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ABSTRACT

Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge
computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources.
This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN
with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead
minimization (SOM) problem by considering the limited computation and communication resources and NOMA
efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep
deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization.
Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading
sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-
channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation
resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is
obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO
scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both
delay and energy consumption.

KEYWORDS
Industrial wireless networks (IWNs); multi-access edge computing (MEC); non-orthogonal multiple access
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1 Introduction

The progression of wireless communication technology facilitates Industry 4.0, leveraging indus-
trial wireless networks (IWNs) to boost the efficiency of conventional industries [1,2]. An increasing
number of industrial end devices (iEDs) require instant processing for latency-sensitive and computa-
tional demanding tasks, driving the demand for advanced computation and communication resources.
In traditional cloud computing, tasks are offloaded to cloud servers to compensate for the scarcity of
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computing resources. However, the quantity of data produced by numerous iEDs, when uploaded
to the cloud server for computing, imposes a considerable strain on the network load. Thus, multi-
access edge computing (MEC) has become a viable solution and is widely adopted in IWNs [3,4]. The
deployment of MEC servers within industrial base stations (iBSs) effectively mitigates device resource
constraints and significantly alleviates excessive pressure on network load [5].

While MEC is an effective solution to the lack of computation resources in iEDs, task offloading
to MEC servers introduces latency and energy concerns. Traditional orthogonal multiple access
(OMA) techniques are constrained by limited orthogonal communication resources, which largely
hampers the number of devices that can be accommodated for industrial mission offloading [6,7].
Besides, non-orthogonal multiple access (NOMA) technology significantly mitigates delay and energy
consumption issues. By enabling simultaneous data transmission among devices within the same
resource block and using successive interference cancellation (SIC) to separate signals, NOMA
surpasses OMA in supporting more devices [8]. Nevertheless, considering the constrained computation
and communication resources, it is challenging to efficiently utilize the resources to reduce task
processing latency and energy consumption in NOMA-assisted MEC systems. Alternatively, most
current research leans heavily on centralized scheduling strategies. In contrast, multi-agent deep
reinforcement learning (MADRL) is a promising distributed approach applied in IWNs for enhanced
decision-making [9].

Existing literature often adopts single OMA or NOMA for MEC systems, where optimization
theory or single-agent deep reinforcement learning (DRL) is employed for resource allocation. In con-
trast, this paper combines OMA and NOMA technology and employs multi-agent DRL (MADRL)
for joint task offloading and resource allocation. Specifically, this paper constructs an IWN model
based on hybrid multiple access schemes with respect to OMA and NOMA, and formulates the system
overhead minimization (SOM) problem. Accordingly, we combine the multi-agent twin delayed deep
deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO for iterative
optimization.

The key achievements in this paper can be summarized as follows:

• We study an end-edge collaborative computing scenario for IWNs with hybrid multiple access
schemes with respect to OMA and NOMA, where iEDs covered by multiple iBSs share the
total system bandwidth resources. Task offloading rate is improved by considering the factors
affecting NOMA efficiency, i.e., sub-channel allocation, intra-edge interference, and inter-edge
interference.

• With full consideration of resources and NOMA efficiency, the SOM problem is formulated
in terms of sub-channel allocation, task offloading ratio and computation resource allocation.
To tackle this mixed-integer non-convex problem, we divide it into two sub-problems, i.e., joint
sub-channel allocation and task offloading sub-problem, and computation resource allocation
sub-problem.

• To approximate the optimal solution, we propose the MATD3-CO scheme. Specifically, we
employ MATD3 to optimize the joint sub-channel allocation and task offloading sub-problem
due to its non-convexity. Furthermore, we employ convex optimization to solve the computation
resource allocation sub-problem, and derive the closed-form expression by the Karush-Kuhn-
Tucker (KKT) condition. The solution is obtained by iteratively solving these two sub-problems.

The remaining work of this paper is as follows. Section 2 presents the related works. Section 3
describes the NOMA-assisted system model. Section 4 establishes the SOM problem. Section 5
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proposes the MATD3-CO scheme. Section 6 evaluates the experimental outcomes, and Section 7
summarizes this work.

2 Related Work

In recent years, numerous studies offered solutions to the technical hurdles faced by NOMA-
assisted MEC systems. For instance, Ding et al. introduced a generic hybrid NOMA-MEC offloading
strategy. They considered two special OMA and pure NOMA offloading scenarios to minimize both
delay and energy consumption in MEC offloading process [10]. Albogamy et al. devised an efficient
conjugate gradient-based approach for optimizing downlink power allocation in NOMA systems,
maximizing the maximum weighted sum rate across users [11]. Besides, Muhammed et al. explored
the intricacies of allocating resources in downlink NOMA networks. They significantly improved
the energy efficiency of the system based on strict power constraints and quality of service (QoS)
criteria [12]. Huang et al. assessed the effectiveness of three MEC offloading approaches: pure OMA,
pure NOMA, and hybrid NOMA. Their findings highlighted the potential of hybrid NOMA in
decreasing the energy consumption associated with MEC offloading [13]. Fang et al. developed a
binary search algorithm to minimize delay in multi-user NOMA-assisted MEC systems through power
allocation of data transmission [14]. Wu et al. optimized task allocation and resource scheduling
in NOMA-MEC networks to minimize energy consumption, considering task delays and server
capabilities [15]. Ding et al. optimized both power and time allocation simultaneously to lower the
energy expenditure for computation offloading. Closed-form solutions guided the choice between
OMA, pure NOMA, or hybrid NOMA [16]. Indeed, Wu et al. devised a distributed and efficient
algorithm to reduce overall computation task latency by optimizing both offloaded workloads and
transmission time concurrently in NOMA networks [17]. Pham et al. introduced collaborative game
theory to resource optimization in NOMA MEC networks, minimizing both computational overhead
through cooperative and competitive approaches [18]. Xu et al. developed a DRL-based multi-priority
offloading strategy to minimize delay for MEC-enhanced IWNs with high-concurrent heterogeneous
industrial tasks [19].

Moreover, MADRL [20] performed well in fully cooperative, competitive and mixed relationship
scenarios. Yu et al. proposed a multi-agent deep deterministic policy gradient (MADDPG) framework
to minimize the cost of task processing latency and device energy consumption by optimizing UAV
routes and IoT device offloading decisions [21]. Luo et al. suggested a framework for mobile crowd
computing in networks, utilizing physical layer security and MATD3 algorithm to optimize task
offloading and assignment while minimizing computing costs [22]. Xu et al. proposed a digital twin-
driven collaborative optimization scheme based on MADRL, which minimizes task processing time
by optimizing task offloading ratio, power allocation, and resource allocation [23]. On this basis,
Xu et al. further considered cache storage and blockchain consensus for digital twin-assisted MEC
networks [24]. Cai et al. introduced a computation offloading method based on MADRL, aimed
at meeting the diverse needs of various tasks in heterogeneous systems [25]. Li et al. proposed a
MADRL framework aimed at minimizing weighted energy consumption in MEC networks, address-
ing communication and computation uncertainties by optimizing UAV trajectory, task partition, and
resource allocation [26]. Xiao et al. developed a collaborative algorithm based MADRL aimed at
optimizing resource allocation in MEC networks, surpassing existing mainstream methods in multiple
aspects [27]. Cao et al. proposed a new MADRL scheme to support multi-channel communication and
task computation in Industry 4.0 of MEC, significantly reducing task processing time and improving
channel utilization [28]. Zhou et al. proposed a MADRL framework for collaborative optimization in
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MEC, which improves system performance, learning efficiency, and reliability by 50% through joint
optimization of beam forming and offloading strategies [29].

3 System Model
3.1 Network Model

Fig. 1 depicts the IWN with NOMA and OMA to support process monitoring and industrial
control. There are M iEDs and N iBSs, where each iBS is enhanced with an MEC server. The
iBSs maintain wired connections to an industrial gateway, facilitating centralized scheduling and
comprehensive management. All iEDs follow the coordination of iBSs to offload tasks on the total
frequency band, which is partitioned into K equal-bandwidth orthogonal sub-channels. The iEDs
select the appropriate sub-channels to transmit the signals, which travel through them and interference
to reach the iBSs.

iEDs communicate with 
the same sub-channel 
may interfere the othersDifferent color denotes different sub-channel

OMA transmission

NOMA transmission

iBSs MEC iBSs MEC

Gateway

sub-channel 1 sub-channel 2 sub-channel 3

Figure 1: System model

Let time be slotted, denoted by t, with the set of slot indices represented by T = {1, . . . , t, . . . , T}.
At the beginning moment of each episode T , all iEDs are equally assigned to iBSs to cover. The
collection of iBSs is referred to N = {1, . . . , n, . . . , N}, and iBSn (n ∈ N ) is characterized by a two-
tuple n = (Fn, Un), where Fn and Un denote the maximum computation resources and communication
range, respectively. The collection of iEDs is denoted as M = {1, . . . , m, . . . , M}, and iEDm (m ∈ M)

generates a task km at each time t. The task is characterized by a two-tuple km = (Dm, Cm), where Dm

and Cm denote the task size and the CPU cycles for processing one byte of data, respectively. All iEDs
divide their tasks in local and edge computing. The set of iEDs covered by the iBSn radio is denoted
as Mn = {

m
∣∣dm,n ≤ Un, ∀m ∈ M

}
,Mn ∈ M, where dm,n denotes the distance between iEDm and iBSn.

Each iED can only be connected to an iBS whose radio covers it. The set of orthogonal sub-channels
is referred to K = {1, . . . , k, . . . , K}, and the bandwidth of the sub-channels is B. All iBSs can be
switched between OMA or NOMA for each allocated sub-channel. Each iED selects an orthogonal
sub-channel to offload some of its tasks. Using the power-domain NOMA technique, a sub-channel
can accommodate multiple iEDs with simultaneous offloading tasks.
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3.2 Communication Model

The communication model is constructed based on the NOMA principle, where the sub-channel
allocation decision is denoted as

ok
m,n ∈ {0, 1} , (1)

where ok
m,n = 1 indicates iEDm (m ∈ Mn) selects sub-channel k to offload part of the task to iBSn. Each

iED can select only one sub-channel for data transmission, and the number of iEDs accessing the same
sub-channel is limited to Mmax to control SIC complexity [30]. Thus, we have∑
∀k∈K

ok
m,n = 1, (2)

∑
∀m∈Mn

ok
m,n ≤ Mmax. (3)

Let the transmission power of iEDm at time t denoted as pm with 0 < pm < Pmax be predefined.
Then, the channel gain between iEDm and iBSn at t is denoted as

hk
m,n = ηk

m,n

dm,n
ϕ , (4)

where ηk
m,n is the Rayleigh distributed small-scale fading, i.e., ηk

m,n ∼ CN (0, 1), and ϕ is the large-scale
path loss index. The set of iEDs with instantaneous channel conditions worse than iEDm (m ∈ Mn) is
designated as

Mm,n,k =
{

m′ ∣∣∣∣hk
m′ ,n

∣∣ 2
<

∣∣hk
m,n

∣∣2
, ∀m′ ∈ Mn

}
. (5)

According to the NOMA principle, iBSn employs SIC to cancel the signals from iEDs that possess
superior channel conditions relative to iEDm.

Let qn,k be the number of iEDs associated with iBSn accessing the same sub-channel k. If OMA is
selected, then qn,k = 1 and these iEDs suffer from inter-edge interference. If NOMA is selected, then
qn,k > 1 and these iEDs suffer from inter-edge and intra-edge interference. When iEDm offloads its
task to iBSn, the received signal-to-interference-plus-noise ratio (SINR) is

φm,n =
∑
∀k∈K

ok
m,n

pm

∣∣hk
m,n

∣∣2

I intra
m,n,k + I intre

m,n,k + N0

, (6)

where N0 is the noise power, I intra
m,n,k = ∑

∀m′∈Mm,n,k
ok

m′ ,npm′
∣∣hk

m′ ,n
∣∣2

is the intra-edge interference, and

I intre
m,n,k = ∑

∀n′∈N \{n}
∑

∀m′∈Mn′ ok
m′ ,n′pm′

∣∣hk
m′ ,n

∣∣2
denotes the inter-edge interference, which equals the sum of

the product of the power allocated by the other iBSs to other iEDs using sub-channel k and the channel
gain between other iEDs and iBSn. Thus, the uplink data rate of iEDm transmitting to iBSn can be
described as

rm,n = B log2

(
1 + φm,n

)
. (7)
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3.3 Computing Model

Due to the constrained computation resources of iEDs, some tasks are offloaded to iBSs for edge
computing. The task offloading ratio from iEDm (m ∈ Mn) to iBSn is denoted as

0 ≤ vm ≤ 1, (8)

where vm = 0, vm ∈ (0, 1), and vm = 1 indicate none offloading, partial offloading, and total
offloading, respectively.

3.3.1 Local Computing

Let f l
m be the computing power of iEDm. The time required for partially completing a task at iEDm

is calculated as

Tl
m = (1 − vm)

CmDm

f l
m

. (9)

Then, the energy consumption while computing the task partially at iEDm is [31]

El
m = (1 − vm) Dmκm

(
f l

m

)2
, (10)

where κm is the energy coefficient of iEDm.

3.3.2 Computation Offloading

In the computation offloading case, the primary components of the time needed to finish the
computation task of iEDm are the transmission delay Tup

m and computation delay Tcom
m . Let fm,n be the

computation resources allocated by iBSn to iEDm, and the overall computation resources allocated by
iBSn must not exceed its maximum computation capacity. Thus, we have

fm,n > 0, (11)∑
∀m∈Mn

fm,n ≤ Fn. (12)

The completion time for iEDm during computation offloading can be calculated as

Te
m = Tup

m + Tcom
m = vmDm

rm,n

+ vmCmDm

fm,n

. (13)

The energy consumption Ee
m of iEDm for transmitting its computation task to iBSn is [31]

Ee
m = pm

ζm

Tup
m = pm

ζm

vmDm

rm,n

, (14)

where ζm is the power amplifier efficiency of iEDm.

4 Problem Formulation and Transformation
4.1 Problem Formulation

With the above system model, we further formulate the SOM problem. Firstly, we designate the
system overhead as the weight sum of latency and energy consumption as

Cm = α max
(
Tl

m, Te
m

) + β
(
El

m + Ee
m

) = αTm + βEm, (15)
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where α and β represent the weight factors for delay and energy consumption, respectively.

Then, the objective function is formulated by

SOM: min
O,V ,F

f =
∑
∀t∈T

∑
∀n∈N

∑
∀m∈Mn

Cm,

s.t. (1), (2), (3), (8), (11), (12). (16)

Herein, O is set of the sub-channel allocation, V is set of the task offloading ratio, and F is
set of the computation resource allocation. The result of end-edge resource allocation is denoted as
(O,V ,F), which is represented by⎧⎪⎨
⎪⎩
O = {

ok
m,n, ∀k ∈ K, ∀m ∈ Mn, ∀n ∈ N

}
,

V = {vm, ∀m ∈ M} ,

F = {
fm,n, ∀m ∈ Mn, ∀n ∈ N

}
,

(17)

where ok
m,n is an integer variable that iED can only select one sub-channel to offload its tasks to iESs,

and the total number of iEDs sharing a single sub-channel does not exceed Mmax.

In the SOM problem, constraints (1)–(3) state that the sub-channel allocation, constraint (8)
declares the proportion of tasks to be offloaded, and constraints (11) and (12) require that the overall
allocation of computation resources cannot exceed the computation power of iESs.

4.2 Problem Transformation

Obviously, SOM is a mixed integer optimization problem that is NP-hard and typically requires
exponential time complexity to find the optimal solution [32]. Moreover, since system dynamics over
time generate a myriad of system states, it is challenging to implement one-time optimization strategies
in practice. Thus, we reformulate the original problem as follows:

First, the SOM problem can be rewritten as

min
O,V ,F

f =
∑
∀t∈T

∑
∀n∈N

∑
∀m∈Mn

α max
(

(1 − vm
∗)

CmDm

f l
m

, ok
m,n

∗
vm

∗
(

Dm

rm,n

+ CmDm

fm,n

))
+ βE∗

m, (18)

where E∗
m = (1 − vm

∗) Dmκm

(
f l

m

)2 + ok
m,n

∗vm
∗pmDm/ζmrm,n is the energy consumption affected by the sub-

channel allocation decision ok
m,n

∗ and the task offloading ratio vm
∗.

By analyzing (18), we find that the system overhead depends on the computation resource
allocation fm,n when the sub-channel allocation decision ok

m,n

∗ and the task offloading ratio vm
∗ are fixed.

Further, constraints (11) and (12) limit the computation resource allocation variables and are separable
from the other constraints. Thus, we can decompose SOM into two separated sub-problems, where
the complexity of each sub-problem can be significantly reduced. We conduct independent analysis
and validation of each sub-problem, utilizing the advantages of different optimization methods to
obtain the final solution. Thus, the SOM is decoupled into two sub-problems at each time slot, i.e.,
P1 and P2.
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4.2.1 Joint Sub-Channel Allocation and Task Offloading Sub-Problem

P1 involves sub-channel allocation decisions and task offloading ratios for all iEDs. It is
defined as

P1: min
Ot ,Vt

g1 =
∑
∀n∈N

∑
∀m∈Mn

Cm,

s.t. (1), (2), (3), (8). (19)

4.2.2 Computation Resource Allocation Sub-Problem

P2 involves computation resource allocation for all iEDs. Given the results obtained from P1, P2
can be expressed as

P2: min
F t

g2 =
∑
∀n∈N

∑
∀m∈Mn

vm

αCmDm

fm,n

,

s.t. (11), (12). (20)

5 The Proposed MATD3-CO Scheme

With the decoupled sub-problems, we develop MATD3-CO to approach the optimal solution.
Fig. 2 depicts the framework for addressing the SOM problem.

Figure 2: The framework to solve the SOM problem

For P1, we employ multi-agent MDP to transform the SOM problem for the MADRL solution,
and propose MATD3 to solve the sub-channel allocation and task offloading ratio. For P2, we use
convex optimization to obtain the computation resource allocation, where the closed-form solution is
obtained by the KKT condition. The two algorithms are iteratively solved to approximate the optimal
solution.
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5.1 Joint Sub-Channel Allocation and Task Offloading Based on MATD3

5.1.1 Multi-Agent MDP Modeling

P1 is a mixed integer non-linear programming problem, which is NP-hard [33]. Thus, we utilize
multi-agent MDP to reformulate the sub-problem for a MADRL-based scheme.

In the IWN, we treat each iBS as an agent for its decision-making in order to obtain the minimum
system overhead. The detailed three key elements of agent n are constructed as follows:

1) Observation: At each time slot t, since the agents can only observe part of the whole
environment, the observations of agent n can be described as

ot
n = {

dMn , DKn , FKn , TKn

}
, (21)

where dMn represents the distance between iBSn and iEDm (m ∈ Mn), DKn , FKn and TKn are the data
size, CPU cycles required to process one bit of data and the final task duration of task km (m ∈ Mn),
respectively. Furthermore, the state space of N agents at the time slot t is ot = {

ot
1, . . . , ot

n, . . . , ot
N

}
.

2) Action: According to the current observations, each agent decides its sub-channel and offload-
ing ratio strategy. The actions of agent n at each time slot t is

at
n = {

ok
m,n, vm |∀m ∈ Mn, ∀k ∈ K

}
. (22)

The set of actions for N agents is denoted as at = {
at

1, . . . , at
n, . . . , at

N

}
.

3) Reward Function: In the multi-agent MDP scenario, N agents interact with the environment,
cooperating based on the state and policy to obtain an individual reward rt

n. SOM aims to minimize
the system overhead within resources constraints. Thus, the reward of agent n is the negative of the
sum of the computation overhead of its overlay devices at time slot t.

rt
n = −

∑
∀m∈Mn

Cm. (23)

The set of rewards of N agents is rt = {
rt

1, . . . , rt
n, . . . , rt

N

}
.

In MATD3, each agent aims to maximize its expected reward, represented by Rt
n = ∑

i≥0 γ irt+i
n ,

where γ is the discount, 0 ≤ γ ≤ 1.

5.1.2 Algorithmic Structure

To track the MDP, we employ DRL algorithm. First, TD3 is an improved version of deep
deterministic policy gradient (DDPG), with enhanced stability and convergence compared to DDPG.
Unlike DDPG, which only uses one Q-value network, the key of TD3 is the introduction of two
independent critics trained to minimize the squared error between two different Q-values. Meanwhile,
TD3 also incorporates techniques such as delay policy updates and target network smoothing,
further enhancing the stability of the algorithm. By extending the TD3 to multi-agent environments,
namely MATD3, we can facilitate the mean overestimation and error accumulation problems in the
MADDPG. For this purpose, we use centralized training and distributed execution method, where
centralized training enhances collaboration between agents by obtaining global data, while trained
distributed execution agents make independent decisions based on local data.

Specifically, each iBS is considered as an agent that maintains its networks and learns individual
policies based on local observations. Each agent comprises the following DNNs: a DNN implementing
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the actor πφ for selecting actions, two DNNs implementing critics Qθ1
and Qθ2

for estimating the Q-
values of the chosen action, a target actor πφ′ , and two target critics Qθ1

′ and Qθ2
′ . Here, φ, θ1, θ2, φ ′, θ ′

1

and θ ′
2 represent their corresponding network weights.

5.1.3 Algorithm Training

MATD3 is centralizedly trained by the industrial gateway, as summarized in Algorithm 1.
Specifically, within this framework, critics of each agent are managed by the industrial gateway,
which enables them to access global state and action information while ensuring full visibility of
this information for all agents. All iBSs act as agents to perform actions through a decentralized
observation mode, collect experience in interacting with the environment, and upload this experience
to the industrial gateway for centralized training. The industrial gateway processes this data to
calculate gradients, and then feeds back the updated model parameters to iBSs.

Algorithm 1: MATD3 training for P1
Input: observation ot

n of agent n, ∀n ∈ N ;
Output: φ ′

n of agent n, ∀n ∈ N ;
1. Initialize the AC networks with the parameters φn, θn,1, θn,2, φ ′

n, θ ′
n,1, θ ′

n,2 for ∀n ∈ N ;
2. Initialize the replay buffer Bn;
3. for episode = 1: E do
4. Initialize the observations of all agents;
5. for t = 1: T do
6. for each agent n do
7. Agent n selects action with exploration noise at

n = πφ

(
ot

n

) + ε;
8. Execute at

n, compute reward rt
n and obtain ot+1

n ;
9. Store

(
ot, at, rt

n, ot+1
)

as an experience in Bn;
10. Sample a random mini-batch of U samples from Bn;
11. According to (25), update critics;
12. if t mod tact then
13. According to (26), update the actor network;
14. end if
15. if t mod ttar then
16. According to (27), update the three target networks;
17. end if
18. end for
19. end for
20. end for

The training process of the neural network alternates with the interaction process. Each agent
outputs an action at

n = πφ

(
ot

n

)+ε based on local observations of the environment, where ε ∼ N
(
0, δ2

)
is a noise with 0 mean and a standard deviation δ. By performing the above actions, each agent obtains
the next observation ot+1

n and the immediate reward rt
n and stores the experience

(
ot, at, rt

n, ot+1
)

into the
replay buffer Bn. Once the buffer accumulates a sufficient quantity of experiences, each agent randomly
draws a mini-batch of U quaternions from Bn, and

(
ou, au, ru, ou+1

)
is recorded as the u-th quaternion.

The target value Y u
n for agent n can be expressed as
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Y u
n = ru

n + γ min
w=1,2

Qθ ′
n,w

(
ou+1

n , au+1
)

, (24)

where au+1 = {
au+1

1 , . . . , au+1
n , . . . , au+1

N

}
, and au+1

n is acquired through the target actor network, i.e.,
au+1

n = πφ′
(
ou+1

n

) + ε, ε ∼ clip (N (0, σ) , −c, c). MATD3 comprises two sets of target critic networks
with the same network structure, who calculate the Q-values of the subsequent state-action pairs and
then select the smaller value to calculate Y u

n . This strategy effectively solves the over-estimation caused
by maximization. The loss function of the critic network is denoted by

L
(
θn,w

) = 1
U

∑
u

(
Y u

n − Qθn,w

(
ou

n, au
))2

, w = 1, 2. (25)

The actor network is updated in a delayed manner, i.e., updating the critic network many times
before updating it, with an update cycle of tact. For any Qθ (e.g., Qθ1

) the actor’s parameters are updated
via the policy gradient.

∇φnJ (φn) = 1
U

∑
u
∇au

nQθn,1

(
ou

n, au
) ∇φnπφn

(
ou

n

)
. (26)

The target network is soft updated with an update cycle of ttar.

θ ′
n,w = τθn,w + (1 − τ) θ ′

n,w, w = 1, 2,

φ ′
n = τφn + (1 − τ) φ ′

n,
(27)

where τ 
 1.

5.2 Computation Resource Allocation Based on Convex Optimization

The variables associated with all iBSs are independent. Therefore, we can further divide P2 into
multiple problems, each related only to iBSn, denoted as

P3: min
F t

n

gn
2 =

∑
∀m∈Mn

vm

αCmDm

fm,n

,

s.t. (11), (12), (28)

where F t
n denotes the variable in F t associated with iBSn.

Theorem 1. P3 is a convex optimization problem.

Proof of Theorem 1. The partial derivatives of the objective function gn
2 are obtained using the

Hessian matrix. That is

∂2gn
2

∂fi,n∂fj,n

=
{

vi2αCiDi/
(
fi,n

)3
, i = j,

0, i �= j,
(29)

where vi2αCiDi/
(
fi,n

)3
> 0. gn

2 corresponds to a positive definite Hessian matrix, then Theorem 1 holds.

We introduce the Lagrange multipliers λn and formulate the Lagrangian as

L
(
fm,n, λn

) =
∑

∀m∈Mn

vm

αCmDm

fm,n

+ λn

( ∑
∀m∈Mn

fm,n − Fn

)
. (30)
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Based on the KKT condition, the following equation is obtained:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇F t
n

∑
∀m∈Mn

vm
αCmDm

fm,n
+ λn∇F t

n

( ∑
∀m∈Mn

fm,n − Fn

)
= 0,∑

∀m∈Mn

fm,n − Fn = 0,

λn ≥ 0.

(31)

Solve the system of equations to get the optimal solution for task km computation resource
allocation.

fm,n
∗ =

√
αCmDmvmFn∑

∀m∈Mn

√
αCmDmvm

, ∀m ∈ Mn. (32)

5.3 Algorithmic Complexity Analysis

Since the computation resource allocation problem has a closed-form solution, the complexity
originates primarily from MATD3, which is predominantly influenced by the neural network archi-
tecture and the sheer quantity of the parameters. All networks utilize DNNs, and their computation
complexity is formulated as

O (G) = O
(∑L

l=1
dldl+1

)
, (33)

where L is the number of layers, and dl is the number of neurons in the l-th layer. Hence, the actors
have a computation complexity of O (Ga), while the critics have a complexity of O (Gc).

During the intensive training phase, N agents with U experiences are trained for K iterations, with
the computation complexity of the actors and critics being O

(
GaKUN

)
and O

(
GcKUN

)
, respectively.

During the phase of distributed implementation, each agent makes independent decisions. The
actors’ computation complexity is O (Ga).

6 Performance Evaluation

This section evaluates experimentally the performance of MATD3-CO.

6.1 Simulation Settings

6.1.1 Experimental Setup

Let a scalable IWN have different numbers of iBSs and iEDs, where the radio coverage radius of
the iBSs is 100 m. All iEDs are evenly distributed over the coverage area and at least 5 m away from
iBSs. During the experiment, we set the tasks to be randomly generated within a fixed range. The key
parameters are set in Table 1. The configuration for the parameters of DNNs is given as follows. The
actor network has 300 and 100 neurons in its first and second hidden layers, respectively. The size of the
last layer is adjusted to match the action dimension of iBSs. Meanwhile, two critics adopt a consistent
structure, each housing 300, 100 and 1 neurons across their three hidden layers. During the training
phase, the learning rate of the actors and critics is ηa = ηc = 10−3, the discount factor is γ = 0.9, and
the batch size is 128. All experiments are operated on Intel i7-11700 CPU and NVIDIA GeForce RTX
3070 GPU with TensorFlow-GPU-1.14.0 and Python-3.7.
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Table 1: Key parameters and values

Paraments Values

Number of iBSs (N) 3∼4
Number of iEDs (M) 15∼75
Computation resource of iBSs (Fn) 100 GHz/s
Computation resource of iEDs (f l

m) 5 GHz/s
Radio coverage of iBSs (Un) r = 100 m
Task size (Dm) 100∼5500 bytes
Computation cycles of iEDs (Cm) 0.25 MHz/byte
Transmission power of the iEDs (pm) 100∼300 mW
Sub-channel bandwidth (B) 1∼5 MHz
Noise power (N0) 10−11 mW
Path loss exponent (ϕ) 3
Energy coefficient (κm) 10−28 [34]
Latency trade-off factor (α) 0.7
Energy consumption trade-off factor (β) 0.3

6.1.2 Benchmark Schemes for Comparison

The following experiments involve several benchmark DRL schemes:

• MATD3-CO: the proposed scheme employing MATD3 and convex optimization to iteratively
approach the optimal solution.

• MATD3: a scheme based on MATD3 algorithm.
• MADDPG: a scheme based on MADDPG algorithm.
• DDPG: a scheme based on DDPG algorithm.

6.2 Convergence Analysis

Reward measures the effectiveness of DRL-based algorithms. Fig. 3 illustrates the trend of reward
convergence for all schemes, highlighting that as the number of iterations increases, the rewards
of all schemes gradually increase and converge after a certain number of iterations. Moreover, as
demonstrated in Fig. 3, we can see that the two TD3-based schemes converge more stable than the
DDPG-based schemes, due to the introduction of two critic networks to address the overestimation
problem, as well as the delayed updating of the actor networks. DDPG converges poorly in a multi-
agent environment. Additionally, the three MADRL-based schemes perform better than the single-
agent DDPG schemes in a multi-agent environment, obtaining higher reward. During the initial 400
episodes, the proposed scheme yields higher reward, primarily attributed to the optimal allocation
of computation resources in making system decisions. The proposed MATD3-CO scheme yields the
highest reward after convergence and a more stable reward curve.
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Figure 3: Reward vs. number of iterations for data training: N = 3, M = 45, B = 5 MHz, Fn =
100 GHz/s, Dm ∼ [150, 1500] bytes

Fig. 4 shows the comparison of delay and energy consumption performance with different
schemes. The results demonstrate that as the iteration count rises, the delay and energy consumption
of all schemes decrease, and converge after a certain number of iterations. However, our proposed
solution demonstrates superior performance in both delay and energy consumption. Therefore,
MATD3-CO is superior to the other schemes.

(a) Comparison of delay (b) Comparison of energy consumption

Figure 4: (a) Comparison of delay; (b) Comparison of energy consumption

6.3 Performance Comparison

Fig. 5 depicts the effect of the number of iEDs on system overhead under different schemes.
When the number of iEDs is small (e.g., M = 15), we can see that there are fewer tasks that need
to be computed, so the system overhead of all schemes is almost the same and very small. This is
because there are sufficient resources to handle the tasks of iEDs. As the number of iEDs increases, the
system costs under all schemes also rise. The reasons for this situation are as follows. When more iEDs
are connected to the system, iEDs compete for limited computation resources, resulting in increased
computation delay and energy consumption. In addition, due to limited channel resources, more iEDs
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sharing the same sub-channel increases the transmission delay and energy consumption for offloading
tasks to iBSs. Overall, these factors lead to a regular increase in system overhead. As the number
of iEDs increases further, the performance gap between different schemes also widens. Among all
schemes, the system overhead of MATD3-CO consistently remains the smallest. This experimental
result indicates that MATD3-CO is more suitable for more complex IWN environments.

Figure 5: System overhead vs. number of iEDs: Fn = 100 GHz/s, B = 5 MHz, Dm ∼ [150, 1500] bytes

Fig. 6 presents how system overhead is affected by the number of iBSs, where the number of iBSs
is set to 3 and 4. For a fixed number of iEDs, increasing the number of iESs leads to a slight decrease
in system overhead. This trend is consistent across different schemes. The reason is that more iESs
only reduce the edge computing delay of tasks, while the energy consumption and offloading delay
to iESs remain unchanged, and they account for the percentage of total system overhead. Meanwhile,
the system overhead of MATD3-CO is lower than that of MATD3.

Figure 6: System overhead vs. number of iESs: B = 5 MHz, Dm ∼ [150, 1500] bytes



3218 CMC, 2025, vol.82, no.2

Fig. 7 illustrates the effect of sub-channel bandwidth on system overhead. In this evaluation, we
increase the sub-channel bandwidth in the system from 4 to 20 MHz and set the task size to Dm ∼
[4500, 5500] bytes. From the results, we observe that as the total system bandwidth increases, system
overhead decreases across all schemes. This is because increasing the bandwidth can effectively increase
the transmission rate of the tasks, thereby reducing the transmission delay and energy consumption
during offloading. These reductions affect the system overhead in the IWN. The proposed scheme
outperforms MATD3, MADDPG, and DDPG across different bandwidth settings.

Figure 7: System overhead vs. sub-channel bandwidth: M = 45, Fn = 100 GHz/s, Dm ∼ [4500, 5500]
bytes

Fig. 8 illustrates the impact of task size changes on system overhead. For this evaluation, the task
size Dm follows a uniform distribution, increasing from Dm ∼ [150, 1500] bytes to Dm ∼ [4500, 5500]
bytes. We observe from the results that the system overhead for all schemes increases as the task size
grows. This is attributed to the expanded size of task data and the heightened resources demanded for
computing tasks. The computation delay, transmission delay and transmission energy consumption
increase somewhat. Overall, the system overhead of MATD3-CO is less than MATD3, MADDPG
and DDPG.
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Figure 8: System overhead vs. task size: M = 45, Fn = 100 GHz/s, B = 5 MHz

7 Conclusion

In this paper, we investigated the problem of end-edge cooperative resource optimization for IWN
with hybrid multiple access scheme. We established communication and computation models under
this network model and fully considered the factors affecting the NOMA transmission rate under
the constraint of limited computation and communication resources. We defined the weighted sum of
task processing delay and energy consumption as the system overhead and formulated the system
overhead minimization problem by jointly optimizing the sub-channel allocation, task offloading
ratio, and computation resource allocation. To track this problem, we proposed MATD3-CO scheme
to iteratively approach the optimal solution. The experimental results demonstrated that the proposed
scheme converges well and effectively reduces the system overhead.

Future works will consider more constraints on the computation resource of iESs, the transmission
power of iEDs, the cache of iEDs, and so on. Correspondingly, we will apply more algorithms for
solutions, such as game-theoretic and other machine learning algorithms.
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