
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.059688

ARTICLE

TMC-GCN: Encrypted Traffic Mapping Classification Method Based
on Graph Convolutional Networks

Baoquan Liu1,3, Xi Chen2,3, Qingjun Yuan2,3, Degang Li2,3 and Chunxiang Gu2,3,*

1School of Cyberspace Security, Zhengzhou University, Zhengzhou, 450002, China
2School of Cyberspace Security, Information Engineering University, Zhengzhou, 450001, China
3Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, 450001, China
*Corresponding Author: Chunxiang Gu. Email: gcx5209@126.com
Received: 14 October 2024 Accepted: 03 December 2024 Published: 17 February 2025

ABSTRACT

With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which
brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can
deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client
or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph
(FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-
order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects
the time characteristics of the packet but also strengthens the relationship between the client or server packets.
According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically
capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model
is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph
classification problem, which can effectively deal with data from different data sources and application scenarios.
By comparing the performance of TMC-GCN with other classical models in four public datasets, including
CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified.
The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%,
and the F1 rate is 94.54%.

KEYWORDS
Encrypted traffic classification; deep learning; graph neural networks; multi-layer perceptron; graph convolutional
networks

1 Introduction

Identifying and classifying network traffic is essential for applications such as QoS, pricing, and
security measures, including malware and intrusion detection [1]. Using encryption to protect data
transmissions enhances user privacy [2], but also complicates traffic classification, as it allows malware
and cybercriminals to evade detection through tools such as Tor and VPNs. Moreover, owing to the
diversity of applications, the granularity of today’s traffic classification is becoming increasingly fine,

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.059688
https://www.techscience.com/doi/10.32604/cmc.2024.059688
mailto:gcx5209@126.com


3180 CMC, 2025, vol.82, no.2

and an increasing number of traffic types must be distinguished by traffic classifiers. The most popular
method is the deep-learning-based encrypted traffic classification model.

Deep-learning-based methods for encrypted traffic classification, such as Convolutional Neural
Networks (CNN) [3,4] and Recurrent Neural Networks (RNN) [5], have shown promise [6–8]. Unlike
traditional machine learning, deep learning automatically extracts features from raw data and uses
an end-to-end learning approach, which avoids manual feature engineering and subdivision problems
such as feature selection. However, these methods often process traffic characteristics independently,
overlook packet relations, and lack a holistic network view, which can compromise the system’s
robustness and practical application.

Mapping the relationship between packets in the traffic into a topology structure, using the
topology structure to map to the non-Euclidean space to save packet information [9], and using a
Graph Neural Network (GNN) to process the data of this network topology can solve the above
problems. Originally developed by Scarselli et al. [10], GNNS was later refined by Scarselli et al. and
Micheli et al. Early GNN models used RNNs to extend the CNN framework to graph-structured
data, leading to the creation of Graph Convolutional Networks (GCN) and their variants [11],
which advanced deep-learning applications on graph data. Shen et al. [12] introduced a Traffic
Interaction Graph (TIG), where vertices represent packets with directions, edges represent packet-level
interactions between clients and servers, and connections between adjacent bursts [13]. Jiang et al. [14]
developed a Flow-level Relation Graph (FRG) to represent traffic data that preserves packet-level
details, such as size, direction, and time interval, as well as the edges of concurrent and triggered
interactions between bursts. However, TIG and FRG ignore the relationship between packets in the
same direction. Ignoring these relationships means that the full characteristics of the communication
patterns may not be fully captured, thus affecting the accuracy of traffic classification and analysis.

To solve the above problems, this study proposes an FMG for network traffic that enhances the
relationship between packets by mapping the relationship between adjacent packets and packets in the
same direction as a network topology structure graph, thereby enhancing the understanding of internal
flows and continuous packet sequences. The TMC-GCN designed in this study uses an FMG to map
traffic data and capture the complex relationship of dimensions, such as order, time, and content, to
enhance model classification and prediction ability. This approach also helps to quickly analyze client-
side request-response sequences and server-side response patterns, such as bursts of traffic. The main
contributions of this study are as follows:

(1) A network topology graph of the traffic is constructed. In an FMG, vertices represent
packets, and edges represent the associations between packets. Sequential edges describe the temporal
relationship of data packets, and jump-order edges are the key to this method. Jump-order edges
capture the relationship of packets in bursts in the same direction as the flow and provide a finer
and more comprehensive representation of the interaction of vertexes.

(2) A TMC-GCN model is designed that combines a GCN with a Multi-Layer Perceptron (MLP)
to effectively learn vertex features and their structural relationships in a FMG. The GCN layer utilizes
adjacency information to capture the relationships between vertices connected by sequential and jump-
order edges, whereas the MLP applies nonlinear transformations to project features to a higher level
of abstract feature space.

(3) To test the interpretability of FMG, other classical models were compared with the TMC-
GCN model: CICAAGM2017 [15], CICIOT2023 [16], GraphDapp [12], and ISCXVPN2016 [17]. The
accuracy of the experimental results ranged from 93%–98%.



CMC, 2025, vol.82, no.2 3181

The remainder of this paper is organized as follows. Section 2 summarizes related work, Section 3
presents the construction of the FMG and the design details of the TMC-GCN, Section 4 presents the
performance tests and experiments of the FMG effectiveness evaluation, and Section 5 concludes the
paper.

2 Related Work

Currently, most methods used in encrypted traffic classification are based on deep learning and
graph neural network area types of deep learning. Therefore, this section introduces the encrypted
traffic classification technology of traditional deep learning and the encrypted traffic classification
technology of deep learning based on a graph neural network.

2.1 Classification of Encrypted Traffic Based on Deep Learning

Deep learning techniques that automatically extract features from raw data and utilize an
end-to-end learning approach are highly effective for traffic classification tasks [18]. For exam-
ple, Liu et al. introduced FS-Net [19], using packet-length sequences and a bidirectional Gated
Recurrent Unit (GRU) [20] with a reconstruction autoencoder for encrypted traffic classification.
Aceto et al. developed MIMETIC [21], a multimodal deep learning model using a CNN and a
GRU for mobile-encrypted traffic analysis. Shapira et al. proposed FlowPic [22], which converts flow
data into images for CNN-based classification. Wang et al. introduced the App-Net model [23] by
employing Long Short-Term Memory (LSTM) and a CNN to analyze packet lengths and payload
sequences. Liu et al. designed the BGRUA model [24] that uses a bidirectional GRU with an attention
mechanism for HTTPS traffic analysis. Lin et al. developed ET-BERT [25], a transformer-based model
that pretrains traffic data to understand the contextual relationships and transmission sequences.
Lotfollahi et al. [26] proposed a deep learning-based method for encrypted traffic classification called
“Deep Packet.” This method utilizes two deep neural network architectures, the Stack Autoencoder
(SAE) and CNN, for application identification.

However, these deep-learning methods generally use statistical features or raw bytes directly to
represent network traffic, adopt various learning models, and ignore the lack of inherent translation
invariance of non-Euclidean traffic data. Ordinary deep learning models map network traffic into
Euclidean space, thereby losing important information from packet relationships. GNN can be used
to address this problem. A GNN can compose traffic data and use a graph structure to reflect
the relationship between packets in the traffic data or the relationship between bytes in the packet.
This relationship often intersects multiple dimensions, such as order, time, and content, forming
complex connections. A GNN can effectively capture and learn complex relationships and enhance
the classification and prediction abilities of a model.

2.2 Classification of Encrypted Traffic Based on Graph Neural Networks

GNNs have been effectively applied across various fields, particularly in handling un-structured
data. Pang et al. [27] introduced CGNN, a chained graph model for maintaining sequences in traffic
analysis. Zheng et al. [28] developed GCNETA, a GCN-based method for malicious traffic detection
that combines statistical and structural network data to enhance accuracy. Huoh et al. [29] utilized a
GNN for encrypted flow classification by analyzing packet relationships. Diao et al. [30] created EC-
GCN, a framework using a multi-scale GCN to classify encrypted traffic. Shen et al. [12] developed
GraphDApp, which uses a TIG for identifying traffic from distributed applications by treating it as a



3182 CMC, 2025, vol.82, no.2

graph classification challenge. Jiang et al. [14] proposed FG-Net, employing an FRG graph structure
to approach mobile encrypted traffic fingerprinting as a graph representation learning task.

However, traffic classification methods based on graph neural networks ignore the relationships
between packets in the same direction. To this end, the FMG designed in this study strengthens the
connection between these same-direction bursts or data packets, enabling rapid location and analysis
of situations where the client sends consecutive requests, as well as the degree of correlation between
these request responses. The data packets are represented as vertices with directions by constructing
separate graphs for each flow. Sequential edges were used to represent the time–sequence relationship
of the data packets in the network flow, and jump-sequence edges were used to represent the burden
relationship in the same direction in the flow. Then, the GCN and MLP are used to learn the graph,
which can achieve good classification results.

3 TMC-GCN Model Construction
3.1 Construction of the Flow Mapping Graph

Several steps are required before building an FMG: (1) First, data packets from different
applications must be collected. When a client visits software or a website, all the recorded network
traffic consists of packets transmitted across multiple sessions. (2) These raw data are classified into
independent flows according to the principle of sharing the same quintuple (source and destination IP
addresses, source and destination port numbers, and protocols), where each flow consists of a series
of data packets with the same quintuple. Consider the interactive process shown in Fig. 1, where the
number represents the packet length with direction, and the sequence can be expressed as “packet
length”: [193, −1338, −1338, −857, 126, 51, 494, −463, −251, 31, 38]. A positive number represents
a packet sent from the client to the server, whereas a negative number represents a packet sent to the
client.

Figure 1: Example of packet-level client-server interaction for a stream

FMG represents the graph structure of each flow, which can be represented by a vector of common
flow packet lengths consisting of n packets. Flow = f1, f2, . . . , fn, where fi indicates the first i with
symbols of the length of the packet, and the FMG construction process is as follows:

Vertex: In an FMG, each packet in a stream corresponds to a vertex linked to the packet’s length,
with the direction indicated by a positive or negative value. For example, Flow = [193, −1338, −1338,
−857, 126, −51, 494, −463, −251, 31, 38] represents a sequence of 11 packets, as shown in Table 1,
where each packet is a vertex in the FMG. Consecutive packets in the same direction form a burst
“[13]”, even if they are single packets. Seven bursts occurred in the given flow {193}, {−1338, −1338,



CMC, 2025, vol.82, no.2 3183

−857}, {126}, {−51}, {494}, {−463, −251}, {31, 38}. To avoid FMG complexity and maintain the TMC-
GCN performance and time efficiency, only the first 160 packets in each flow were selected as vertices
for the reasons detailed in Section 4.

Table 1: Elements contained in FMG

Vertex Id Direction Bursts Bursts
direction

Edge relation Sequential Jump-order
edges

193 0 + Burst [0] + (0,1) (0,4) (0,1) (0,4)
1338 1 – Burst [1] – (1,0) (1,2) (1,5) (1,0) (1,2) (1,5)
1338 2 – – (2,1) (2,3) (2,1) (2,3) ×
857 3 – – (3,2) (3,4) (3,2) (3,4) ×
126 4 + Burst [2] + (4,0) (4,3) (4,5)

(4,6)
(4,3) (4,5) (4,0) (4,6)

51 5 – Burst [3] – (5,1) (5,4) (5,6)
(5,8)

(5,4) (5,6) (5,1) (5,8)

494 6 + Burst [4] + (6,4) (6,5) (6,7)
(6,10)

(6,5) (6,7) (6,4) (6,10)

463 7 – Burst [5] – (7,6) (7,8) (7,6) (7,8) ×
251 8 – – (8,5) (8,7) (8,9) (7,6) (7,8) (8,5)
31 9 + Burst [6] + (9,8) (9,10) (9,8) (9,10) ×
38 10 + + (10,6) (10,9) (10,9) (10,6)

Edges: Edges in the graph representing connections between vertices significantly influence the
feature aggregation. The graph structure included sequential and jump-order edges. (1) Sequential
edges: Packets are sorted by arrival timestamps, with each packet length treated as a vertex. These
vertices are then connected to form n − 1 sequential edges. The construction of sequential edges
reflects the timing characteristics of packets. (2) Jump-order edges: The packets are classified into
bursts based on their direction and continuity. The last vertex of the same-direction burst is connected
to the first vertex of the continuous same-direction burst, forming a jump-order edge. Communication
characteristics between client and server, such as request and response patterns, persistent connection
state, and directionality of data transfer, are important to define bursty head and tail connections in
FMG. For example: Persistent connection states: such as FTP or database connections, usually involve
multiple consecutive bursts of data exchange, and these bursts of connection help reveal the nature of
the whole session. Data transfer direction: Upload and download activities are clearly different in
direction, and this directional change can be reflected in FMG by the jump-order edges. In network
communication, data flows in the same direction often have specific intentions or functions (such as
file transfer, video streaming, etc.), and the model can better capture this pattern by jump-order edges.
When dealing with complex network traffic, it is difficult to get effective information from only a single
data packet. Jump-order edges provide a mechanism to exploit contextual information by connecting
relevant bursts, thus improving the accuracy of recognition and classification. For instance, in Fig. 1,
the vertex of a single burst {−51} is linked to the first vertex (−1338) of the prior same-direction
burst {−1338, −1338, −857}, and the first vertex (31) of burst {31, 38} is linked to vertex (494) of the
previous same-direction burst {494}. Fig. 2a,b shows the structure of sequential edge and jump-order
edge respectively, and Fig. 2c is the final FMG structure, where the line represents the sequential edge



3184 CMC, 2025, vol.82, no.2

and the dashed line represents the jump-order edge. The edge relation in Table 1 shows the specific
edge connections with numbered vertices. All edges in FMG are undirected, allowing bidirectional
information exchange in the neural network for more comprehensive vertex feature aggregation.

Figure 2: FMG construction process for encrypted traffic

Algorithm 1 describes the FMG construction process. The algorithm uses a sequence of packet
lengths for a specific flow as the input and outputs a traffic map G = (V , E). First, the vertex set V and
edge set E are initialized, and then the vertex set is constructed using the packets as vertices (lines 1–4).
Second, different bursts were obtained based on consecutive packets (lines 5–6). We then iterate each
burst by checking whether the length of each burst is greater than 1, and if so, add sequential edges
with timing characteristics (lines 7–10). Then, in bursts, jump-order edges are obtained by connecting
the last vertex of a burst with the first vertex of the previous burst in the same direction (lines 11–
14), and the FMG representation results in G of the traffic are returned. The following explains why
FMG is designed as a graphical representation of encrypted traffic. In general, an FMG can extract
the features of encrypted traffic from three aspects:

(1) Packet-direction information: The vertices in the FMG contain the direction of the data packet,
which is represented by positive and negative values. Positive values indicate that the packet was sent
from the client to the server, and negative values indicate that the packet was sent from the server to
the client.

(2) Packet-length information: Packet-length sequences and their mathematical variants are
commonly used as key features in encrypted traffic classification [20,31]. Vertices in FMG are
associated with corresponding packet lengths and can be used naturally by classifiers.

(3) Data packet bursts, as shown in the same color in Fig. 2b, are directional and key distinguishing
features of classifier learning owing to their variability across different applications or websites.
Packets, whether in the same or different directions, are interconnected through sequential and jump-
order edges, facilitating the feature aggregation of each vertex. This method enhances the analysis
of client-side request–response sequences, helping to quickly pinpoint and assess the correlation



CMC, 2025, vol.82, no.2 3185

between successive client requests and responses. From the server perspective, this aids in swiftly
identifying specific response patterns. During the feature aggregation phase, this approach allows for a
more detailed aggregation of neighboring vertex features, enabling the TMC-GCN model to perform
classification tasks more effectively.

Algorithm 1: Construction of flow mapping graph
Input: Packet length sequence Flow = f1, f2, . . . , fn

Output: Flow Mapping Graph G = (V , E)

1: Initialize V (vertices) and E (edges) as empty sets.
2: for each packet fi in Flow do
3: Add a vertex vi to V .
4: end for
5: Segment V into bursts B = (b1, b2, . . . , bK)

6: based on packet direction.
7: for each burst bi in B do
8: if bi contains more than one packet then
9: Connect consecutive vertices within bi.
10: end if
11: if bi is not the first and second burst then
12: Connect the first vertex of bi to the last vertex
13: of the previous burst in the same direction.
14: end if
15: end for
16: return G.

3.2 TMC-GCN

With FMG, the encrypted traffic classification problem becomes a graph classification problem.
Thus, a GNN can automatically extract and distinguish features from a graph structure [32]. The
GNN was used as the basis for the TMC-GCN model. This section presents the design details of the
GNN-based TMC-GCN classifier.

3.2.1 Overview of TMC-GCN

In this study, a TMC-GCN was constructed using a combination of a GCN, MLP, and linear fully
connected layers, as shown in Fig. 3. The TMC-GCN model is structured into three main stages: data
transformation, feature-aggregation transformation, and classification. (1) Data Transformation: This
stage includes network traffic preprocessing and data processing. First, the pcap file of the original
encrypted traffic is converted to JSON format, and streams with the same quintuple are extracted.
The FMG is then fed into the embedding layer, which converts the features of the vertices into fixed-
dimensional embedding vectors. The embedding vector obtained by the embedding layer was used as
the input for the GCN in the next stage. (2) Feature Aggregation Transformation: Vertex features and
those of their neighboring vertices are aggregated at this stage using both sequential and jump-order
edges. The architecture included two pairs of GCN and MLP layers. Each GCN layer was followed
by an MLP layer that applied a nonlinear transformation to the GCN output. The output of the
first MLP layer becomes the input for the second GCN layer, enhancing feature aggregation. (3)
Classification Stage: The final stage employs a graph-pooling layer to consolidate the vertex features
into a graph-level feature vector. A fully connected layer then uses this vector to perform classification



3186 CMC, 2025, vol.82, no.2

predictions. This structure facilitates detailed feature analysis and improves classification accuracy in
network traffic analysis.

Figure 3: Model structure of TMC-GCN

3.2.2 Design Principle of Model Structure

a) Packet-direction information

The data transformation phase includes data preprocessing, construction of the FMG, and
generation of embedding vectors. The details of the data transformation phase are described below.

Data preprocessing: First, the stream was extracted from the original pcap file according to the
quintuples and converted into a JSON file. Second, the packet length sequence and positive and
negative signs of each flow were recorded to indicate the direction. It is not necessary to determine
which part of the packet is encrypted because this study mainly examines the impact of the network
topology of the flow on the classification, and only the packet length and direction are used in the
features, which can better protect the user’s privacy. Before constructing the FMG, we must perform
the following.

(1) Data interception and dropping: Only the first 160 packets in the flow are used to control the
amount of data and improve the efficiency. This measure aims to reduce computational burden and
memory consumption. Simultaneously, to improve the quality of the dataset and reduce noise interfer-
ence and abnormal flow, data packets that did not contain quintuples were discarded, considering that
these may be caused by errors in data capture or recording processes. Flows with only one direction



CMC, 2025, vol.82, no.2 3187

are discarded, as are flows with no more than three packets; thus, there is no case of no associated
direction.

(2) Packet length correction: A packet with an absolute length greater than 1500 is split into
multiple packets with a maximum length of 1500, and the original symbol is retained to normalize
the data and simulate the actual network transmission limit. This step aims to avoid excessively large
packets that interfere with the processing flow and to improve data utility.

(3) Vertex feature matrix creation: A zero matrix of the same length as the packet was created, and
the length of the processed packet was assigned to this matrix. This matrix was added to the graph as
a vertex feature. This provides each vertex in the graph with useful feature information for subsequent
graph analysis.

Generating embedding vectors: The model uses an embedding layer to convert vertex features
into vectors of fixed dimensions. The input to the embedding layer is the discrete feature index i,
corresponding to the features of the vertices in the FMG, which is the packet length value with respect
to the direction. This index is then mapped in the embedding matrix E into a continuous vector space
of D dimensions, where E ∈ R

N×D, N is the embedding dictionary’s size, embedding dictionary is
represented as a mapping from the packet length to the embedding index, and D is the dimension of the
embedding vector. We created an embedding dictionary, represented as a mapping from packet length
to embedding index. The key is the length of the packet belt direction (−1500 bytes to 1500 bytes).
When a specific packet length is received, this length can be used as the key to obtain the corresponding
embedding vector index from the embedding dictionary. This vector was subsequently used as the
input for the next layer. Embedding layers are introduced to map sparse data-length features to a
more compact and continuous vector space for model learning and generalization, respectively. The
floating-point representation of embedding vectors is more suitable for the optimization algorithms
of neural networks. In addition, the embedding layer can effectively handle new length values that do
not appear in the training data and generate embedded vectors for new features.

b) Feature aggregation transformation

This module is the core of the model, and it aggregates the characteristics of each vertex and
its neighborhood vertices. By strengthening the connection between vertices using sequential and
jump-order edges, the module can aggregate more comprehensive feature information. The module
comprises two pairs of sequentially cascaded GCN and MLP. An MLP layer followed each GCN layer,
and the MLP performed a nonlinear transformation of the GCN output. The input to the second layer
of the GCN is the output of the first layer of the GCN after MLP processing. These two layers of the
GCN and MLP together form a feature aggregation transformation layer, which then aggregates the
feature vector output by the MLP through a graph pooling layer.

Vertex feature aggregation: Vertex feature aggregation is iterated using a two-layer GCN to
balance complex structural information capture and computational efficiency (The two-layer GCN
framework has been shown to strike an appropriate balance between performance and computational
burden [33]). A GCN can comprehensively integrate the information of different vertices into the
vertex features of an entire FMG. The high-dimensional feature representation of each vertex can
be summarized through feature aggregation as a lower-latitude graph-level feature representation.
Simultaneously, because of the design of sequential and jump-order edges in FMG, particularly jump-
order edges, GCN can aggregate more comprehensive information than other graph structures. First,
the initial vertex feature vector is derived from the embedding layer. The feature transformation of
the initial vertex feature and feature aggregation of the neighborhood vertex is realized using Eq. (1),
where h(l)

v represents the hidden state of vertex v after the l-layer of the GCN, and σ is the activation



3188 CMC, 2025, vol.82, no.2

function. N (v) is the set of neighboring vertices v, deg (v) is the degree of vertex v, and W (l) is the first
GCN weight matrix of the l layer.

h(l+1)

v = σ

( ∑
u∈N(v)∪{v}

1√
deg(u)

√
deg(v)

W (l)h(l)
u

)
(1)

Nonlinear transformation: The model can be more flexible and extract higher-order and more
complex features and relationships from the data through a nonlinear transformation. The TMC-
GCN uses an MLP to perform a nonlinear transformation on the output of the GCN, which can map
the input features to a higher level of abstract feature space, help the model better understand and
process data, and improve its generalization ability. Nonlinear transformation is realized using Eq. (1),
where h(l)

v represents the output feature of vertex v in an L-layer GCN. Two linear transformation layers
(W (l)

1 and W (l)
2 ) and two offset items (b(l)

1 and b(l)
2 ) introduce the ReLU activation function, and the ability

for nonlinear transformation is added. MLP (·) stands for multi-layer perceptron, which is used to

transform the output of GCN further, and ĥ
(l+1)

v is the feature of vertex v after MLP transformation.
However, the combination of GCN and MLP can deal better with FMG graph data. This helps the
model learn higher-level abstract feature representations of a graph. By fusing the graph structure
information and nonlinear transformations, the model can better capture the complex relationships
and characteristics of the data.

ĥ
(l+1)

v = MLP
(
h(l)

v

) = σ
(
W (l)

2 ReLU
(
W (l)

1 h(l)
v +b(l)

1

) + b(l)
2

)
(2)

hG =
∑
v∈V

ĥ
(l)

v (3)

Graph-level feature aggregation: Post MLP, the data represent high-order abstract feature vectors
obtained from multiple layers of nonlinear transformation and feature extraction. This vector is fed
into a graph pooling layer, which aggregates vertex-level features into a graph-level representation
by summing, capturing the overall structure and properties of the graph for the classification layer.
Sum pooling (Eq. (3)) highlights important vertexes by weighting their features, thus preserving the
differences in vertex features. Sum-pooling sums up all vertex features to form a comprehensive graph
representation, which is suitable when vertex features are additive.

c) Classification

Mapping feature class: This step is key to classification and relies on fully connected layers to
map graph-level features to the category space for classification. The input to the fully connected
layer was the concatenation result of the graph-level features obtained from the operations of the
graph convolution and pooling layers. These graph-level features are concatenated during forward
propagation to obtain a vector, which is then linearly transformed by weight matrix multiplication
and bias addition of Eq. (4). In the forward-propagation process, the input vector hG is multiplied by
the weight matrix W , and the bias vector b is added to obtain the output vector y, which is a linear
transformation from the input space to the output space. During training, the model updates the
values of the weight matrix and bias vector using a backpropagation algorithm and gradient descent
optimizer to minimize the loss function. Through continuous iterations and optimization, the model
can learn an effective mapping from the input to the output.

y = Linear (hG) = WhG + b (4)



CMC, 2025, vol.82, no.2 3189

Loss function: The loss function used in this study is across-entropy loss function combined with
weighting and label smoothing, as shown in Eq. (5). Where N is the number of samples in the batch, yi is
the true label of sample i, and ŷi is a one-hot-encoded vector with only one element of 1 (representing
the class of the input sample) and the rest of the elements of 0 and is the predicted probability of
the ith sample. ε denotes the label smoothing parameter, and K is the number of categories. Label
smoothing enhances the model’s prediction by distributing some probability from the correct class
to other classes, thereby reducing the risk of overfitting. Cross-entropy loss measures the difference
between the predicted probability and the true label; a smaller loss value indicates a more accurate
model prediction. The generalization ability and stability of the model can be effectively improved by
combining label smoothing and cross-entropy loss.

Loss = −
N∑

i=1

[
(1 − ε) · yi + ε

K

]
log ŷi (5)

4 Experimental Evaluation

In this part, we evaluate the effectiveness of FMG and TMC-GCN modes. This paper compared
the performance of TMC-GCN and other encrypted traffic classification models, tested the effective-
ness of FMG, adjusted the parameters of the model, and finally designed an ablation experiment.

4.1 Experimental Setup

This study compares the performance of other encrypted traffic classification models and tests the
performance of TMC-GCN on the CICIOT2023, CICAAGM2017, and ISCXVPN2016 datasets. To
verify the interpretability of FMG and the performance and versatility of TMC-GCN, experiments are
carried out on the GraphDapp dataset. The 38 application categories of this dataset were selected, and
20 flows were randomly selected from each category, resulting in a total of 760 flows. The effectiveness
of FMG is measured by calculating the pairwise distance and graph edit distance of the TMC-GCN
model are adjusted. Finally, an ablation experiment is carried out to determine whether the jump-order
edge and packet length provide additional valuable information.

The comparison model used in this paper is as follows:

(1) CNN+D [34]: uses packet direction information to build a CNN to classify encrypted traffic
from different websites.

(2) AppScanner [35]: uses bidirectional streaming features (i.e., outgoing and incoming) to extract
features about packet length and interval time from the stream.

(3) MIMITIC [21]: is a multi-modal approach that lever-ages deep learning, using CNN and GRU
to learn the first 576 bytes of payload and message protocol fields, respectively.

(4) FS-Net [19]: takes packet length sequence as input, uses bidirectional GRU for feature
encoding, and introduces a reconstruction mechanism in Auto Encoder to ensure the validity of the
learned features.

(5) App-Net [23]: uses LSTM and CNN to learn the packet length and payload byte sequence of
the initial packet, respectively.

(6) GraphDapp [12]: uses the graph structure of the TIG as the information representation for
encrypted Distributed Application (DApp) flows, implicitly preserving many of the characteristics of



3190 CMC, 2025, vol.82, no.2

bidirectional client-server interactions. Dapp finger-printing is transformed into a graph classification
problem, with an MLP and a fully connected layer used to construct the GraphDapp model.

(7) FB-GNN [29]: proposes a graph construction method that directly creates edges based on the
temporal relationships of packets in a stream and leverages a geometric learning model to learn vertex,
edge, and global features.

In this study, the True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, and F1
value were used as criteria to test the performance of the TMC-GCN. These criteria are computed as
shown in Eqs. (6)–(10):

TPR = TP
TP + FN

= Recall (6)

FPR = FP
FP + TN

(7)

Precision = TP
TP + FP

(8)

Accuracy = TP + TN
TP + FP + FN + TN

(9)

F1 = 2 × Precison × Recall
Precision + Recall

(10)

4.2 Dataset Description

The CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp datasets were used for the
testing. The total data volume was 130 gigabytes, with more than one million streams.

(1) CICIOT2023 Dataset: This large-scale attack dataset in a real-time Internet environment is
derived from 33 attacks classified into seven categories: DDoS, DoS, reconnaissance, web-based, brute
force, spoofing, and Mirai. These attacks are performed against malicious Internet devices on other
Internet devices. These include ACK fragmentation, UDP flood, SlowLoris, ICMP flood, RSTFIN
flood, PSHACK flood, HTTP flood, UDP fragmentation, and TCP-based attacks. It contains 33
attacks, such as flood, SYN flood, SynonymousIP flood, Dictionary brute force, Arp spoofing, Ping
sweep, Sql injection, and UDPPlain.

(2) ISCXVPN2016 Dataset: This dataset was designed for network traffic analysis and covers
14 different traffic types captured through regular and VPN sessions, such as VOIP, VPN-voip, and
P2P. By simulating the network activities of users Alice and Bob, this dataset generates data using
a variety of applications and services (such as Skype, Facebook, and YouTube), which ensures its
practical application value and wide applicability. The dataset pays special attention to the distinction
between VPN-encrypted traffic and unencrypted traffic, uses tools such as Wireshark and tcpdump
for high-quality data capture, and shuts down all non-target applications during the capture process
to ensure data purity. This makes the ISCXVPN2016 dataset not only important for the development
of intrusion detection systems and traffic management optimization in the field of network security
but also provides an experimental platform for academic research on network traffic analysis and data
mining.



CMC, 2025, vol.82, no.2 3191

(3) CICAAGM2017 Dataset: This dataset was created to address the challenge posed by advanced
Android malware, which can detect emulators used by analysts and alter its behavior to evade
detection. To overcome this problem, researchers have installed applications on real Android devices to
capture network traffic. The dataset included 1900 apps divided into three categories: 250 adware apps,
including Airpush, Dowgin, Kemoge, Mobidash, and Shuanet, which not only display ads but may
also steal user information or takeover the device; 150 generic malware applications, such as AV-pass,
FakeAV, FakeFlash/FakePlayer, GGtracker, and Penetho, which perform information theft, fraud, or
other malicious activities by masquerading as commonly used applications or services, and 1500 good
applications.

(4) GraphDapp Dataset: The GraphDApp dataset was selected by deploying the Wireshark tool on
campus laboratory routers at various universities in China. It focuses on monitoring the network traffic
generated when users access the top 40 most popular Ethereum distributed applications (DApps) using
a Chrome browser. Each DApp in the dataset has a corresponding network traffic record, detailing
the number of traffic packets per DApp, such as Joyso (395 traffic), Bancor (290 traffic), and Idex
(3119 traffic). For Development tool classes: Oxdrop (5016 traffic), Golem (2207 traffic), Financial
services UQUID (7290 traffic), Aave Protocol (4004 traffic). The dataset contains information such
as access time, source and destination IP addresses, port number, protocol used, packet length, and
TCP/IP flag, but does not include encrypted payload content to protect user privacy and data security.

4.3 Result

This subsection explores the interpretability of FMG and the performance of the TMC-GCN
mode. First, the stream and graph edit distances were used to test the interpretability of the FMG.
Next, the performances of TMC-GCN and other classifiers were evaluated. Finally, parameter
adjustment and ablation experiments are performed on the proposed model.

4.3.1 FMG Test Results

In this study, the flow distance and Graph Edit Distance (GED) [36], based on packet length
sequences were used to measure the similarity in FMG, with smaller distances indicating greater
similarity. For each of the 38 application categories, 20 streams were randomly selected for each
category for pairwise distance calculation. Because of the high computational load of the GED, only
five flows per category were selected for these calculations. The results are displayed in Fig. 4a and
4b. In each figure, the dots (blue in Fig. 4a and red in 4b) indicate the average intraclass distance
within the same application, whereas the boxplots illustrate the typical interclass distances with other
applications. By comparing Fig. 4a and 4b, the following conclusions can be drawn:

(1) In the box plot of the flow distance with length sequences, there were no cases in which the
intraclass distance was smaller than the minimum interclass distance. This implies that when using
a flow distance with a length sequence, the discrimination between the intra-class and interclass
distances is not obvious, and it is difficult to effectively distinguish flows in the same application from
flows in different applications. Almost all intraclass distances of the FMG graph edit distances were
smaller than the minimum interclass distances. This shows that when using the graph edit distance,
the discrimination between the intraclass and interclass distances is very clear and flows in the same
application can be effectively distinguished from those in different applications.

(2) For the flow distance using the length sequences, all intraclass distances exceeded the median
of the interclass distances (blue line in Fig. 4a). Conversely, in the FMG graph edit distance, all
intraclass distances were below the median of the interclass distances (red line in Fig. 4b). This suggests



3192 CMC, 2025, vol.82, no.2

that the flow distance with length sequences exhibits considerable uncertainty and instability when
dealing with flows from different applications, with a lack of a clear distinction between intraclass and
interclass distances, leading to limited robustness and reliability of the similarity measure. By contrast,
FMG’s graph edit distance demonstrates clear discrimination between different application flows, with
a pronounced difference between intraclass and interclass distances, confirming its robustness and
reliability as a similarity measure.

Figure 4: Boxplots of distances in data sequences and graphs (The left picture is (a) Boxplot of flow
distance with packet-length sequences; The right picture is (b) Boxplot of GED for FMG)

4.3.2 Performance Test Results of TMC-GCN

(1) The TMC-GCN model demonstrated superior performance compared with the other models
on the CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp datasets, as shown in
Table 2. In particular, on the CICIOT2023 and GraphDapp datasets, TMC-GCN significantly outper-
formed the competitors. Although it trails App-Net by a few percentage points on the ISCXVPN2016
dataset, the difference is minimal. Overall, TMC-GCN led by several percentage points across various
metrics, highlighting its robust capability to handle complex datasets by effectively capturing intricate
relationships and structural data.

Table 2: Results of different models on four datasets
Methods Dataset CICIOT2023 ISCXVPN2016 CICAAGM2017 GraphDApp

Models AC/PR/RC/F1 AC/PR/RC/F1 AC/PR/RC/F1 AC/PR/RC/F1

DL CNN+D 0.7280/0.7132/0.7056/0.7307 0.8330/0.8425/0.8400/0.8423 0.8534/0.8309/0.8604/0.8559 0.7132/0.7024/0.7259/0.7107
AppScanner 0.8867/0.8802/0.8314/0.8911 0.8932/0.8327/0.8415/0.8371 0.9153/0.8534/0.8041/0.8372 0.8127/0.8469/0.8105/0.8342
MIMETIC 0.8025/0.7839/0.7584/0.7919 0.8324/0.8541/0.8415/0.8477 0.7935/0.7652/0.8011/0.7828 0.7143/0.7115/0.6015/0.6086
FS-Net 0.8639/0.8404/0.8349/0.8322 0.9233/0.9263/0.9117/0.9189 0.9044/0.8936/0.9012/0.8974 0.8426/0.8015/0.8139/0.8077
App-Net 0.9358/0.9029/0.9145/0.9189 0.9521/0.9476/0.9504/0.9490 0.8739/0.8798/0.8670/0.8704 0.8523/0.8133/0.8024/0.7963

GraphDL GraphDapp 0.8779/0.8549/0.8321/0.8433 0.7053/0.6537/0.7024/0.6772 0.7864/0.7059/0.7413/0.7532 0.9245/0.9342/0.9175/0.9160
FB-GNN 0.9024/0.8913/0.9102/0.9006 0.8574/0.8371/0.8245/0.8307 0.9283/0.9201/0.9319/0.9259 0.9311/0.8947/0.8936/0.9040
TMC-GCN 0.9613/0.9614/0.9792/0.9701 0.9324/0.9305/0.9152/0.9221 0.9543/0.9568/0.9462/0.9454 0.9731/0.9683/0.9600/0.9852



CMC, 2025, vol.82, no.2 3193

(2) Table 2 shows that the TMC-GCN model excels across four datasets—CICIOT2023,
ISCXVPN2016, CICAAGM2017, and GraphDapp—in key performance metrics such as accuracy
(AC), precision (PR), recall (RC), and F1 score (F1). Whereas other models may perform well on
specific datasets, TMC-GCN exhibits greater stability in different tasks. For example, although
GraphDapp and FB-GNN exhibit strong results on their respective datasets, they fall short of
the others, underscoring the superior capability of TMC-GCN in handling complex datasets and
cross-domain applications. This highlights TMC-GCN as a versatile classifier and demonstrates the
effectiveness of jump-order edges in FMG.

(3) Drawing inspiration from the GraphDapp model cited in the literature [12] and enhancing
it by adding jump-order edges, the TMC-GCN model was redesigned to improve performance. As
depicted in Figs. 5 and 6, TMC-GCN exhibited superior performance on the GraphDapp dataset
across 38 randomly selected categories. The model consistently achieved a TPR above 0.94, indicating
high accuracy in identifying positive examples, and maintained an FPR below 0.004, highlighting its
precision. Accuracy rates generally exceed 0.95, confirming the reliability of the model. In addition,
the recall and F1 scores were strong, demonstrating the effective coverage of positive samples by TMC-
GCN and its ability to balance precision and recall. These findings highlighted the stability and high
recognition accuracy of the TMC-GCN model.

Figure 5: TPR and FPR test results for different categories



3194 CMC, 2025, vol.82, no.2

Figure 6: Precision, F1 score, and recall for 38 random app categories in the GraphDapp dataset

4.3.3 Hyperparameter Selection

In this section, the conventional and key parameters used by the TMC-GCN are introduced, and
their influence on the trade-off between the classification performance and training speed in each
epoch is studied. Because the data in different datasets affected the judgment of the hyperparameters,
the GraphDapp dataset was used for the experiment.

(1) General parameters: Table 3 lists the test accuracy and training loss for various batch sizes.
The training speed (TS) significantly increased with larger batch sizes; for example, a batch size of
2 required 302 s/epoch, whereas a size of 64 required only 24 s/epoch, indicating the efficient use of
computational resources and faster training. The highest test accuracy of 0.9784 was achieved with a
batch size of 64, indicating optimal learning at this size. Table 4 shows the test accuracy for different
learning rates with significant variations. Extremely low (10−6) or high (5 × 10−3) learning rates lead to
slow convergence or oscillation during training, respectively, hindering optimal solution attainment.
However, a learning rate of 5 × 10−4 yielded the highest test accuracy of 0.9885, indicating stable
convergence to the optimal solution. Fig. 7 shows that after 25 epochs, the changes in training loss
and accuracy were minimal, making further training less beneficial. Therefore, 25 epochs was a good
balance, ensuring good model performance while saving time and computational resources.



CMC, 2025, vol.82, no.2 3195

Table 3: Results of batch size on training speed and accuracy of TMC-GCN

Size 2 4 6 8 16 32 64 128

AC 0.8750 0.8987 0.9196 0.9329 0.9544 0.9784 0.9647 0.8750
TS 302 160 83 67 43 24 17 160

Table 4: Influence of learning rate on TMC-GCN accuracy

LR 10−6 5 × 10−6 10−5 5 × 10−5 10−4 5 × 10−4 10−3 5 × 10−3

AC 0.5144 0.8835 0.9554 0.9783 0.9801 0.9885 0.9808 0.9756

Figure 7: Effect of epochs on training loss and test accuracy

(2) Key parameters: The success of this study hinged on the construction of the FMG, with the
number and length of packets being crucial factors. Insufficient packets result in fewer diverse FMGs
per flow, hindering classification. Conversely, an FMG built with too many or too long packets
becomes overly complex, increasing time costs and diminishing model performance. The effects of
packet number and maximum packet length on the TMC-GCN are detailed below.

Maximum number of packets: We analyzed 171,403 streams from 19 classes in the GraphDapp
dataset. As listed in Table 5, the performance of the models (AC, PR, RC, and F1) improved as the
Packet Number increased, peaking at 160 packets. Beyond this, performance metrics such as AC, PR,
RC, and F1 began to decline, as exemplified by the lower scores at 240 packets than at 160 packets.
Despite the increased construction and training times for FMG with higher packet numbers, they
were still within acceptable limits. This suggests that a Packet Number of 160 optimally balances



3196 CMC, 2025, vol.82, no.2

performance and computational efficiency, effectively capturing the necessary flow information for
optimal classification without overcomplicating the model.

Table 5: Effect of the number of packets on FMG construction and performance of TMC-GCN

Packet
number

FMG construction
time (s)

AC PR RC F1 Train time (s)

40 1938 0.8924 0.9101 0.8932 0.9142 574
80 2282 0.9348 0.9414 0.9171 0.9252 585
120 2750 0.9543 0.9561 0.9506 0.9637 611
160 2908 0.9741 0.9794 0.9689 0.9716 637
200 3657 0.9731 0.9683 0.9600 0.9852 650
240 3729 0.9655 0.9579 0.9438 0.9671 659

Maximum packet length: Before constructing an FMG, packet lengths must be corrected. If a
packet length exceeds the maximum allowed, it is split into multiple packets, retaining the original
symbol for normalization. As shown in Table 6, the FMG construction time initially increases with
packet length but then decreases because fewer packets need to be split. At a packet length of 1500
B, the model performance indicators (AC, PR, RC, and F1) reached their highest values. Although
the construction and training times increased slightly, they remained within acceptable limits. This
indicates that a packet length of 1500 B strikes an optimal balance between information content and
redundancy, reducing the packet splitting complexity and enhancing the construction and training
efficiency, resulting in the best classification performance.

Table 6: Effect of packet length on the performance of TMC-GCN

Maximum
packet length

FMG construction
time (s)

AC PR RC F1 Train time (s)

800 3604 0.9542 0.9584 0.9531 0.9602 593
1000 3631 0.9701 0.9709 0.9728 0.9681 551
1200 3684 0.9725 0.9679 0.9712 0.9704 554
1500 2829 0.9741 0.9794 0.9689 0.9716 637

4.3.4 Ablation Experiment

In this subsection, the baseline model TMC-GCN is tested through ablation experiments, and the
influence of the original features of the vertices and jump-order edges in FMG on the model is tested
by having jump-order edges and changing the original features of the vertices (packet length).

(1) Effect of jump-order edges in FMG on the model

This part analyzes the importance of jump-order edges in FMG, selects 19 types of traffic, a total
of 34,304 flows for testing, and compares the trained TMC-GCN model as the baseline model with
the “FMG” model without adding jump-order edges as the input, called Model_1 here. The results
are shown in the confusion matrix in Fig. 8, where TMC-GCN is significantly different from Model_1
in terms of classification performance. TMC-GCN outperforms Model_1 in multiple categories, as



CMC, 2025, vol.82, no.2 3197

the higher diagonal elements of the confusion matrix indicate the number of correct classifications.
For example, the number of correct classifications of class 0 for TMC-GCN was 1805, while that
for Model_1 was only 760. Similarly, TMC-GCN had 9676 correct classifications in Class 4, whereas
Model_1 had 8405 correct classifications. In addition, the correct classification number of TMC-GCN
was significantly higher than that of Model 1 for multiple categories, such as categories 8, 14, and 18.

Figure 8: Performance comparison between the baseline model and the jump-order edge free model

This shows that the introduction of reordering edges significantly improves the classification
performance of the model, particularly for complex categories and categories with a large number
of samples. By capturing the relationship between distant vertices (packets in the same direction) in
the graph structure, the jump-order edge enhances the model’s ability to perceive global information,
thereby improving the classification accuracy. In contrast, Model_1 relies only on local neighborhood
information, which cannot effectively capture the relationship between distant vertices, leading to a
decrease in classification performance. The excellent performance of the TMC-GCN shows that the
jump-order edges in the FMG play a key role in the model, which can significantly improve its global
information capture ability and classification accuracy.

(2) The influence of the original characteristics of vertexes (packet length with direction) on the
model in FMG

In this part, the original feature of the vertex, namely, the packet length with direction, is replaced
by the zero matrix during input. At this time, the “FMG” only has the topology of the traffic, but
does not have the original feature. These data were used as the input for the model training, defined as
Model_2. The results are shown in Fig. 9, and a comparison of the two confusion matrices indicates
that TMC-GCN (left panel) performs significantly better than Model_2 without the packet length
feature (right panel) on multiple categories. For example, the number of correct classifications in class
0 was 1805 for TMC-GCN, whereas that in Model_2 was 207. Similarly, TMC-GCN had 3769 correct
classifications in class 14, whereas Model_2 had only 1744.



3198 CMC, 2025, vol.82, no.2

Figure 9: Performance comparison between the baseline model and the vertex-free original feature
(packet length) model

The introduction of the packet length feature as a vertex feature significantly improved the clas-
sification performance of the model. This is because the packet length feature can provide important
information about the network traffic and help the model better distinguish between different classes
of traffic patterns. Specifically, packet length characteristics can capture the characteristics of different
types of traffic when transmitting data; for example, some specific applications or protocols may
produce packets of a specific length. By introducing these features, the model can identify and classify
different types of traffic more accurately, thereby improving the overall classification accuracy. The
excellent performance of TMC-GCN shows that the packet length feature plays an important role in
the network traffic classification task, which can significantly improve the classification ability and
accuracy of the model.

5 Conclusion

In this study, we explored the problem of encrypted traffic classification based on neural networks
by fusing GNN variants of the GCN and MLP. FMG and TMC-GCN models for the FMG setting
were proposed, and the encrypted traffic identification task was transformed into a graph classifi-
cation problem suitable for multiple data sources and application scenarios. Tests on multidomain
datasets, such as CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, show that the
performance of the TMC-GCN model using FMG as the network traffic topology structure graph is
not only superior to other models but also stable and efficient on different domains and datasets.
However, although the construction cost of FMG and the computational cost of TMC-GCN are
within the acceptable range, there is still room for improvement. In the future work, firstly, we will
further optimize the construction algorithm of FMG from the perspective of time complexity and
space complexity. Secondly, we will design a more suitable model for FMG to further reduce the
computational cost of TMC-GCN. Finally, we will test the performance of our model against state-
of-the-art deep learning methods on large-scale network data.



CMC, 2025, vol.82, no.2 3199

Acknowledgement: The authors would like to thank the support and help from the School of
Cyberspace Security of Zhengzhou University, the PLA Information Engineering University and the
Key Laboratory of Network Cryptography Technology of Henan Province. Thanks to the National
Key Research and Development Program project for the financial support of this paper.

Funding Statement: This work was supported by the National Key Research and Development
Program of China No. 2023YFA1009500.

Author Contributions: The authors confirm contribution to the paper as follows: conceptualization,
methodology, Baoquan Liu; formal analysis, investigation, Baoquan Liu, Xi Chen, Qingjun Yuan
and Degang Li; writing—original draft preparation, Baoquan Liu; writing—review and editing,
Baoquan Liu, Xi Chen, Qingjun Yuan, Degang Li and Chunxiang Gu; supervision, resources, funding
acquisition, Chunxiang Gu. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the submitted author, Baoquan Liu, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: An overview,” IEEE Commun.

Mag., vol. 57, no. 5, pp. 76–81, 2019. doi: 10.1109/MCOM.2019.1800819.
[2] R. Sharma, S. Dangi, and P. Mishra, “A comprehensive review on encryption based open source cyber

security tools,” in 2021 6th Int. Conf. Signal Process., Comput. Cont. (ISPCC), 2021, pp. 614–619. doi:
10.1109/ISPCC53510.2021.9609369.

[3] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying convolutional neural network for
network intrusion detection,” in 2017 Int. Conf. Adv. Computi., Communi. Inform. (ICACCI), 2017, pp.
1222–1228. doi: 10.1109/ICACCI.2017.8126009.

[4] S. A. Althubiti, E. M. Jones, and K. Roy, “LSTM for anomaly-based network intrusion detection,” in 2018
28th Int. Telecommun. Netw. Appli. Conf. (ITNAC), 2018, pp. 1–3. doi: 10.1109/ATNAC.2018.8615300.

[5] S. H. Park, H. J. Park, and Y. J. Choi, “RNN-based prediction for network intrusion detec-
tion,” in 2020 Int. Conf. Artif. Intell. Inform. Commun. (ICAIIC), 2020, pp. 572–574. doi:
10.1109/ICAIIC48513.2020.9065249.

[6] P. Wang, X. Chen, F. Ye, and Z. Sun, “A survey of techniques for mobile service encrypted traf-
fic classification using deep learning,” IEEE Access, vol. 7, pp. 54024–54033, 2019. doi: 10.1109/AC-
CESS.2019.2912896.

[7] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescap’e, “DISTILLER: Encrypted traffic classification via
multimodal multitask deep learning,” J. Netw. Comput. Appl., vol. 183–184, 2021, Art. no. 102985. doi:
10.1016/j.jnca.2021.102985.

[8] J. Lan, X. Liu, B. Li, Y. Li, and T. Geng, “DarknetSec: A novel self-attentive deep learning method
for darknet traffic classification and application identification,” Comput. Secur., vol. 116, 2022, Art. no.
102663. doi: 10.1016/j.cose.2022.102663.

[9] L. Zhang, L. Tan, H. Shi, H. Sun, and W. Zhang, “Malicious traffic classification for IoT based on graph
attention network and long short-term memory network,” in 2023 24st Asia-Pacific Netw. Operat. Manag.
Symp. (APNOMS), 2023, pp. 54–59.

https://doi.org/10.1109/MCOM.2019.1800819
https://doi.org/10.1109/ISPCC53510.2021.9609369
https://doi.org/10.1109/ICACCI.2017.8126009
https://doi.org/10.1109/ATNAC.2018.8615300
https://doi.org/10.1109/ICAIIC48513.2020.9065249
https://doi.org/10.1109/ACCESS.2019.2912896
https://doi.org/10.1016/j.jnca.2021.102985
https://doi.org/10.1016/j.cose.2022.102663


3200 CMC, 2025, vol.82, no.2

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,”
IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on
graphs,” 2014, arXiv:1312.6203.

[12] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized application identification via
encrypted traffic analysis using graph neural networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
2367–2380, 2021. doi: 10.1109/TIFS.2021.3050608.

[13] K. Al-Naami et al., “Adaptive encrypted traffic fingerprinting with bi-directional dependence,” in Proc.
32nd Annual Conf. Comput. Secur. Appl. ACSAC ’16, New York, NY, USA, Association for Computing
Machinery, 2016, pp. 177–188. doi: 10.1145/2991079.2991123.

[14] M. Jiang et al., “Accurate mobile-app fingerprinting using flow-level relationship with graph neural
networks,” Comput. Netw., vol. 217, 2022, Art. no. 109309. doi: 10.1016/j.comnet.2022.109309.

[15] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A. Ghorbani, “Towards a network-based
framework for android malware detection and characterization,” in 2017 15th Annual Conf. Priv., Secur.
Trust (PST), 2017, pp. 233–23309. doi: 10.1109/PST.2017.00035.

[16] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu and A. A. Ghorbani, “CICIoT2023: A real-
time dataset and benchmark for large-scale attacks in iot environment,” Sensors, vol. 23, no. 13, 2023, Art.
no. 5941. doi: 10.3390/s23135941.

[17] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of encrypted and
VPN traffic using time-related features,” in Int. Conf. Inform. Syst. Secur. Priv., Rome, Italy, 2016, vol. 1,
2016, 407–414.

[18] X. Han et al., “DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic
classification,” Comput. Netw., vol. 245, 2024, Art. no. 110372. doi: 10.1016/j.comnet.2024.110372.

[19] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-Net: A flow sequence network for encrypted traffic
classification,” in IEEE INFOCOM 2019-IEEE Conf. Comput. Commun., 2019, pp. 1171–1179. doi:
10.1109/INFOCOM.2019.8737507.

[20] T. Van Ede et al., “FlowPrint: Semi-supervised mobile-app fingerprinting on encrypted network traffic,”
in Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, 2020. doi: 10.14722/ndss.2020.24412.

[21] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “MIMETIC: Mobile encrypted traffic clas-
sification using multimodal deep learning,” Comput. Netw., vol. 165, 2019, Art. no. 106944. doi:
10.1016/j.comnet.2019.106944.

[22] T. Shapira and Y. Shavitt, “FlowPic: A generic representation for encrypted traffic classification and
applications identification,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 2, pp. 1218–1232, 2021, 2021.
doi: 10.1109/TNSM.2021.3071441.

[23] X. Wang, S. Chen, and J. Su, “App-Net: A hybrid neural network for encrypted mobile traffic classifi-
cation,” in IEEE INFOCOM 2020-IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
2020, pp. 424–429. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162891.

[24] X. Liu et al., “Attention-based bidirectional gru networks for efficient https traffic classification,” Inf. Sci.,
vol. 541, no. 2, pp. 297–315, 2020. doi: 10.1016/j.ins.2020.05.035.

[25] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi and J. Yu, “ET-BERT: A contextualized datagram rep-
resentation with pre-training transformers for encrypted traffic classification,” in Proc. ACM Web
Conf. 2022, WWW ’22, Lyon, France, Association for Computing Machinery, 2022, pp. 633–642. doi:
10.1145/3485447.3512217.

[26] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep packet: A novel approach for
encrypted traffic classification using deep learning,” 2018, arXiv:1709.02656.

[27] B. Pang, Y. Fu, S. Ren, Y. Wang, Q. Liao and Y. Jia, “CGNN: Traffic classification with graph neural
network,” 2021, arXiv:2110.09726.

[28] J. Zheng, Z. Zeng, and T. Feng, “GCN-ETA: High-efficiency encrypted malicious traffic detection,” Secur.
Commun. Netw., vol. 2022, no. 1, 2022, Art. no. 4274139. doi: 10.1155/2022/4274139.

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TIFS.2021.3050608
https://doi.org/10.1145/2991079.2991123
https://doi.org/10.1016/j.comnet.2022.109309
https://doi.org/10.1109/PST.2017.00035
https://doi.org/10.3390/s23135941
https://doi.org/10.1016/j.comnet.2024.110372
https://doi.org/10.1109/INFOCOM.2019.8737507
https://doi.org/10.14722/ndss.2020.24412
https://doi.org/10.1016/j.comnet.2019.106944
https://doi.org/10.1109/TNSM.2021.3071441
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162891
https://doi.org/10.1016/j.ins.2020.05.035
https://doi.org/10.1145/3485447.3512217
https://doi.org/10.1155/2022/4274139


CMC, 2025, vol.82, no.2 3201

[29] T. L. Huoh, Y. Luo, P. Li, and T. Zhang, “Flow-based encrypted network traffic classification with
graph neural networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 2, pp. 1224–1237, 2023, 2022. doi:
10.1109/TNSM.2022.3227500.

[30] Z. Diao et al., “EC-GCN: A encrypted traffic classification framework based on multi-scale graph
convolution networks,” Comput. Netw., vol. 224, 2023, Art. no. 109614. doi: 10.1016/j.comnet.2023.109614.

[31] A. Panchenko et al., “Website fingerprinting at internet scale,” in Netw. Distrib. Syst. Secur. Symp., San
Diego, CA, USA, 2016.

[32] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” 2019,
arXiv: 1810.00826.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 2017,
arXiv:1609.02907.

[34] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermining website fingerprint-
ing defenses with deep learning,” in CCS’18: Proc. 2018 ACM SIGSAC Conf. Comput. Commun. Secur.,
2018, pp. 1928–1943.

[35] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic,” in IEEE Eur. Symp. Secur. Priv. (EuroS&P), Saarbruecken,
Germany, 2016, pp. 439–454. doi: 10.1109/EuroSP.2016.40.

[36] Z. Abu-Aisheh, R. Raveaux, J. Y. Ramel, and P. Martineau, “An exact graph edit distance algorithm for
solving pattern recognition problems,” in Int. Conf. Pattern Recognit. Appl. Methods, 2015.

https://doi.org/10.1109/TNSM.2022.3227500
https://doi.org/10.1016/j.comnet.2023.109614
https://doi.org/10.1109/EuroSP.2016.40

	TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks
	1 Introduction
	2 Related Work
	3 TMC-GCN Model Construction
	4 Experimental Evaluation
	5 Conclusion
	References


