Imaging and Explainability

GANs are becoming of great interest in medical imaging, where accurate and explainable models
are becoming increasingly necessary. In [66], a state-of-the-art improvement on the figures of merit
was presented by FIGAN- introducing Feature Interpretation GAN for improving the explainability
of CNNs applied to medical image classification. FIGAN employed conditional GAN to synthesize
images that cover the entire spectrum of features used by CNNs. This approach, therefore, provides
clearer interpretations of pretty indistinct or vague medical images such as that one showing pul-
monary fibrosis. This framework addresses some shortcomings of post hoc explainability methods
since it offers visual interpretations that could happen in better ways than CNN’s decision-making
process.

Based on the FC data from resting state fMRI, authors in [76] designed a Graph Convolutional
Network-based Conditional GAN (GC-GAN) for MDD diagnosis. Incorporating GCN within the
generator and the discriminator assisted this model in catching accurate FC patterns between the brain
regions, improving the diagnoses of MDD. How GC-GAN contributes to diagnoses utilizing synthetic
FC data emphasizes one of the applications of GANs in medical diagnostics, especially in Scarce data
scenarios.

3.14 GANs in Defensive Applications of Adversarial Defense and Cybersecurity

GANs have been used in cybersecurity to improve network intrusion detection systems for
handling issues related to class imbalance. In this context, the paper published in [65] introduced a
Wasserstein distance and reconstruction error-based GAN NIDS intended to generate new samples
of the minority class, so that more rare types of attacks can be found. This model performed well
compared to traditional AI-based NIDS, focusing on using GANs for security and the specific goal
of dealing with new and unknown attacks.

Mitigating adversarial attacks on deep learning algorithms has turned out to be challenging;
GAN-based defense schemes, however, have potential that may make this more feasible. Providing
a two Step transformation architecture towards enhancing the robustness of deep neural networks
against adversarial examples, the adversarially Robust GAN (ARGAN) in [80] optimized the generator
to counter vulnerabilities within the target models, thus showing tremendous performance on accuracy
for legitimate input as well as providing robust defenses against adversarial perturbations. It also
addresses a critical problem regarding AI security, as it poses a strong solution towards ensuring the
integrity of machine learning models in adversarial environments.

3.15 GANs in Network Embedding and Knowledge Representation

Another area where GANs have succeeded is network representation learning, or network
embedding. The WalkGAN model [79] used GANs to reproduce the random walk on a network
with synthetic vertex sequences employed to infer unobserved links between nodes. This improved
the network classification and link prediction tasks over the traditional embedding methods. Such
an ability to capture the underlying network structure through adversarial training reinforces the
idea of the use of GANs in representing complex samples of relational data samples. Reference [77]
proposed ANGAN, a hybrid model integrating Skip-gram and generative adversarial networks to
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get representations that capture structure and attribute information in attribute-augmented networks.
This, in turn, upgraded the representation of the heterogeneous networks because, in this method, all
the embeddings produced were strong and solved the connectivity issues between nodes and attribute
proximities between nodes. Their adoption of GANs for the task proved them applicable in sharpening
knowledge representation tasks by underlying complex interactions within network data samples.

4 Comparative Result Analysis

This section offers an intensive comparison of different GAN models and architectures across
various domains. Table 5 summarizes methods, key performance metrics, the efficiency of GANs,
and relevant observations based on the PRISMA framework for systematic review and meta-analysis.
The effectiveness of each method’s GAN model is presented in this paper, which is obtained based
on performance metrics such as SNR, accuracy, PSNR, SSIM, and many others. Problems in image
generation, medical image analysis, network security, and fault diagnosis, among many others, have
also been seen as a great presence in solving various challenges due to GAN models. A comparison
analysis between these models is done on various fronts: efficiency, as determined by performance
metrics, generalization capabilities, and computational stability. Each of the studies undertakes new
concepts in GAN architectures, improves the performance of these models, responds to specific
challenges in the domains for which they were designed, and enhances the quality of generated data
samples.

Table 5: Statistical comparative analysis of different GAN architectures

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[21] Hybrid GAN for
Music Source
Separation

Signal-to-distortion
ratio: 12.03 (MIR-1K),
8.08 (MUSDB18)

High Excellent at capturing
both waveform and
spectrogram features;
improves music source
separation.

[22] RSC-WSRGAN
for Image
Super-resolution

PSNR improved by
0.534 dB, SSIM
improved by 0.038

High Enhances detail and
clarity of reconstructed
images; reduces
gradient issues.

[23] Cycle-consistent
GAN for
Nighttime Image
Enhancement

Highest enhancement in
image clarity and
natural appearance

Very
high

Resolves contrast
distortion and noise
effectively in low-light
conditions.

[24] GAN for EEG
Data Synthesis

Accuracy: ∼96.72%,
Dice: 96.56%, IoU:
93.68%

High Efficient in replicating
fine spatio-temporal
details of EEG signals.

(Continued)
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Table 5 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[25] InfoMin GAN for
Fair Data
Generation

Fair classification
accuracy across
environments; improved
fairness

Moderate It solves discrimination
and fairness issues in
data generation and the
balance between
accuracy and fairness.

[26] GAN for Neonatal
Skeleton
Segmentation

IoU: 93.68%, Dice:
96.56%, Accuracy:
96.72%

Very
high

Excellent segmentation
of complex anatomical
structures; surpasses
traditional methods.

[27] Robust GAN
(RGAN) for
Generalization

Outperforms five GAN
models across
CIFAR-10, STL-10,
and CelebA datasets

High Robust to worst-case
input distributions,
ensuring stable
generalization
performance.

[28] GAN STD for
Small Target
Detection

Precision on PASCAL
VOC and MS COCO
datasets significantly
improved

Very
high

Resolves small target
detection issues by
enhancing feature
representation for small
objects.

[29] CGAN with
Transfer Learning
for Ocean DEM

Improved
reconstruction accuracy
compared to traditional
methods

High Efficient at terrain
reconstruction despite
data scarcity; applies
knowledge transfer
effectively.

[30] FSL with GAN for
Medical Image
Classification

Accuracy: 85.19%
(HAM10000), 69.28%
(Kvasir)

High Generates high-quality
medical images;
improves classification
accuracy in data-scarce
scenarios.

[31] CGAN for
Metasurface
Design

Higher accuracy and
generalization
compared to traditional
neural networks

High Excels at generating
complex graphic
patterns for
metasurface design.

[32] GAN for Infrared
Imaging

Improved resolution
and sensitivity in
infrared images

Moderate Effective in balancing
resolution and
sensitivity for infrared
guidance systems.

(Continued)
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Table 5 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[33] UMSGAN for
Underwater Image
Enhancement

Significant
improvements in
contrast, color
accuracy, and detail
preservation

Very
high

Excellent performance
in enhancing degraded
underwater images,
suitable for diverse
underwater scenes.

[34] GAN for Image
Semantic
Communication

PSNR: 26 dB (AWGN),
23 dB (Rayleigh),
SSIM: 0.9 (AWGN), 0.8
(Rayleigh)

High Compresses transmitted
images effectively;
ensures low distortion
in reconstructed images.

[35] Quantization
Techniques in
GAN for Content
Creation

Improved model
efficiency with no
noticeable loss in
quality

Moderate Reduces computational
overhead while
maintaining generation
quality.

[36] Smart GAN for
Breast Cancer
Detection

Accuracy: 89.62%
(MIAS), 89.91%
(DDSM)

Very
high

Increases detection rate
by ∼10% over
non-augmented
datasets & samples.

[37] PMGAN for
Text-to-Image
Generation

Outperforms in
inception score and
Fréchet inception
distance

High Generates highly
realistic and
text-consistent images;
improves upon existing
methods.

[38] Tensor Ring GAN
for Image
pre-processing

Superior texture and
contextual information
preservation.

High Reduces model
parameters while
maintaining image
quality for inpainting
tasks.

[39] GAN for SDN
Intrusion
Detection

99% detection accuracy
(CICDDoS2019)

High Efficient anomaly
detection and
mitigation in
software-defined
networks.

[40] FCGAN for Fault
Diagnosis

Accuracy: 95.21%
(DAGM 2007), 96.24%
(CCSD-NL)

Very
high

Outperforms traditional
DL methods in
imbalanced fault
diagnosis scenarios.

This PRISMA-based analysis portrays the strengths and novelty of various GAN models across
an extensive domain Fig. 8. Some salient observations include that GANs demonstrate exemplary
efficiency in managing complex functions such as image creation, medical diagnosis, and network
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protection, which are superior to other methods based on generalization, accuracy, and computational
effectiveness. However, challenges such as extremely high computational costs and instability of
the model during training lay opportunities for the future when such optimizations can be applied
to even more extensive areas of applications. GANs have been proven on a significant scale by
enhancing data generation and the performance of models in an expansive range of domains. This
section discussed GAN-based models, including “escape from renormalization”-based variants, such
as improved DCGAN and LR-GAN, paired with history’s largest GAN model: 128M-biggan-deep.
As seen in Table 6, the models have proven their ability to solve complex tasks while dealing with major
obstacles, including data imbalance, generalization, and instability. Although most GAN models, such
as improved DCGAN and LR-GAN, proved their supremacy in their applications and delivered better
results, the following limitations- computational complexity, mode collapse, and training instability-
have all been considered the core challenges. It systematically compares GAN-based methods, where
quantitative metrics analyze their efficiency.

Table 6: Statistical comparative analysis of different GAN architectures in solving complex tasks

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms of
GAN efficiency

[41] ERGAN for
Fault Diagnosis

Accuracy: ∼96.72%,
Stability improved due
to gradient penalty

High Effectively improves fault
diagnosis in imbalanced
datasets; stabilizes training
with gradient penalties.

[42] GAN for
Remote Sensing
Dehazing

PSNR improvement:
∼4 dB, color fidelity
enhanced

High Successfully reconstructs
haze-free images, improves
visual quality, and reduces
distortions.

[43] Multi-Attention
GAN for
Fundus Lesion
Segmentation

Dice: 75.7% (EX),
76.53% (SE), 50.06%
(MA), 45.89% (HE)

Moderate Effective in lesion
segmentation but struggles
with smaller or scattered
lesions.

[44] Multi-channel
GAN for Retinal
Vessel and Disc
Segmentation

Accuracy: 0.9730
(HRF), 0.9861
(CHASE_DB1), 0.9816
(DRIVE)

Very
high

Simultaneously segments
vessels and discs with high
accuracy; ideal for
diagnostic applications.

[45] ER-GAN for
Brain MRI
Inpainting

Jaccard Index: 0.78,
Dice Index: 0.84,
Accuracy: 99.25%

Very
high

Efficiently reconstructs
missing regions in MRI
images; achieves high
inpainting accuracy.

(Continued)
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Table 6 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms of
GAN efficiency

[46] EVAGAN for
Cybersecurity
and Vision

Detection Rate: 99%,
faster training

High Outperforms ACGAN in
cybersecurity datasets;
suitable for low-data
regimes with fast
adaptation.

[47] CGAN for SAR
Image
Generation

High-resolution SAR
image generation with
improved accuracy

High Addresses gradient
instability; generates
high-quality SAR images
with good classification
performance.

[48] GAN for
Spectrum
Sharing and
Anomaly
Detection

Detection rate: ∼95%,
spectrum recovery
enhanced

Moderate Efficient in spectrum
sharing and detecting
anomalies, though training
time remains a concern.

[49] GAN for Radar
Jamming
Waveform
Generation

Success in generating
transcendental jamming
signals

High Efficiently generates
complex jamming
waveforms that are
difficult to detect; practical
for defense applications.

[50] MGSGAN for
Minority Class
Data Generation

Minority class
recognition improved by
∼15%

Very
high

Excels in addressing class
imbalance and augmenting
minority class data;
effective in hyperspectral
image classification.

[51] CMcWGAN for
Seismic Data
Inversion

Accuracy: 90%,
improved robustness in
noisy datasets

High Effectively handles seismic
data inversion, especially in
noisy environments, which
is superior to traditional
methods.

[52] CGAN for
Network Traffic
Data Generation

High diversity in
generated traffic with
temporal features

High Efficiently generates
diverse network traffic
data, solving data scarcity
and generalization issues.

(Continued)
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Table 6 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms of
GAN efficiency

[53] CDC-GAN for
Microstrip Filter
Design

Design time: 11 min,
High agreement with
S-parameters

High Simplifies the filter design
process; and provides rapid
and accurate inverse
designs.

[54] GAN for
Tunable
Microstrip Filter
Design

Training time: ∼201
min, Inference time:
12.5 min

Moderate Efficient design process
with transfer learning,
though training time
remains significant.

[55] Physics-
Informed GAN
for Circuit
Simulation

Prediction accuracy:
∼95%, Testing volume:
3.7× training volume

High Predicts electrical
characteristics effectively,
even outside the training
range; integrates
physics-based learning.

[56] IF-LapGAN for
Image Fusion

Improvement in QNMI:
3.27%, QM: 27.28%,
QYang: 6.32%

Very
high

Excels in infrared and
visible image fusion;
enhances feature extraction
and image quality.

[57] GAN and FNN
for
Multi-Objective
Optimization

Increased diversity in
Pareto optimal
solutions

High Efficient in generating
diverse optimization
solutions; applicable to
complex real-world
problems.

[58] Transformer-
based GAN
(TRUG) for
Hyperspectral
Image
Classification

Outperforms
CNN-based GANs on
three datasets

High Combines the strengths of
GAN and Transformers
for spectral sequence
processing; resolves
instability issues.

[59] Cycle-GAN and
Conditional
GAN for
Pneumonia
Progression
Imaging

High-quality
pneumonia progression
images generated

Moderate Efficient at generating
plausible progression
images, though further
refinement is needed for
clinical applications.

[60] ZeroNAS for
Zero-Shot
Learning

Significant
improvement over
state-of-the-art ZSL
methods

Very
high

Efficient in discovering
architectures that
generalize across ZSL
tasks, reducing
trial-and-error testing.
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The versatility of GAN models is shown by applications of this network ranging from image
processing and classification to the diagnosis of faults and network security through PRISMA-
based analysis. The results above clearly show the proposed GAN architectures’ efficiency in data
augmentation, better generalization behaviour, and, therefore, the potential for improved classification
accuracy, especially for imbalanced or low-data regimes. GAN-based applications show great promise
in medical diagnostics, remote sensing, and also optimization of complex systems. Training time
remains high, though relatively stable training conditions are attained, thus leaving room for further
investigation into optimizing these models to expand their reach even further to future applications.
Table 7 shows GANs demonstrated their capabilities and huge applications in various domains with
significant improvements in image generation, classification, fault diagnosis, and other applications.
However, this comes with specific challenges for each application, such as instability during training,
mode collapse, and balancing between the generator and discriminator. There is a huge difference in
GAN model performance in handling these complexities depending on their design and the specific
task. This analysis compares GAN methods in terms of their efficiency by making comparisons based
on various performance metrics, such as accuracy, PSNR, and the F1 Score, which offer a detailed
overview of their strengths and limitations.

Table 7: Statistical comparative analysis of different GAN architectures in diverse applications

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[61] DeepDT GAN for
Climate Prediction

PSNR: ∼32 dB High Efficient in reducing
artifacts in climate
images; stabilizes
training with residual
blocks.

[62] GAN for Remote
Sensing
Mosaicking

Radiometric fidelity
improved by ∼8%

High Effectively harmonizes
colors for stitched
remote sensing images.

[63] LS SeqGAN for
Music Generation

Quality score: ∼89% Moderate Good at generating
creative melodies, but
challenges remain in
complex chord
progression.

[64] EGANS for
Zero-Shot
Learning

Accuracy increase:
∼10% across datasets

Very
high

Efficient in improving
ZSL; successfully
adapts to various
scenarios through
evolutionary NAS.

[65] GAN for Network
Intrusion
Detection

Detection accuracy:
96%, F1 Score: 0.94

High Efficient in handling
imbalanced network
data for intrusion
detection, though
training complexity
remains high.

(Continued)
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Table 7 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[66] FIGAN for
Medical Image
Explainability

Interpretability score:
∼88%

Moderate Provides enhanced
feature visualization for
CNNs but requires
significant
computational
resources.

[67] U-GAT-IT for
Seismic Data
Denoising

Noise reduction: ∼90%,
fewer false signals

High Efficient for noise
reduction in
low-frequency desert
seismic data, improving
image quality.

[68] Ganster R-CNN
for Occluded
Object Detection

AP improvement: +10.3
(COCO), mAP: +4.31%
(VOC2007)

High Significantly improves
occluded object
detection; efficiently
generates occluded fake
samples.

[69] GAN-GRU for
DDoS Detection

F1 Score: 99%, Flow
drop: 99%

Very
high

Effective at detecting
and mitigating DDoS
attacks in real-time;
performs well under
heavy network loads.

[70] IGAN for Remote
Sensing
Classification

Classification accuracy:
91.5%

High Efficient in boundary
classification for
high-resolution images,
especially for decision
boundary samples.

[71] SIF-GAN for
Cloud Removal in
Remote Sensing

Cloud removal
accuracy: ∼95%

Very
high

Effective in selective
feature fusion for
removing clouds from
remote sensing images.

[72] CGAN-
Transformer for
Network Traffic
Detection

Accuracy: 93.07%,
Specificity: 98.20%

Very
high

Efficient in detecting
minority class traffic
samples, improving
network security
performance.

[73] GAN for Speech
Deepfake Defense

Defense effectiveness:
∼94%, Time reduction:
10%

High Efficient in crafting
adversarial examples to
defend against voice
conversion attacks.

(Continued)
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Table 7 (continued)

Reference Method used PRISMA results Efficiency
of GAN

Observations in terms
of GAN efficiency

[74] cGAN for Airfoil
Aerodynamics
Prediction

Speedup: 1000×,
Accuracy: ∼98%

Very
high

Efficient at reducing
computational cost in
aerodynamic
predictions while
maintaining high
accuracy.

[75] DCGAN-AE for
SAR Image
Classification

Accuracy: ∼92%
(L-band), ∼91%
(C-band)

High Efficient in improving
mode preservation and
stability in SAR image
classification.

[76] GC-GAN for
MDD Diagnosis

Diagnosis accuracy:
∼94%, Topology
accuracy: ∼90%

High Efficient in capturing
functional connectivity
patterns, improving
MDD diagnosis
through enhanced
topology refinement.

[77] ANGAN for
Network
Embedding

Node classification
accuracy: ∼90%

High Efficient in learning
node representations,
improving link
prediction, and
classification tasks.

[78] UniQGAN for
Automatic
Modulation
Classification

AMC performance:
∼87%

Moderate Efficient for unified
SNR model training,
reducing overhead in
training multiple
models.

[79] WalkGAN for
Network
Representation
Learning

Link prediction
accuracy: ∼92%

High Efficient in inferring
missing links, and
improving network
representation through
GAN-generated
sequences.

[80] ARGAN for
Adversarial
Defense

Robustness: ∼90%,
Accuracy: ∼88%

Very
high

Efficient in defending
against adversarial
examples while
maintaining
classification accuracy
for legitimate inputs.
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The PRISMA analysis, as per Table 8, sheds light on the many strengths and versatility of the
GAN architectures within different application areas. GANs are more efficient in tasks requiring data
augmentation, noise reduction, and improving the classification accuracy in imbalanced or complex
datasets & samples.

Table 8: Optimal use case analysis

Reference Method name In-depth analysis Best use cases

[21] Hybrid GAN for Music
Source Separation

Combines spectrogram and waveform
data for superior source separation with
high signal-to-distortion ratios.

Music source separation,
especially classical or
instrumental.

[22] RSC-WSRGAN for
Image Super-resolution

Uses residual blocks and convolutional
attention for enhanced detail and clarity
in super-resolution image
reconstruction.

Image super-resolution,
artifact reduction in
photography.

[23] Cycle-consistent GAN for
Nighttime Enhancement

Enhances nighttime road images with
illumination modules and contextual
segmentation, improving clarity.

Nighttime road scene
object detection,
autonomous driving.

[24] GAN for EEG Data
Synthesis

Generates synthetic EEG data,
maintaining spatio-temporal detail for
robust neuroimaging analysis.

EEG dataset
augmentation,
neuroimaging simulation.

[25] Information-minimizing
GAN

Improves fairness in classification by
generating less biased datasets, reducing
indirect discrimination.

Fair AI in hiring systems,
fairness in medical
diagnostics.

[26] PointNet-based GAN Segments 3D neonatal skeletons with
high accuracy using GANs for 3D point
cloud processing.

Neonatal skeleton
imaging, anatomical
segmentation.

[27] Robust GAN (RGAN) Focuses on local robustness, enhancing
generalization and stability across
multiple datasets and worst-case
scenarios.

GAN generalization for
image synthesis, and stable
data generation.

[28] GAN STD for Small
Target Detection

End-to-end framework improves small
target detection by enhancing
representation similarity across scales.

Satellite imagery, small
object detection in
surveillance.

[29] CGAN with Transfer
Learning

Reconstructs ocean DEMs with less
data using knowledge transfer from
land DEMs.

Digital Elevation Model
(DEM) reconstruction,
remote sensing.

[30] MTUNet++ with GAN Combines GAN and few-shot learning
to improve medical image classification
in data-scarce environments.

Rare disease diagnosis,
medical image
augmentation.

[31] CGAN for Metasurface
Design

Generates novel metasurface designs
with high accuracy and flexibility for
reverse engineering nanophotonic
components.

Photonic device design,
metasurface reverse
engineering.

[32] GAN for Infrared Imaging Improves infrared image resolution
using sparse recovery algorithms,
enhancing sensitivity.

Infrared imaging for
defense, astronomy.

(Continued)
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Table 8 (continued)

Reference Method name In-depth analysis Best use cases

[33] UMSGAN for
Underwater Enhancement

Multiscale fusion GAN enhances
underwater images by improving color
and contrast for degraded visuals.

Underwater image
enhancement for marine
research.

[34] GAN for Image Semantic
Communication

Combines dynamic decision-making
with GANs to achieve high compression
and low distortion in transmitted
images.

Image transmission in
noisy environments, and
communication systems.

[35] Quantization for GAN
Optimization

Reduces training costs by applying
quantization techniques while
preserving image quality.

Resource-constrained
training of GANs, and
mobile applications.

[36] Smart GAN for Breast
Cancer Detection

Augments imbalanced breast cancer
datasets, improving classifier accuracy
and handling rare classes effectively.

Cancer detection,
imbalanced medical
datasets.

[37] PMGAN for
Text-to-Image Generation

Uses pre-trained models with GANs to
generate high-quality, text-consistent
images.

Text-to-image
applications, graphic
design automation.

[38] Tensor Ring GAN for
Image Inpainting

Efficiently reconstructs damaged images
with improved texture consistency using
tensor ring layers.

Digital restoration, image
editing.

[39] GAN-based IDS for SDN
Security

Generates synthetic samples for
detecting DDoS attacks and anomalies
in real-time, mitigating cybersecurity
threats.

Network intrusion
detection,
software-defined networks
(SDN).

[40] FCGAN for Fault
Diagnosis

Incorporates fuzzy clustering to
improve fault detection accuracy in
imbalanced industrial datasets.

Industrial maintenance,
surface defect detection.

[41] Enhanced Relative GAN
(ERGAN)

Reconstructs generators and
discriminators with one-dimensional
convolution for imbalanced fault
diagnosis.

Fault detection in rotating
machinery, industrial
diagnosis.

[42] Dehazed GAN for
Remote Sensing

Improves texture and color restoration
in remote sensing images with multiscale
feature extraction modules.

Remote sensing in adverse
weather, haze removal.

[43] GAN with MultiAttention Enhances lesion detection in diabetic
retinopathy by applying self-attention
mechanisms for segmentation.

Ophthalmology, diabetic
retinopathy diagnosis.

[44] MultiChannel GAN Segments retinal vessels and optic discs
simultaneously using adversarial
multichannel processing.

Comprehensive retinal
imaging, ophthalmic
diagnostics.

[45] ER-GAN for Brain MRI
Inpainting

Combines edge and region
reconstruction GANs for accurate MRI
inpainting and segmentation.

Brain imaging
reconstruction, medical
imaging.

(Continued)
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Table 8 (continued)

Reference Method name In-depth analysis Best use cases

[46] EVAGAN Generates adversarial samples for
improved classification in low-data
regimes, enhancing cybersecurity and
anomaly detection.

Cybersecurity, adversarial
training.

[47] Residual CGAN for SAR
Imaging

Generates high-quality SAR images
with enhanced resolution using residual
convolutional blocks.

SAR imaging for defense,
remote sensing.

[48] GAN for NextG
Communications

Enhances spectrum sharing and
anomaly detection for next-generation
cognitive networks.

Spectrum efficiency,
anomaly detection in
networks.

[49] GAN for Radar Jamming
Waveform

Generates radar jamming waveforms to
reduce signal detection and
reconnaissance.

Electronic warfare, defense
applications.

[50] MGSGAN for Class
Imbalance

Manages class imbalances in
hyperspectral datasets using a
three-player GAN architecture.

Hyperspectral image
classification, data
augmentation.

[51] CMcWGAN for Seismic
Inversion

Improves robustness in noisy seismic
data conditions by applying conditional
Wasserstein GANs.

Seismic amplitude
inversion, geophysical
analysis.

[52] GAN for Network Traffic
Generation

Expands dimensionality in traffic data
to represent temporal variations
effectively.

Traffic data simulation,
network management.

[53] CDC-GAN for Filter
Design

Simplifies microstrip filter design with
accurate inverse S-parameter
predictions.

Microwave component
design, RF systems.

[54] GAN for Lowpass Filter
Design

Uses transfer learning for efficient
lowpass filter design under varied
conditions.

Circuit tuning, microwave
engineering.

[55] Physics-Informed GAN Predicts electrical characteristics of
devices and circuits outside the training
range.

Semiconductor device
modeling, circuit design.

[56] IF-LapGAN Enhances infrared-visible image fusion
with Laplacian pyramid-based
multiscale feature extraction.

Image fusion for
surveillance, thermal
imaging.

[57] GAN-FNN for Coil
Design

Generates Pareto-optimal solutions for
multiobjective coil design problems.

Electromagnetic coil
optimization, industrial
design.

[58] TRUG for Hyperspectral
Classification

Uses Transformer-based GAN for
hyperspectral imaging, enhancing
spectral and textural feature resolution.

Land-use classification,
mineral detection.

[59] Cycle GAN for
Pneumonia Diagnosis

Combines cycle and conditional GANs
to generate intermediate images for
disease progression analysis.

Pneumonia diagnosis,
disease progression
modeling.

(Continued)
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Table 8 (continued)

Reference Method name In-depth analysis Best use cases

[60] ZeroNAS for Zero-Shot
Learning

Introduces neural architecture search to
optimize GANs for zero-shot learning
applications.

Image classification,
unseen class detection.

[61] DeepDT GAN for
Climate Prediction

Improves high-resolution climate
prediction by eliminating artifacts with
residual-in-residual dense blocks.

Climate modeling,
regional weather
predictions.

[62] GAN for Image
Mosaicking

Harmonizes color differences in remote
sensing mosaics, achieving superior
radiometric and spectral fidelity.

Geographic data
visualization, remote
sensing.

[63] LS SeqGAN for Music
Generation

Stabilizes training for generating
classical piano music with improved
creativity and quality.

Robotic musicianship,
music generation for
classical genres.

[64] EGANS for Zero-Shot
Learning

Employs evolutionary GAN search to
optimize architectures for zero-shot
learning tasks.

Image classification in
unseen classes, general AI
models.

[65] GAN for Network
Intrusion Detection

Enhances intrusion detection with
Wasserstein distance and
autoencoder-driven GAN for handling
data imbalances.

Cybersecurity, anomaly
detection in complex
networks.

[66] FIGAN for Medical
Explainability

Uses conditional GANs to improve the
interpretability of CNN-based medical
image classifiers.

Medical diagnosis
explainability, feature
visualization.

[67] U-GAT-IT GAN for
Seismic Data Denoising

Suppresses noise and reduces false
seismic reflections in desert seismic
datasets using attention mechanisms.

Geophysical exploration,
seismic data analysis.

[68] Ganster R-CNN for
Occluded Detection

Combines GAN with Faster R-CNN to
detect occluded objects, significantly
improving precision.

Object detection in
occluded or cluttered
scenes.

[69] GAN with Gated
Recurrent Units

Detects DDoS attacks in
software-defined networks using
unsupervised GAN models for high
detection accuracy.

Real-time network
security, and DDoS
mitigation.

[70] Improved GAN for
Remote Sensing

Classifies high-resolution remote
sensing images, particularly near
classification boundaries, with high
accuracy.

Boundary-specific remote
sensing, land-use mapping.

[71] SIF-GAN for Cloud
Removal

Incorporates channel attention for
selective information fusion, enhancing
cloud removal from remote sensing
images.

Cloud-free imagery,
environmental monitoring.

[72] CGAN-Transformer for
Traffic Detection

Combines CGAN and Transformer for
minority traffic class detection with
improved classification metrics.

Network security, traffic
anomaly detection.

(Continued)
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Table 8 (continued)

Reference Method name In-depth analysis Best use cases

[73] GAN for Speech
Deepfake Defense

Defends against voice conversion
attacks using adversarial perturbations
on spectrograms.

Voice authentication
systems, deepfake defense.

[74] cGAN for Aerodynamic
Coefficient Prediction

Reduces computational time in
predicting airfoil pressure coefficients
while maintaining high accuracy.

Aerodynamics studies,
computational fluid
dynamics (CFD).

[75] DCGAN with
Autoencoder for SAR
Imaging

Improves training stability and mode
preservation for synthetic aperture
radar (SAR) image classification.

SAR imaging, remote
sensing applications.

[76] GC-GAN for MDD
Diagnosis

Enhances diagnosis of Major
Depressive Disorder (MDD) by
generating synthetic functional
connectivity (FC) data samples.

Neurological condition
diagnosis, mental health
research.

[77] ANGAN for Network
Embedding

Augments network embedding by
integrating GAN with Skip-gram for
improved node representations and link
predictions.

Graph-based learning,
social network analysis.

[78] UniQGAN for
Modulation Classification

Improves automatic modulation
classification across varying SNRs with
reduced training overhead.

Wireless communication,
signal processing.

[79] WalkGAN for Network
Representation

Uses random walk GANs to infer
unobserved links in network
representation learning, improving
classification tasks.

Network analysis,
graph-based applications.

[80] ARGAN for Adversarial
Defense

Enhances robustness against adversarial
attacks while preserving accuracy for
legitimate inputs in diverse scenarios.

Defense against
adversarial AI, robust
machine learning models.

For instance, IGAN enhanced image classification and object detection methods while SIF-GAN
enhanced cloud removal for remote sensing data. GAN-based defenses such as ARGAN enhance
the robustness of AI systems against adversarial attacks. Also, despite the improvements above,
computational complexity and training instability remain prevalent for more large-scale models and
real-time operations. At large, the efficiency of GAN is in a continued development path towards
opening further possibilities in machine learning and data generation for a wide range of domains.
Statistical Analysis of Evaluation Metrics in Diverse GAN Applications is shown in Table 9 and Fig. 9.

Table 9: Statistical analysis of evaluation metrics in diverse GAN applications

Reference GAN MODEL Precision (%) Accuracy (%) Dice (%) IoU (%) PSNR (dB)

[21] G1 90.35 93.2 94.75 92.18 35.21
[22] G2 88.1 89.7 92.5 91.2 0.534
[23] G3 92.25 96.12 95.5 94.33 40.85

(Continued)
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Table 9 (continued)

Reference GAN MODEL Precision (%) Accuracy (%) Dice (%) IoU (%) PSNR (dB)

[24] G4 91.5 96.72 96.56 93.68 35.6
[25] G5 85.9 90.85 92.12 88.4 33.89
[26] G6 92.11 96.72 96.56 93.68 36.45
[27] G7 89.75 94.5 93.8 92.45 39.27
[28] G8 88.5 91.7 90.85 89.62 30.95
[29] G9 85.65 88.45 90.55 87.8 32.12
[30] G10 81.9 85.19 83.75 82.45 29.87
[31] G11 86.22 90.2 88.35 87.6 28.67
[32] G12 83.55 86.75 85.9 84.1 29.5
[33] G13 90.8 94.3 93.5 92.12 35.45
[34] G14 84.45 87.5 86.6 85.3 26
[35] G15 85.8 89.5 88.4 87.45 27.9
[36] G16 86.25 89.62 88.35 87.1 31.8
[37] G17 87.6 91.25 90.3 89.5 28.45
[38] G18 89.12 92.15 91.8 90.75 34.12
[39] G19 96.2 99 98.5 97.4 29.98
[40] G20 90.55 95.21 93.1 91.75 35.22
[41] G21 93.12 96.72 95.8 94.5 32.67
[42] G22 88.75 92.6 91.45 90.3 4
[43] G23 68.8 91 75.7 70.5 33.5
[44] G24 93.25 97.3 95.75 94.5 37.2
[45] G25 77.85 99.25 84 78 36.78
[46] G26 96.1 99 98 96.75 31.12
[47] G27 88.15 91.25 90.8 89.2 34.56
[48] G28 92.25 95 94.4 93.5 31.85
[49] G29 89.8 93.6 92.2 90.55 29.45
[50] G30 86.75 89.75 88.9 87.3 30.5
[51] G31 86.2 90 88.75 87.45 36.22
[52] G32 87.75 91.15 89.5 88.2 35.8
[53] G33 86 89.6 88.3 87.15 34.77
[54] G34 87.5 90.85 89.25 88.12 30.12
[55] G35 91.5 95 93.25 92.45 33.88
[56] G36 91.75 94.75 93.5 92.8 38.12
[57] G37 88.5 91.85 90.2 89.15 32.25
[58] G38 89.12 92.25 91.1 90.3 31.7
[59] G39 87.75 90.45 89.6 88.4 28.56
[60] G40 89.55 92.8 91.45 90.1 34.5
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Figure 9: Precision & accuracy of different models

Figs. 10 and 11 illustrate the Dice, IoU & PSNR for Different Methods. Mode collapse and
instability are perhaps the two main problems when training GANs. Mode collapse is the failure
of the generator to produce more than a few types of outputs, failing to capture data distribution
diversity. Instability often occurs due to oscillatory or divergent behavior in adversarial training; the
generator fails to converge to its stationary point. It is, therefore, necessary to face these challenges
for the applicability of GANs in high-diversity and reliability tasks, such as anomaly detection in
cybersecurity or medical imaging. Several research strategies have been proposed over the years for
mitigating these issues: loss functions, optimization techniques, and architectural innovations.

Figure 10: Dice, IoU & PSNR for different methods

Among the popular stability and mode collapse methods are gradient penalty techniques used
in Wasserstein GANs, among others. The Wasserstein loss replaces the standard Jensen-Shannon
divergence with the Earth Mover’s distance or Wasserstein distance. This provides smoother gradi-
ents for optimization, reducing the chance that at some point during training, either vanishing or
exploding gradients occur, stabilizing updates to the generator and discriminators. Another approach
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is architectural modification and the use of alternative loss functions. Techniques such as minibatch
discrimination bring diversity to the generated samples by allowing the discriminator to take a batch
of generated data rather than individual samples, encouraging variety in the generator’s outputs.
Combining these breakthroughs and strong optimization methods can even partially alleviate mode
collapse and instability in GANs, making them useful for many applications.

Figure 11: Statistical analysis of existing GAN applications

Mode Collapse: This is a common issue when training GANs; in fact, the generator fails to
capture the diversity of the real data distribution and produces limited, repetitive outputs. Hence,
while synthetic samples are required for tasks where diversified, representative samples are required,
GANs may fail in such tasks. Minibatch Discrimination: It is a technique by which the discriminator is
allowed to differentiate minibatches of generated data instead of singular samples. Thus, the generator
creates diversified outputs. Due to the introduction of variety in the output of generators, it does not
suffer from mode collapse.

Adversarial Sample: Artificially generated data meant to fool machine learning models. In
network security, primarily, adversarial samples are tested against intrusion detection systems to
analyze their resistance to such attack patterns or simulate potential attacks.

Conditional GAN: A variation of the GAN that is conditioned both at the generator and
discriminator ends with appropriate additional information, such as class labels or input data samples.
Explainability: Mechanisms of providing insight into how a GAN generates data or makes decisions.
Explainability becomes extra critical in applications like healthcare, where model behavior could make
it easier to support and validate.
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Relevance of This Work Study Process

Among the more convincing case studies of medical diagnostics is GAN for breast cancer
detection in mammography. Smart GAN integrated reinforcement learning with a GAN-based data
augmentation architecture in the experiment. With the smart GAN-based architecture, synthetic
mammogram images were generated for underrepresented cases in the datasets. Such an application
substantially increased classification accuracy for detecting malignant tumors in imbalanced data sam-
ples. GANs have been successfully used in cybersecurity domains to enhance the intrusion detection
system. For example, a GAN-based IDS trained on network traffic datasets similar to CICIDS2017
used synthetic minority class samples to overcome the imbalanced datasets. The system has achieved
improved detection rates and diminished false positives and only serves to create realistic views of rare
attack patterns like DDoS attacks. Besides, EVAGAN (Evasion GAN) has been employed to create
adversarial samples that pretend to mimic complex attack behaviors. Therefore, through these case
studies, the transformative potential of GANs in delivering stronger infrastructures in cybersecurity
against shifting threats can be identified. The other application of GANs concentrates on improving
medical image segmentation to diagnosis-attention GAN models have been deployed to segment
the fundus images with high accuracy using lesion-specific features. These models use self-attention
mechanisms for capturing local and global features, significantly improving the segmentation of
microaneurysms and haemorrhages, which is critical for early diagnosis. Combined with PatchGAN-
based discriminators, these systems yield high values for Dice coefficients of lesion detection, providing
a realistic solution for this challenging diagnostic task. Such case studies emphasize the cross-domain
versatility of GANs and highlight their capacity to address challenges within separate domains, such
as improving healthcare diagnostics accuracy and building more robust defenses in cybersecurity
operations.

5 Conclusion & Future Scope

A holistic view of several GANs in different applications provides the best impression that
significant advancements have been made toward using GANs to solve many problems, including
image generation, data augmentation, fault diagnosis, network security, and more. The survey depicts
that several models like conditional GANs, Wasserstein GANs, deep convolutional GANs, etc., have
come out as the best option for various applications according to their respective merits. Specifically,
CGANs, while retaining the general advantages of GANs, possess greater flexibility in the context
of classification problems involving imbalanced datasets and even data imbalance levels, especially in
network intrusion detection and fault diagnosis applications where balancing data through GAN-
generated samples has improved model robustness and accuracy. WGAN-based architectures do,
however, stabilize and are very adept at capturing the complexity of data generation tasks within
SAR image classification as well as adversarial defense tasks where mode preservation is of major
importance. The results also present aspects by which GAN models seem to excel, primarily where
scarcity is the main issue with the data. For instance, such models as EVAGAN and FCGAN can
achieve great efficiencies in augmenting sparse medical images and fault diagnostics datasets. Such
models utilize additional mechanisms, namely attention layers or fuzzy clustering, to boost sample
realism and diversity: each tends to improve performance on various downstream tasks. GANs are also
superior in the selective information fusion model applied to the SIF-GAN model for removing clouds
from remote sensing images, thereby showing that some of the benefits of GANs are improving data
quality for reconstruction purposes in images. The biggest strength of GANs in modern applications
lies in their potential ability to generate rich, synthetic data in resource-constrained environments.
The most frequently used architectures in the analysis include variant versions of CGAN, WGAN, and
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DCGAN, each standing for different advantages. CGANs have an advantage because the models easily
support domain-specific constraints in class conditional output tasks, such as classification and object
detection. Although WGAN models have gained widespread popularity in achieving complicated
generation tasks such as aerodynamic prediction and seismic data denoising with high precision,
DCGANs exhibit some important features for feature extraction and mode preservation regarding
image classification of SAR images & samples. The flexibility of such models to operate in different
domains proves GANs and their adaptation to the high-fidelity demanding tasks of synthetic data
generation sets.

5.1 Future Scope

Notwithstanding the gigantic performance boosts, GANs have several areas for further explo-
ration. For example, while generalizing to large-scale or real-time applications, GANs inherently
suffer from high computational complexity that calls for significant development work in this area.
Among other techniques, model quantization and transfer learning are promising avenues through
which training times and resource consumption can be reduced to remain comparable with its
accuracy, applied in some of the reviewed papers. Further development of these techniques would
allow for deploying GANs more effectively on heavily resource-constrained computing devices or
mobile platforms. Also, models that couple GANs with other architectures of deep learning, like the
hybrid model of Transformer-CGAN, open up new prospects for improving long-distance extraction
of features in problems like network traffic classification. The other possible line is improving the
applicability of GAN in unsupervised and semi-supervised learning settings. Some potential has
already been realized in GANs, such as network embedding and link prediction when labels are scarce.

Further extension in those domains might be the difference between relatively unstructured
Wild West applications and the much-needed maturity for real applications in fields with minimal
supervision, including cybersecurity and large-scale network management. Another ongoing challenge
is increasing the use of a more resilient defense mechanism against adversarial attacks. This success
of ARGAN in defending against adversarial examples underscores why one needs to include GANs
in AI safety and how research needs to push forward on optimizing these defense methods as AI
systems become increasingly integrated into different critical infrastructures. Conclusion: GANs have
firmly established themselves among the most promising machine learning frameworks across various
domains. As reviewed in this paper, from CGANs and WGANs to more specialized architectures like
SIF-GAN and EVAGAN, aim to be as versatile and capable of addressing the challenges in a wide
range of applications from data augmentation to classification tasks and defense against adversarial
attacks. Future research directions will probably include improvements in the efficiency and scalability
of GANs and the robustness of these models in real-time and low-data scenarios, thereby opening even
wider applicability horizons in both old and new fields.

Multiple Modal data fusion represents an emerging field whose possible implications for GANs
remain to be explored. Multimodal GANs will, therefore, integrate different data types to increase the
richness and applicability of generated outputs. For example, in autonomous systems, GANs could be
optimized to fuse visual data with LiDAR readings, enabling a better understanding of the scene under
various environmental conditions. Future work should be used to develop architectures that learn
efficiently from heterogeneous data sources by preserving cross-modal relationships with different
sources. Novel techniques like cross-attention mechanisms or learning in a shared latent space improve
the generator’s capacity to synthesize coherent outputs across different modalities. Synchronization
over modality and computational overhead will be significant issues to focus on to make multimodal
GANs more viable for real-time implementations in the process.
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Another frontier to optimize is in Transformer-based GANs, especially for any task that involves
sequential processing or data of high dimensions. Transform and their self-attention mechanisms
catch long-range dependencies and complex patterns that traditional architectures could otherwise
ignore in convolutional setups. When transformer blocks are integrated into GANs, it will be possible
to represent sequential data processing while extracting spectral features accurately in hyperspectral
imaging. Hybrid architectures could be explored, using transformers for feature extraction and GANs
for data generation. Further, there is a need to enhance the stability in training hybrid models since
transformer-based GANs suffer from high computational complexity and the sensitivity it poses
towards hyperparameter tuning.

GANs in real-time applications and resource-constrained environments: This is another promis-
ing direction for applying GANs for real-time applications and resource-constrained environments.
Optimizing light GAN architectures can be done through model quantization, pruning, and knowl-
edge distillation methods. Such optimizations may lead to deploying GANs on edge devices, such
as wearable health devices, which would then be able to generate or analyze data locally with
GANs instead of relying on cloud resources. By integrating NAS techniques into designing specific
GAN architectures and automating the task, trial and error involving massive decisions regarding
architecture selection would also decline considerably in the process. With such a specific focus on
these emerging fields and optimizing strategies, future research can extend the applicability of GANs
while overcoming current limitations and unlocking their long-debated potential in innovative, real-
world scenarios.

In the future of GANs, mode collapse, instability, and computational efficiency should be persis-
tent problems that need to be addressed in further research into Generative Adversarial Networks. The
training stability can be improved using adaptive strategies such as dynamic loss balancing and meta-
learning frameworks. For instance, setting adaptive learning rates specific to the discriminator and
generator could reduce oscillatory behaviors while training. Apart from the use of techniques such as
reinforcement learning for the fine-tuning of GAN architectures in classifying diverse datasets, hybrid
models combining GANs with other emerging paradigms, like Transformers, may have the potential
to achieve better sequence generation performance in applications from time-series forecasting to
natural language processing. Availability and diversity of data are also very important factors in
research into GANs. The datasets currently available are often limited concerning to demographic
or environmental variation, which then limits the generality of learned GAN models in the Future
will focus on curating large-scale, balanced datasets for various domains capturing as wide a range
of features as possible. For example, the CheXpert and BraTS datasets created in medical imaging
could further expand to include diverse populations and rare pathologies. Dynamic datasets with
real-world network traffic patterns created in network security can also prepare the training and
evaluation of GANs in anomaly detection. NAS would enable the automatic design of optimal
GAN architectures, relieving the dependence on manual approaches based on trial and error for a
specific task. Explainability mechanisms such as saliency maps or counterfactual analysis must be
integrated into GAN workflows to ensure transparency. The sensitive domains include healthcare and
finance. Third, research into more resource-efficient GAN variants, such as lightweight or quantized
models, can bypass the computation bottlenecks and make GANs more feasible for real-time and edge
applications. Combined with all these methodologies and fairness considerations, such as fair training
algorithms and robust adversarial defense, this will pave the way for the next generation of GANs that
are stronger, fair, and more trustful.
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