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ABSTRACT: Personal video recorders (PVRs) have altered the way users consume television (TV) content by allowing
users to record programs and watch them at their convenience, overcoming the constraints of live broadcasting.
However, standalone PVRs are limited by their individual storage capacities, restricting the number of programs
they can store. While online catch-up TV services such as Hulu and Netflix mitigate this limitation by offering on-
demand access to broadcast programs shortly after their initial broadcast, they require substantial storage and network
resources, leading to significant infrastructural costs for service providers. To address these challenges, we propose
a collaborative TV content recording system that leverages distributed PVRs, combining their storage into a virtual
shared pool without additional costs. Our system aims to support all concurrent playback requests without service
interruption while ensuring program availability comparable to that of local devices. The main contributions of our
proposed system are fourfold. First, by sharing storage and upload bandwidth among PVRs, our system significantly
expands the overall recording capacity and enables simultaneous recording of multiple programs without the physical
constraints of standalone devices. Second, by utilizing erasure coding efficiently, our system reduces the storage space
required for each program, allowing more programs to be recorded compared to traditional replication. Third, we
propose an adaptive redundancy scheme to control the degree of redundancy of each program based on its evolving
playback demand, ensuring high-quality playback by providing sufficient bandwidth for popular programs. Finally,
we introduce a contribution-based incentive policy that encourages PVRs to actively participate by contributing
resources, while discouraging excessive consumption of the combined storage pool. Through extensive experiments, we
demonstrate the effectiveness of our proposed collaborative TV program recording system in terms of storage efficiency
and performance.
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1 Introduction
Recent advances in storage, network, and recording technologies have transformed the way users con-

sume TV content [1–3]. Traditionally, television was a one-directional medium with limited programming
choices and rigid schedules. The introduction of personal video recorders (PVRs) dramatically altered
this paradigm by enabling viewers to record programs in local storage and watch them whenever they
want, thereby overcoming the constraints of live broadcasting [4,5]. This capability is especially beneficial
for catching programs that might otherwise be missed due to scheduling conflicts or international events
with time zone differences, such as the Olympic Games. Despite these advantages, standalone PVRs
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have significant limitations. Since each device operates independently with restricted storage capacity for
recording programs, it can store only a limited number of programs.

In contrast, cloud-based streaming services like Netflix and Hulu have expanded on-demand viewing
options by providing catch-up TV services that make broadcast programs available shortly after their initial
broadcast [6–11]. Although these services alleviate the limitations of individual PVRs, they introduce new
challenges. Streaming services require massive storage to keep a huge number of programs and substantial
network bandwidth to support simultaneous streaming requests across numerous devices. To mitigate these
issues, service providers need to deploy large-scale Content Delivery Networks (CDNs). However, it is
evident that as the number of users increases, service providers require substantial infrastructural expansions
in servers, network bandwidth, and CDN deployment to maintain service quality.

An alternative solution to these challenges can be found in a collaborative peer-to-peer (P2P) system,
which can provide high scalability without incurring additional costs [12–16]. By pooling a portion of
the storage space of many PVRs into a combined virtual storage, each PVR can access data from this
shared storage over the Internet [17–20]. This approach also efficiently reduces storage duplication, unlike
standalone PVRs that independently store identical programs. When multiple PVRs record the same
program independently, each PVR must allocate storage for the same program. This results in unnecessary
data duplication and wasted resources. It is evident that the more popular the program, the greater the
amount of storage waste that occurs. However, since a P2P approach allows for shared storage and access, it is
not necessary for each device to store an identical program. Thus, if PVRs collaborate to record and play back
programs, only a subset of them would need to store the program, significantly increasing storage efficiency.

For this collaborative P2P system to be effective, it must maintain the same level of data availability as
standalone PVRs. However, since PVRs often join and leave the system, the high churn rate of PVRs makes
it essential to store programs redundantly among multiple PVRs. This ensures that the original program
can be obtained even if some PVRs storing the program are not available. Erasure coding [21–23] and
replication [24,25] have been commonly used in distributed systems to ensure data availability. In addition
to guaranteeing program availability, it is also crucial to ensure that the recording and playback processes
remain seamless without quality interruption, even though the number of requests increases. Therefore, the
key technical challenge in TV program recording using P2P systems is to support all concurrent playback
requests in real time while guaranteeing program availability at a level comparable to that provided by local
devices. To address this challenge, we propose a collaborative broadcast program recording system that
utilizes distributed PVRs, improving both storage efficiency and performance.

The primary contributions of our proposed system are fourfold: First, by collaborating with other PVRs
to share resources, including storage space and upload bandwidth, our system achieves significant advantages
over standalone PVRs. Specifically, by using the combined storage pool efficiently, our system significantly
expands the overall recording capacity, enabling a substantially larger number of programs to be recorded.
Furthermore, this collaborative approach ensures that recording is performed independently, unaffected by
the user’s current activity or device status, even when a different channel is being watched or when the devices
are turned off. Additionally, since there are no physical constraints, such as the number of tuners, each PVR
is capable of recording multiple programs simultaneously.

Second, by efficiently utilizing erasure coding, our system requires less storage space to achieve the
same program availability compared to traditional replication, which simply duplicates the original data. As
a result, our system can record more programs within the same storage capacity. Additionally, our system
further enhances storage utilization by distributing the fragments of recorded programs as evenly as possible
across participating PVRs. This is accomplished by prioritizing the PVRs with the most available storage
space for storing the encoded fragments. Without this strategy, some PVRs may exhaust storage capacity,
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while others still have sufficient space available. This imbalance leads to a situation where the system’s overall
capacity is exhausted despite resources still being available.

Third, by adapting the degree of redundancy of each recorded program according to its changing
playback demands over time, our system accommodates as many playback requests as possible. Our system
guarantees the minimum degree of redundancy required to ensure the target availability for each program.
However, this degree of redundancy does not necessarily guarantee that all playback requests for popular
programs can be supported without quality degradation. To address this, as a program’s popularity increases,
we increase the number of fragments encoded through erasure coding based on our established criteria.
Conversely, as the popularity of the program decreases, we reduce the number of fragments accordingly.
This is feasible because our system stores each fragment on a distinct PVR. As the redundancy degree of a
program increases, the number of PVRs storing them also increases, thus increasing the aggregated upload
bandwidth available for playback. Therefore, this scheme significantly reduces the chances of having to reject
requests for popular programs due to insufficient upload bandwidth.

Fourth, by implementing a contribution-based incentive policy, our system encourages PVRs to actively
participate by contributing their resources, while discouraging excessive use of the combined storage pool.
The storage space allocated to each PVR for recording programs is determined by not only the amount of
storage space it donates but also its overall contribution to the system. This contribution is measured by
the amount of upload bandwidth provided for sharing and the efficiency with which the PVR minimizes
storage usage for its own recordings. PVRs that donate more storage space and make larger contributions
receive higher priority in storage allocation, allowing them to record more programs within the combined
storage pool.

Through extensive experiments, we demonstrate the effectiveness of our proposed collaborative TV
program recording system in terms of storage efficiency and performance. First, we show that our system
can significantly reduce the redundancy factor for each program, compared to using replication, by utilizing
erasure coding, which requires considerably less storage space to achieve the same level of data availability.
Second, we illustrate that our system achieves significant improvement in storage efficiency compared to
standalone PVRs, in terms of storage requirement per program and the total number of stored programs in
the system, achieved through resource sharing and collaboration among PVRs. Finally, we reveal that our
adaptive redundancy scheme outperforms a static redundancy scheme in terms of the ratios of continuous
playback sessions relative to all requests by controlling the degree of redundancy of each program according
to its current playback demand.

This paper is organized as follows. Section 2 discusses the work related to TV content recording
systems. Section 3 details the structure and functionalities of our proposed system, which provides TV
recording services through collaboration among PVRs. Section 4 presents the experimental results of our
proposed system in comparison to standalone PVRs and a static redundancy scheme. Finally, Section 5
concludes the paper.

2 Related Work
In recent years, it is becoming difficult to assume that many people watch TV content at the time

that it is broadcast [26,27]. This shift in viewing habits is largely due to the emergence of new distribution
channels such as streaming through broadband networks and an increasingly diverse range of devices
including TV sets, set-top boxes, PCs, mobile phones, tablets, and game consoles where broadcast programs
are being consumed. These evolving consumption trends of broadcast TV content can be summarized
as accessing any content anytime, anywhere, and on any device. The rapid evolution of broadcast tech-
nologies has transformed content consumption, with advanced systems like ATSC 3.0 that enable hybrid
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broadcast-broadband delivery [28], innovative caching mechanisms that improve multimedia access [29],
and intelligent recommendation systems that personalize viewer experiences [30]. These technological
developments have expanded content accessibility across multiple platforms. The advent of PVRs marked the
beginning of a significant shift, enabling users to overcome the live broadcasting constraints by allowing them
to record and watch TV programs at their convenience [4,5]. However, they operate independently and have
restricted storage capacities, which limits the number of programs that can be recorded on a single device.
Subsequently, online TV streaming services have gained popularity, providing over-the-top(OTT) services
that distribute TV programs via the public Internet without requiring a dedicated network [6–11]. These
platforms effectively address the limitations of standalone PVRs by offering catch-up TV services, allowing
viewers to access previously broadcast programs on demand. Several studies have focused on developing
efficient caching and delivery algorithms for catch-up and time-shifting services, with the aim of optimizing
content distribution and user experience [31–39]. However, to support a large number of concurrent playback
requests without compromising quality, servers must provide considerable network bandwidth and extensive
storage for broadcast programs.

To address the challenges of the growing demands of network traffic and storage demands driven by
the increasing popularity of OTT services, Content Delivery Networks (CDNs) have been employed to place
proxy servers close to user devices, providing a robust, globally distributed infrastructure essential for reliable
video delivery. While recent studies have made progress in improving performance [40,41], they still rely
heavily on centralized infrastructures. As the demand for OTT services increases, continuous investment in
infrastructure expansion is required. From a cost perspective, it is essential to alleviate the burden caused
by these substantial investments in service expansion. Addressing this issue remains crucial for achieving
cost-effective, scalable services on a large scale. As a result, several systems based on P2P structures have
been proposed as alternatives to centralized infrastructures [17–20]. In these systems, PVRs are equipped
with broadband interfaces, enabling them to exchange data directly with each other instead of relying on
central servers. This allows users to access desired TV programs from neighboring PVRs. Some studies have
designed PVR systems specifically designed for mobile devices [42] or for vehicles [43]. However, these
studies have primarily concentrated on developing frameworks appropriate for sharing data among PVRs.

On the other hand, despite the inherent nature of PVRs joining and leaving the network freely, P2P
systems must still ensure data availability comparable to that of streaming servers. To address the challenges
caused by high device churn rates, it is essential that programs are stored redundantly across multiple PVRs.
This redundancy ensures that the original data can be reconstructed from the PVRs currently turned on,
even if some storing the data are unavailable at a given time. Given the vast amount of programs to be stored,
considering storage efficiency is crucial. Erasure coding [21–23] is preferred over replication [24,25] as it
requires significantly less storage space to store the same amount of data. However, previous systems have
not adequately addressed the storage efficiency of PVRs when recording broadcast programs.

In erasure coding, a file is divided into multiple blocks, with each block split into k fragments. An
additional (n − k) fragments are then encoded. These fragments are distributed across the n nodes in the
network. Even if some fragments are lost due to network issues, the original block can be reconstructed
through erasure coding as long as at least k out of the n fragments are received. This resilience has led to
the widespread adoption of erasure coding in the development of distributed storage systems, particularly
in network environments where nodes frequently become unavailable or packet loss is common [44–49].
Although existing distributed storage systems have focused on providing reliable storage by ensuring data
availability, they have not been designed to support streaming services for TV programs. While fragments
divided and encoded by erasure coding are stored across multiple nodes, which could potentially increase
latency and complexity compared to simple replication, recent research has demonstrated the practical
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viability of erasure coding in video streaming systems, particularly in challenging environments such as
vehicular networks [50] and lossy networks [51]. Building on these proven approaches, our system efficiently
distributes fragments across PVRs to ensure seamless content delivery while preserving the storage efficiency
benefits of erasure coding. Additionally, it is challenging to dynamically adjust the system’s capacity in
response to the skewed and evolving popularity of programs over time. To the best of our knowledge, there
have been no systems that ensure playback quality for all playback requests by adapting to changes in the
popularity of recorded programs while ensuring program availability.

3 Proposed Collaborative TV Program Recording System
In this section, we introduce a novel TV program recording system that improves storage efficiency and

performance through collaborative PVRs. We detail the following: 1) the overall architecture of the proposed
system, 2) methods for recording broadcast programs, 3) procedures for playing back recorded programs, 4)
strategies for adaptively controlling degree of redundancy to ensure the quality of recorded programs, and
5) a contribution-based incentive policy. Table 1 shows the symbols used in this paper.

Table 1: Important symbols

Symbol Definition
k Number of original fragments per block.
n Total number of fragments per block, including both original and encoded

fragments.
r Redundancy factor representing the number of times each program should be

duplicated.
apv Average availability of PVRs in the system.
apg Availability of a TV program when using erasure coding.
arc

pg Availability of a TV program when using replication.
n(k ,a pv ,a pg) Minimum number of fragments required to ensure TV program availability of at

least apg %, given k and apv .
pvx PVR with index x.
pv∗ PVR chosen to manage the erasure coding task.

Pselected Set of PVRs selected to store the encoded fragments.
C j Set of all candidate PVRs currently tuned to the channel j
e Evaluation period for PVR availability.

ap(pvx , e) Proportion of time pvx was available during the specified e.
as(x) Amount of available storage space of pvx .

pgi Program with index i.
ALi(t) List of available PVRs storing fragments of pgi at time t.
ua

i (t) Actual aggregated upload bandwidth available for pgi at time t.
ud

x(t) Upload bandwidth donated by pvx at time t.
uu

x(t) Upload bandwidth used by pvx at time t.
zi(t) Probability that pgi is viewed at time t.
λ(t) Average playback request rate per second in the system at time t.
di Duration of pgi in seconds.

rt
i(t) Total playback rate of expected requests for pgi at time t.
rpg

i Playback rate of pgi .

(Continued)
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Table 1 (continued)

Symbol Definition
m Margin value to prevent unnecessary frequent addition and deletion of fragments.

ni(t) Total number of fragments per block for pgi at time t.
na

i (t) Number of additional fragments to be generated for pgi at time t.
nd

i (t) Number of fragments to be deleted for pgi at time t.
Sdx(t) Amount of storage space donated by pvx .
Psdx(t) Portion proportional to the amount of storage space donated by pvx at time t.
Pcsx(t) Portion proportional to the degree of contribution to the system by pvx at time t.
uc

x(t) Amount of upload bandwidth contributed by pvx at time t.
Crux(t) Contribution ratio of pvx based on upload bandwidth at time t.
sux(t) Amount of storage currently used by pvx at time t.
rusx(t) Ratio of unused storage for pvx relative to its donated storage space at time t.
Crsx(t) Contribution ratio of pvx based on its unused storage space at time t.
Crx(t) Total contribution ratio of pvx to the system at time t.
SAx(t) Amount of storage space allocated to pvx for recording programs at time t.

ts(t) Total amount of storage space for recording programs within the system at time t.
α Weight value adjusted for the balance between Psdx(t) and Pcsx(t).

3.1 System Architecture
Our TV program recording system consists of PVRs, a combined storage pool donated by PVRs for

program recording, and a recording manager, as shown in Fig. 1. We assume that PVRs are equipped with
tuners, storage devices, and broadband network interfaces. Thus, they can store broadcast TV programs by
receiving them directly via tuners and share recorded TV programs with each other over the Internet after
donating part of their storage space for recording broadcast programs. When each program to be recorded
starts to broadcast, PVRs store fragments assigned by the recording manager in their storage space reserved
for program recording. Users can schedule specific programs for recording, play them back, and delete them
at any time. When users start to playback a recorded program, the corresponding PVR receives a certain
number of fragments for each block from other PVRs redundantly and decodes them. PVRs can join and
leave the system at any time.

Figure 1: The overall architecture of our proposed collaborative TV program recording system
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The recording manager coordinates the program recording process. It determines which PVR will
perform the erasure coding task of each requested program, assigns the encoded fragments of the program
among PVRs, and facilitates the sharing of these fragments among PVRs. To do so, it maintains all necessary
information for each PVR, such as a list of currently connected PVRs, available storage capacity for program
recording, and available upload bandwidth. It also keeps track of the information related to each program,
such as the current degree of program redundancy, the program length, the storage locations for each
fragment, and the number of playback requests over a specific period. The recording manager periodically
collects this information from all PVRs.

The combined storage pool is virtual storage space contributed by all participating PVRs for collabora-
tive recording. To ensure efficient sharing of programs stored in the storage pool, PVRs are interconnected
based on mesh-based overlay networks. This network structure allows efficient data transmission and redun-
dancy control by distributing storage and playback loads across multiple PVRs, enhancing performance and
scalability. When users request program recording or deletion, the recording manager coordinates the storage
of new fragments and the removal of existing ones from the shared storage pool.

It is worth noting that our collaborative system is inherently designed to be resilient to failures and
data loss incidents, considering the dynamic nature of distributed PVR participation. Since PVRs can
frequently join and leave the system, our system fundamentally assumes and handles partial failures of PVRs
storing required data. This resilience is achieved through two primary mechanisms. First, our distributed
architecture eliminates single points of failure by storing data across multiple PVRs, ensuring system
reliability even when individual PVRs become unavailable. Second, our erasure coding implementation
provides built-in data recovery capabilities: when a data block is encoded into n fragments, the system can
fully recover the original block even if up to (n − k) fragments are lost. This robustness is further enhanced
by our adaptive redundancy scheme, which dynamically adjusts the number of fragments based on program
popularity over time. This ensures sufficient redundancy is maintained even during periods of high PVR
churn or multiple failures. Accordingly, our system can maintain both data integrity and content availability
despite the dynamic nature of PVR participation.

3.2 Recording of Broadcast TV Programs
3.2.1 Utilizing Erasure Coding for Enhanced Storage Efficiency

To support all concurrent program playback requests without quality degradation and ensure data
availability comparable to that of local storage devices while using less storage space, our system stores all
recorded programs by encoding them through erasure coding. As shown in Fig. 2, a recorded program is
divided into multiple fixed-length blocks, denoted as B1, B2, B3, . . ., Bc , where c indicates the total number
of blocks belonging to each recorded program. Each block is then divided into k fragments, with additional
(n − k) fragments encoded through erasure coding. For instance, B1 is divided into k original fragments,
labeled OF1 to OFk , and (n − k) fragments are additionally encoded, labeled CFk+1 to CFn . Consequently, a
total of n fragments per block are distributed among PVRs.

Assuming that the redundancy factor, r, represents the number of times each program should be
duplicated within the system, and considering that each block of a specific program is divided into k
fragments, r × k fragments are generated for each block and distributed among PVRs. In this context,
r × k thus represents the total number of fragments required for each block, n. Erasure coding uses the
dependencies between fragments to enhance availability. These r × k fragments are dependent on each other
and any k fragments out of the r × k are sufficient to reconstruct the original block. Assuming that one
fragment per block is placed on each PVR, at least k PVRs out of the r × k PVRs that store the block’s
fragments must be available. This requirement allows us to determine the probability that at least k PVRs are
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available, which is calculated by summing the probabilities that exactly k, k + 1, ⋅ ⋅ ⋅ , or rk PVRs are available.
Since the number of available PVRs follows a binomial distribution, the availability of a TV program when
using erasure coding (apg) is calculated as Eq. (1):

apg = (
rk
k
)ak

pv(1 − apv)rk−k + ( rk
k + 1
)ak+1

pv (1 − apv)rk−k−1 + ⋅ ⋅ ⋅ + (rk
rk
)ark

pv(1 − apv)rk−rk

=
rk
∑
i=k
(rk

i
)ai

pv(1 − apv)rk−i (1)

Figure 2: Erasure coding process for storing and distributing a recorded program

To further refine our model, we can redefine n based on the specific requirements of our system. Given
that each block is divided into k fragments and PVRs maintain an average availability of apv , we introduce
n(k ,a pv ,a pg) as the minimum number of fragments required to ensure a TV program availability of at least
apg %. This value corresponds to rk in Eq. (1). Thus, by calculating rk to meet the requirements of Eq. (1),
we can determine n(k ,a pv ,a pg) based on the values of k, apv , and apg . Notably, apg is a predefined system
parameter, and k is a fixed value chosen based on the system’s erasure coding configuration. Thus, the primary
parameter requiring accurate estimation is apv . The value of apv is calculated as the average availability of all
PVRs within a specified observation period. Because the recording manager regularly exchanges messages
with PVRs to track their status, the system ensures accurate measurements of apv . Additionally, the system
incorporates a feedback loop to monitor real-time playback requests and dynamically adjust redundancy
degree, as described in Section 3.4. This mechanism further mitigates inaccuracies in apv estimations.

In contrast to erasure coding, when replicating the original block, at least one out of the r replicated
blocks is needed to obtain the block. This means that at least one PVR must be available from the r PVRs
storing the replicated blocks. Therefore, the program availability when using replication (arc

pg) is calculated
as Eq. (2):

arc
pg = (

r
1
)a1

pv(1 − apv)r−1 + (r
2
)a2

pv(1 − apv)r−2 + ⋅ ⋅ ⋅ + (r
r
)ar

pv(1 − apv)r−r
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=
r
∑
i=1
(r

i
)ai

pv(1 − apv)r−i (2)

We will demonstrate through experiments in Section 4.1 that the redundancy degree required for
apg is lower than that for arc

pg , given that the values of apg and arc
pg are identical and the same values of

apv and k are applied to both schemes. This implies that erasure coding requires less storage space than
replication to achieve the same program availability. Given the vast number of recorded programs that
need to be stored, storage efficiency becomes crucial. Therefore, our system utilizes erasure coding, which
takes advantage of the dependencies between fragments to significantly decrease the required storage space
compared to replication.

On the other hand, as the value of k increases, the overhead of data transmission and computation
required to reconstruct each block also increases. This is due to the need for more PVRs to participate in
receiving and combining fragments to retrieve each block. However, a higher value of k can improve the
load balancing between PVRs, particularly when the system handles numerous programs because fragments
are more likely to be evenly distributed between PVRs. Therefore, the value of k should be determined by
considering the trade-off between the overhead of erasure coding and the degree of load balance required in
specific system environments.

3.2.2 Selecting PVRs for Erasure Coding and Fragment Storage
In our system, users can request to record desired programs. The recording manager evaluates the

number of scheduled recording requests for a specific program before the program starts. If the number of
those requests is less than the redundancy factor r, which is calculated as n(k ,a pv ,a pg)/k, each PVR individually
stores the entire program in its own storage space to improve storage efficiency. Conversely, if the number
exceeds this threshold, the recording manager uses erasure coding to generate multiple fragments for each
block and distributes them across PVRs for collaborative recording within the combined storage pool. For
example, if r is five, but only three recording requests are made, the three requesting PVRs individually store
the program in their respective storage spaces. However, if r is seven, the recording manager employs erasure
coding and distributes the encoded fragments among seven designated PVRs.

Once the recording manager decides to use erasure coding to record a program, it must identify a PVR
to manage the erasure coding task for the program, and n(k ,a pv ,a pg) PVRs to store the encoded fragments in
their storage spaces. The PVRs currently tuned to the relevant channel are considered potential candidates
for managing the erasure coding task. When selecting a suitable PVR from these candidates, the recording
manager should consider the risk that the chosen PVR might turn off or switch channels, which would
require handing over the erasure coding task to another PVR. To mitigate the risk of losing data during
such transitions, the recording manager prioritizes selecting a PVR that is expected to remain most available
throughout the broadcast duration of the program. This availability-based selection approach is particularly
crucial in our system because any data loss during live recording would permanently affect playback
quality or require significant recovery overhead. In P2P systems, availability-based node selection for task
allocation is widely recognized as an effective method for managing peer churn and maintaining system
stability, especially in dynamic distributed computing environments where node reliability is inherently
unpredictable [52,53].

This expected availability is calculated based on the proportion of time each PVR has been available
during a specific preceding period. Assuming that the program to be recorded is scheduled to be broadcast
on channel j, the mathematical representation for selecting the suitable PVR is given by Eq. (3):
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pv∗ = arg max
pvx∈C j

ap(pvx , e) (3)

where pvx , pv∗, C j, and ap(pvx , e) represent the PVR with the index i, the PVR chosen to manage the
erasure coding task, the set of all candidate PVRs currently tuned to the channel j, and the proportion of time
pvx was available during the specified evaluation period e, respectively. By selecting the PVR with the highest
expected availability, the system can minimize potential disruptions in the encoding process and ensure a
more robust recording process. However, if the selected PVR becomes unavailable due to being turned off,
the recording manager initiates the selection process again.

The recording manager also decides which PVRs will store the encoded fragments. Unlike the selection
process for the PVR responsible for the erasure coding task, which is based on PVR availability, the recording
manager chooses the n(k ,a pv ,a pg) PVRs with the most available storage space among those currently on. If
more fragments are allocated on PVRs with higher availability, these PVRs might quickly become overloaded,
potentially saturating their bandwidth. To avoid this, our system strives to distribute fragments as evenly
as possible among all PVRs, ensuring balanced storage utilization throughout the system. Otherwise, some
PVRs may exhaust storage space, while others still have unused space. This imbalance can result in our
system’s overall capacity being prematurely exhausted, even though sufficient resources remain available
within the system. The set of n(k ,a pv ,a pg) PVRs with the most available storage space is defined in Eq. (4):

Pselected = {x ∈ Pon ∶ ∣Pselected∣ = n(k ,a pv ,a pg) and ∀y ∈ Pon/Pselected, as(x) ≥ as(y)} (4)

where Pse l ec ted is the set of selected PVRs with a cardinality of n(k ,a pv ,a pg), Pon denotes the set of PVRs
currently turned on, and as(x) is a function that returns the amount of available storage space of pvx . The
condition ∀y ∈ Pon/Pse l ec ted , as(x) ≥ as(y) ensures that every PVR in the selected set has greater or equal
available storage space compared to any PVR not in the selected set. This guarantees that the top n(k ,a pv ,a pg)

PVRs with the most available storage space are selected from those that are turned on. The encoded fragments
are then distributed among these selected PVRs.

3.3 Playback of Recorded Programs
To playback a recorded program, a requesting PVR must retrieve the original data by reconstructing

each block through erasure coding. This process requires the PVR to receive at least k fragments out of
the n fragments, which have been distributed to n distinct PVRs. Our system is designed to handle the
dynamic nature of P2P networks, where PVRs join or leave the system at any time. Consequently, our system
facilitates video streaming among PVRs through a mesh-pull structure based on P2P networks. Even if one
of the source PVRs leaves the system during playback, the PVR can continue to receive fragments from its
remaining source PVRs. In the meantime, the system searches for another available PVR to replace the one
that left the system, ensuring that the fragment availability remains sufficient to reconstruct the program.

When a PVR initiates a request to playback a recorded program, the recording manager provides it
with a list of source PVRs. The requesting PVR then sends requests to these source PVRs and receives
the necessary fragments simultaneously. This concurrent retrieval process significantly reduces the delay in
reconstructing the original data. As a result, our system ensures seamless playback of recorded programs in
the face of PVR unavailability or network fluctuations.

3.4 Adaptive Redundancy Control to Ensure Playback Quality
There are typically significant differences in the number of playback requests among recorded programs

based on their popularity. The playback quality of a popular program may not be guaranteed if the number
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of PVRs that store its fragments is not sufficient to accommodate all playback requests. While the previously
described value of n(k ,a pg ,a pv) determines the minimum number of fragments required to ensure apg %
program availability given k and apv , this number of PVRs storing these fragments does not necessarily
guarantee sufficient bandwidth to ensure playback quality without disruption. To address this, our system
implements an adaptive redundancy scheme to accommodate as many playback requests as possible for
each recorded program, regardless of its popularity. This scheme aims to minimize request rejections due to
insufficient upload bandwidth.

To maximize the utilization of aggregated upload bandwidth, our system dynamically adapts the degree
of redundancy of each program to meet changing playback demands over time. This is achieved by adding
new fragments or deleting exsiting fragments for each block as needed. Each fragment is stored on a
distinct PVR, ensuring that the number of PVRs used corresponds exactly to the total number of fragments.
Consequently, as the redundancy degree of a program increases (i.e., as the number of fragments per
block increases), the number of PVRs storing them also increases, thus increasing the aggregated upload
bandwidth available for playback. Specifically, if the total playback rate of the expected number of requests
for the program during a subsequent period exceeds the aggregated upload bandwidth provided by the
currently available PVRs among the n(k , p ,a) PVRs, our system must create additional fragments for the
program and distribute them to more PVRs to increase the aggregated upload bandwidth. Conversely, if the
expected demand playback rate is lower than the current aggregated upload bandwidth for the program,
some fragments need to be deleted from our system to prevent the wastage of storage space that could
otherwise be used for other programs.

The Algorithm 1 for our adaptive redundancy scheme outlines how our system adjusts the redundancy
degree of a program based on changing playback demands, either by adding or deleting fragments as
necessary. First, our system measures the actual aggregated upload bandwidth available in the system for
each program at time t, denoted as ua

i (t), defined by Eq. (5):

ua
i (t) = ∑

pvx∈ALi(t)
(ud

x(t) − uu
x(t)) (5)

where pgi is the program with index i, ALi(t) represents the list of available PVRs storing fragments of pgi at
time t, ud

x(t) is the upload bandwidth donated by pvx at time t, and uu
x(t) represents the upload bandwidth

currently used by pvx at time t.

Algorithm 1: Adaptive redundancy control
01 Compute ua

i (t) using Eq. (5);
02 Compute rt

i(t) using Eq. (6);
03 if (ua

i (t) < rt
i(t) −m) {

04 Calculate na
i (t) using Eq. (7);

05 Update ni(t) as ni(t) = ni(tp) + na
i (t);

06 Select one PVR to perform erasure coding and na
i (t) PVRs to store fragments

based on criteria in Section 3.2;
07 Generate na

i (t) additional fragments through erasure coding;
08 Distribute them among selected PVRs;
09 }

(Continued)
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Algorithm 1 (continued)
10 else if (ua

i (t) > rt
i(t) +m) {

11 Calculate nd
i (t) using Eq. (9);

12 if (n(k ,a pg ,a pv) ≤ ni(tp) − nd
i (t)) {

13 Update ni(t) as ni(t) = ni(tp) − nd
i (t);

14 }
15 else {
16 Update ni(t) as ni(t) = n(k ,a pg ,a pv);
17 Adjust nd

i (t) as nd
i (t) = ni(tp) − n(k ,a pg ,a pv);

18 }
19 Select nd

i (t) PVRs with least available storage space using Eq. (11);
20 Delete nd

i (t) fragments from selected PVRs;
21 }

Next, our system calculates the total playback rate of the expected requests for pgi during the subsequent
duration of pgi at the time t, denoted by rt

i(t), by multiplying zi(t), λ(t), di , and rpg
i as specified in Eq. (6):

rt
i(t) = zi(t) × λ(t) × di × rpg

i (6)

where zi(t) is the probability that pgi is viewed at time t, λ(t) is the average playback request rate per second
in the system at time t, di represents the duration of pgi in seconds, and rpg

i is the playback rate of pgi . Note
that the term zi(t) × λ(t) represents the average playback request rate of pgi at time t.

When the number of requests for pgi increases, the system must secure additional upload bandwidth
to accommodate all incoming playback requests for pgi over the next di seconds. Specifically, if ua

i (t) <
rt

i(t) −m, where m represents a margin value to prevent the unnecessary frequent addition and deletion of
fragments, the system initiates the generation of new fragments to increase the aggregated upload bandwidth
for pgi . The number of additional fragments to be generated, denoted as na

i (t), is calculated using Eq. (7):

na
i (t) =

rt
i(t) − ua

i (t)
ua

i (t)/∣ALi(t)∣
(7)

Here, rt
i(t) − ua

i (t) indicates the amount of deficiency in the aggregated upload bandwidth for pgi at the
current time t required to support all expected requests over the subsequent di seconds, while ua

i (t)/∣ALi(t)∣
represents the average available upload bandwidth per PVR in the set ALi(t) at time t. Therefore, by dividing
rt

i(t) − ua
i (t) by ua

i (t)/∣ALi(t)∣, our system determines the number of PVRs required to compensate for the
deficient upload bandwidth for pgi . The total number of fragments per block for pgi at time t, represented
as ni(t), is updated by the sum of na

i (t) and ni(tp), where tp denotes the previous update time, as shown
in Eq. (8):

ni(t) = ni(tp) + na
i (t) (8)

The recording manager is also responsible for selecting the PVR to perform erasure coding to generate
these additional fragments for pgi , as well as selecting na

i (t) PVRs to store them. The selection process
follows the criteria outlined in Section 3.2. The system generates na

i (t) new fragments and distributes them
among an equivalent number of selected PVRs.
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Conversely, if ua
i (t) > rt

i(t) +m, some fragments for pgi should be deleted to conserve the allocated
storage space. In this case, the number of fragments per block for pgi that are to be deleted at time t, denoted
as nd

i (t), is determined by Eq. (9):

nd
i (t) =

ua
i (t) − rt

i(t)
ua

i (t)/∣ALi(t)∣
(9)

It is noted that ua
i (t) − rt

i(t) represents the excess in the aggregated upload bandwidth available for
pgi at the current time t, which exceeds the amount necessary to support all expected requests over the
subsequent di seconds. Therefore, by dividing ua

i (t) − rt
i(t) by ua

i (t)/∣ALi(t)∣, our system determines the
number of PVRs that can delete their stored fragments of pgi due to the excess in the aggregated upload
bandwidth for pgi . Note that, to ensure that the minimum program availability for pgi is maintained at any
time, the total number of fragments per block for pgi must not be below n(k ,a pg ,a pv). Thus, the value of ni(t)
is calculated as shown in Eq. (10):

ni(t) =max(n(k ,a pg ,a pv), ni(tp) − nd
i (t)) (10)

In other words, if n(k ,a pg ,a pv) ≤ ni(tp) − nd
i (t), then ni(t) is set to ni(tp) − nd

i (t), and nd
i (t) remains

unchanged because ni(t) still exceeds n(k ,a pg ,a pv). However, if n(k ,a pg ,a pv) > ni(tp) − nd
i (t), then ni(t) is set

to n(k ,a pg ,a pv), and nd
i (t) is adjusted to ni(tp) − n(k ,a pg ,a pv), ensuring that ni(t)does not fall below n(k ,a pg ,a pv).

Note that, contrary to the criteria for choosing PVRs to store additional fragments, where PVRs with the
most available storage space are chosen as shown in Eq. (4), fragments are deleted from the nd

i (t) PVRs with
the least available storage space to keep maintaining balance in available storage among PVRs, as represented
by Eq. (11):

Pselected = {x ∈ Pon ∶ ∣Pselected∣ =
ua

i (t) − rt
i(t)

ua
i (t)/∣ALi(t)∣

and ∀y ∈ Pon/Pselected, as(x) ≤ as(y)} (11)

The nd
i (t) existing fragments are then deleted from selected PVRs.

Our system incorporates a feedback mechanism to dynamically determine the degree of redundancy
of each program based on changing playback demands over time. First, the recording manager periodically
gathers playback request data at predefined intervals, assessing the popularity of each program. Second, if
the playback request rate for a program exceeds predefined thresholds, the system proactively increases its
redundancy by generating additional fragments, which are then distributed across more PVRs. Third, as the
spike for a program subsides, the system reduces its redundancy degree to reclaim storage space for other
programs. While this feedback mechanism effectively addresses most changes in program popularity, rare
cases of sudden, significant demand spikes may lead to temporary playback interruptions while the system
recalibrates its resources. To address such scenarios, integrating the system with OTT streaming servers
could provide additional scalability and reliability.

3.5 Contribution-Based Incentive Policy
To encourage active participation of PVRs in terms of sharing their resources while discouraging

excessive storage use that could rapidly deplete the combined storage space, our system employs a
contribution-based incentive policy. The amount of storage space allocated to each PVR for recording
programs is determined by two factors: one proportional to the amount of storage space it donated and the
other proportional to its degree of contribution to the system.
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The portion proportional to the amount of storage space donated by pvx at time t, denoted as Psdx(t),
is calculated simply as a function of the amount of storage space donated by pvx , represented by Sdx(t),
relative to the total amount of storage space donated by all PVRs in the system as Eq. (12):

Psdx(t) =
Sdx(t)

∑l
k=1 Sdk(t)

(12)

where l indicates the total number of participating PVRs.
In addition, the proportional portion based on the contribution to the system by pvx at time t, denoted

as Pcsx(t), is determined by two types of contributions: upload bandwidth and reduced storage usage.
First, PVRs are rewarded based on the amount of upload bandwidth they contribute to the system. To
manage this, the recording manager keeps track of the amount of upload bandwidth provided by each PVR.
The contribution ratio of pvx based on upload bandwidth at time t, represented by Crux(t), is calculated
by dividing the amount of upload bandwidth contributed by pvx (uc

x(t)) by the total upload bandwidth
contributed by all PVRs as Crux(t) = uc

x(t)
∑l

k=1 uc
k(t) . This indicates that the higher the upload bandwidth provided

by pvx , the higher its contribution ratio.
To completely remove a specific program from the system, it must be deleted from all PVRs that

requested its recording. Thus, the system needs to encourage users to delete the recorded programs
immediately after viewing them. Second, to free up storage space for other users by deleting their existing
recordings and prevent individual PVRs from holding onto recorded programs for too long, the system
also rewards PVRs based on the amount of storage they do not use relative to Sdx . The ratio of unused
storage for pvx relative to Sdx(t) at time t, represented by rusx(t), is calculated as rusx(t) = 1 − sux(t)

Sdx(t) , where
sux(t) indicates the amount of storage currently used by pvx at time t. This implies that the less storage
pvx uses relative to the amount of its donated storage, Sdx(t), the greater its contribution reward rusx(t).
Similarly, the contribution ratio of pvx based on the amount of its unused storage relative to Sdx(t) at time
t, represented by Crsx(t), is calculated as Crsx(t) = rusx(t)

∑l
k=1 rusk(t) .

Consequently, the total contribution ratio of pvx to the system at time t, denoted as Crx(t), is deter-
mined by the sum of Crux(t) (the contribution based on upload bandwidth) and Crsx(t) (the contribution
based on unused storage), calculated as Crx(t) = Crux(t)+Crsx(t)

2 . The reason for dividing Crux(t) + Crsx(t)
by 2 is to ensure that the total sum of Crx(t) values for all PVRs is equal to 1, even though it merges two
different ratios. This normalization allows Sdx(t) and Crx(t) to serve as factors with equal weight when
determining the amount of storage space allocated to each PVR. The proportional portion based on the
contribution of pvx to the system at time t (Pcsx(t)), is then calculated by determining the contribution
portion of pvx relative to the total contributions of all PVRs as Eq. (13):

Pcsx(t) =
Crx(t)

∑l
k=1 Crk(t)

(13)

Finally, the amount of storage space allocated to each PVR for recording programs at time t (SAx(t))
can be calculated as Eq. (14):

SAx(t) = (α × Psdx(t) + (1 − α) × Pcsx(t)) × ts(t) (14)

where α is a weight value ranging from 0 to 1, and ts(t) represents the total amount of storage space for
recording programs within the system. The α value can be adjusted according to the current condition of the
system. If the overall system storage capacity is insufficient, it may be necessary to increase the α value to
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give more weight to Psdx(t). Conversely, if PVRs lack participation in improving system performance and
efficient storage space utilization, it may be necessary to decrease the α value to increase the proportion of
Pcsx(t). PVRs with larger SAx values receive proportionally higher priority in storage allocation within the
combined storage pool, allowing them to record more programs. If a recording request from pvx exceeds
this allocated space, SAx , it will be denied.

The incentive policy is implemented through a systematic exchange of information between the record-
ing manager and PVRs. When a PVR joins the system, it registers by sending its donated storage capacity.
Subsequently, at predefined intervals, each PVR sends a status message including current upload bandwidth
utilization and storage space usage. The recording manager maintains a record of these contributions and
calculates storage allocations using Eqs. (12)–(14). When pvx requests to record a program, the recording
manager evaluates the request against pvx ’s current storage allocation (SAx ). The policy’s effectiveness
stems from its clear correlation between contributions and benefits: users who contribute more resources
gain proportionally more recording privileges. This direct relationship provides strong incentives for active
participation and responsible resource usage, similar to successful incentive mechanisms observed in other
P2P systems. While detailed analysis of user behavior patterns requires real-world deployment data, our
policy framework establishes clear motivations for cooperative behavior.

4 Experimental Results
To evaluate the effectiveness of our proposed collaborative TV content recording system, we conducted

extensive simulations with different parameter configurations using the PeerSim P2P simulator. PeerSim is
a highly scalable, modular, and event-driven simulation framework specifically designed for peer-to-peer
protocols. We utilized the event-based engine of PeerSim to accurately model network dynamics and peer
interactions. PeerSim’s modular architecture allows for the implementation of custom protocols and network
configurations through its APIs. These features make PeerSim particularly suitable for evaluating large-scale
distributed systems like our proposed collaborative TV content recording system. The default simulation
parameters used throughout this section are listed in Table 2 unless otherwise indicated.

Table 2: Simulation parameters

Parameter Default value
Number of simulation runs 10

Duration of each simulation run 10 h
Number of participating PVRs 3000

Amount of upload bandwidth each PVR donated 5 Mbps
Amount of storage space each PVR donated 5 GB

Number of channels 50
Program duration 1 h

Playback rate of each program 3 Mbps
Block size 375 KB (1 s)

Number of original fragments per block (k) 8
Margin value to prevent frequent addition and

deletion of fragments (m)
3 Mbps

Target program availability 95%
Duration of each evaluation period 1000 s

Periodicity of PVR information gathering 3 s

(Continued)
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Table 2 (continued)

Parameter Default value
Zipf distribution parameter 0.5

Average PVR availability 0.4
Average inter-arrival rate of playback requests 0.3 requests/s

We performed ten simulation runs, with each simulation lasting 10 h to ensure the consistency and
reliability of our results. The number of participating PVRs was set to 3000. Each PVR donated 5 Mbps
of upload bandwidth, reflecting typical residential broadband capabilities, and 5 GB of storage space. We
simulated 50 channels, with each program lasting 1 h. The playback rate of each program was set at 3 Mbps
to match typical HD video streaming requirements, with a block size of 375 KB, corresponding to 1 s of
playback. The number of original fragments per block (k) was set to 8. The margin value to prevent frequent
addition and deletion of fragments (m) was set to 3 Mbps, equivalent to the bandwidth required for the
playback of one program. The target program availability is set at 95%. Each evaluation period to estimate
the availability of each PVR lasted 1000 s, and the recording manager gathered status information from each
PVR every 3 s.

Since precise popularity distributions for TV programs are not well established in the literature, we
assumed that the popularity of each program follows a Zipf distribution with a parameter of 0.5. We set
the average inter-arrival rate for all recording and playback requests at 0.3 requests/s. The request rate for
each program at the start of its broadcast was determined by multiplying the average inter-arrival rate of
all requests by its proportion among total playback requests, based on the Zipf distribution during each
hour. The temporal distribution of users’ playback requests was modeled based on observed TV viewing
patterns, notably peaking one hour after broadcast time, accounting for 20% of total requests, followed
by a gradual 10% hourly decline. The inter-arrival and inter-departure times for each PVR followed a
Poisson distribution with means of 400 and 600 s, respectively, which implies an average PVR availability
of 0.4. These parameters were carefully calibrated to represent realistic user session patterns. To incorporate
realistic viewing behaviors, we also assumed that users might switch channels randomly after viewing part
of a program.

In each simulation, we varied one or two parameters while keeping the others fixed to clearly assess the
impact of specific parameters by minimizing interference from other factors during performance evaluation.
In the next subsection, to demonstrate the impact of employing erasure coding on the redundancy degree for
each program compared to using traditional replication, we analyze the redundancy factors required by both
methods to achieve the same target program availabilities. This comparison was conducted while varying
PVR availability from 0.2 to 0.8. To illustrate the effectiveness of our proposed collaborative recording system
from the perspective of storage efficiency, we also compare our system with standalone PVRs in terms of
the amount of storage space required per program. In these experiments, we also varied the number of
concurrent playback requests per program during a peak time from 10 to 50. We then examine the impact
of our collaborative recording scheme on the total number of stored programs within the system compared
to standalone PVRs. To observe the effect of our adaptive redundancy scheme in adapting to the changing
playback demand of each program, we also compare it with a static redundancy scheme while varying the
Zipf parameter for different apv values. To investigate the effect of our adaptive redundancy scheme on
playback performance, we examine the ratios of continuous playback sessions relative to all requests for our
scheme and a static redundancy scheme, while varying Zipf distribution parameters from 0.3 to 0.9. Finally,
we conduct a sensitivity analysis to examine how variations in parameters apv and apg affect the results.
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4.1 Impact of Utilizing Erasure Coding on Redundancy Factors
Fig. 3 shows the redundancy factors (r) required by erasure coding (denoted by EC) and replication

(RC) to achieve target program availabilities (apg) of 95% and 99% while varying the PVR availability (apv)
between 0.2 and 0.8. These experimental results confirm that EC requires significantly less storage space than
RC to achieve the same data availability. The r values required by EC were on average 60.4% and 107.2%
less than those required by RC for the target apg of 95% and 99%, respectively. In particular, when apv was
0.2 and the target apg was 99%, the difference in r values was 121.5%. This is because EC can manage data
redundancy more efficiently than RC, since EC divides the program into smaller fragments and can restore
the program with only a portion of these fragments, whereas RC requires copying the entire program.

Figure 3: Redundancy factors required by erasure coding (EC) and replication (RC) according to PVR availability
(apv ), given target program availabilities (apg)

The results also demonstrate that the superiority of EC over RC becomes increasingly significant as
apv decreases or the target apg increases. The r value required by RC was significantly higher than that by
EC as apv decreased. For example, with an apv of 0.8 and a target apg of 99%, the difference in r values
between EC and RC was 1.1. However, with an apv of 0.2, this difference increased markedly to 11.5. This
trend highlights the efficiency of EC in environments with lower apv . Furthermore, EC makes the system
more storage efficient than RC as the target apv increases. In the case where the target apv increased from
95% to 99% with an apv of 0.2, the r value required by EC increased from 7.8 to 9.4. In contrast, the r value
required by RC increased from 13.4 to 20.9. Consequently, the increase in the r value for RC, relative to EC,
was approximately 4.7 times higher.

The results indicate that EC becomes increasingly advantageous as apv decreases or as a higher target
apg is required, thereby reducing the need for excessive redundancy compared to RC. This is particularly
relevant in real-world scenarios where churn rates are high and uninterrupted playback is crucial, making
EC a more favorable choice for efficient storage utilization in the system.

4.2 Impact of Collaborative Recording on Storage Requirements Per Program
Figs. 4 and 5 illustrate the significant improvement in storage efficiency achieved by our collaborative

recording system compared to standalone PVRs. The linear increase in storage requirements observed in
standalone PVRs, as shown in Fig. 4, highlights a fundamental limitation of independent recording systems.
In such systems, each PVR independently stores duplicates of each program, leading to significant storage
redundancy across PVRs. In contrast, Fig. 5 demonstrates how our collaborative system efficiently overcomes
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this limitation by sharing resources and managing them efficiently. Consequently, our system requires
significantly less storage space to support all playback requests without quality disruption across all values of
PVR availability (apv), while varying the number of concurrent playback requests during peak times from 10
to 50. Specifically, when the number of concurrent requests is 10, 20, 30, 40, and 50, our system requires on
average only 8.3%, 4.1%, 3.1%, 3.0%, and 2.9% of the storage space needed by standalone PVRs, respectively.
Notably, when there are 50 concurrent requests and apv is 0.8, our system uses only 1.7% of the storage
space compared to the standalone PVRs. This efficiency is achieved because our system avoids unnecessary
data duplication by enabling PVRs to collaborate in sharing resources. In contrast, standalone PVRs must
store each program on their own storage devices, duplicating it as many times as there are individual PVRs
that recorded it because the redundancy degree is not adjusted. Furthermore, as the number of concurrent
requests increases, the redundancy degree among standalone PVRs gets larger, leading to greater inefficiency.
This explains the widening gap in storage requirements between our system and standalone PVRs as the
number of concurrent requests increases. For instance, the difference in the redundancy degree between our
system and standalone PVRs is 2.7 times higher when the number of concurrent requests is 50 compared to
when it is 10.

Figure 4: Amount of storage space required per program in standalnoe PVRs

Figure 5: Amount of storage space required per program according to the number of peak-time requests per program
for different PVR availabilities (apv )
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We can also see from Fig. 5 that in our system, the storage space required per program increases as
the number of concurrent playback requests gets larger. The average storage space for all values of apv
is 5.5 GB when there are 10 concurrent playback requests, but this increases to 10.1 GB when there are
50 concurrent playback requests. The value of n(k ,a pv ,a pg) represents the minimum number of fragments
required to ensure the program availability of apg , given k and apv , and these fragments are distributed
across an equivalent number of PVRs. When the number of concurrent requests is small, the aggregated
upload bandwidth of the PVRs storing n(k ,a pv ,a pg) fragments is sufficient to maintain playback quality while
ensuring availability. Therefore, with an apv of 0.2, the original n(k ,a pv ,a pg) value was adequate to support
all playback requests up to 30 concurrent playbacks, and for an apv of 0.8, up to 10 concurrent playbacks.
However, as the number of concurrent requests increases, the aggregated upload bandwidth of n(k ,a pv ,a pg)

PVRs becomes insufficient. Consequently, to support all playback requests, the system must adaptively
determine the number of fragments, generate additional fragments, and store them across multiple PVRs,
thereby increasing storage requirements. For example, with an apv of 0.2, the required storage capacity was
11.1 GB for 30 requests but increased to 16.9 GB for 50 requests.

As expected, we have observed that lower PVR availability (apv) requires a higher redundancy factor
(r). This is because more redundancy is required to maintain data availability when individual PVRs are less
reliable. For example, when the number of concurrent playback requests is 50, 16.9 GB of storage is required
when apv is 0.2, while only 5.7 GB is needed when apv is 0.8.

4.3 Effect of Our System on Total Number of Stored Programs
Fig. 6 illustrates the total number of stored programs for different apv values under varying Zipf

parameter s in our adaptive redundancy scheme (denoted as ARS), compared to a static redundancy scheme
(SRS). The SRS maintains the initial redundancy degree determined at the time of recording to ensures basic
availability, regardless of changes in program popularity over time. This static approach serves as a baseline
to evaluate the effectiveness of our proposed ARS, which dynamically adjusts redundancy degrees based on
program popularity. First, we can observe from Fig. 6 how our collaborative recording system affects the
total number of stored programs compared to standalone PVRs. In this experiment, a standalone PVR can
store only 3.7 programs because it uses 5 GB of space for recording on its storage device. In contrast, our
system can store between 780 and 6280 programs depending on PVR availability (apv) and Zipf distribution
parameter (denoted as s), which represents the degree of popularity bias among the programs. This means
that users can record 211 to 1700 times more programs in our system compared to standalone PVRs through
resource sharing and PVR collaboration.

Furthermore, to examine the impact of ARS on the total number of stored programs, we conducted
experiments with apv values of 0.2, 0.4, 0.6, and 0.8, while varying s values from 0.3 to 0.9. As seen in Fig. 7,
which displays the ratios of playback requests to total requests for 100 programs ranked by popularity, lower
s values correspond to smaller differences in program popularity, resulting in a relatively more uniform
distribution among programs. Conversely, higher s values make these differences more significant, leading
to a more skewed popularity distribution. For example, when an s value is 0.9, the most popular program
accounts for 15.6% of all playback requests and maintains a high request rate for a longer period even as
requests decrease by 10% per hour after the peak period.
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Figure 6: Total number of stored programs for different apv values under varying Zipf parameter s in our adaptive
redundancy scheme (ARS), compared to a static redundancy scheme (SRS)

Figure 7: Ratio of playback requests to total requests for 100 programs ranked by popularity

We observed that as the s value increases, the number of stored programs decreases. Specifically, the
average number of stored programs across all values of apv was 3762 when s was 0.3, while it drops to
just 1953 when s increased to 0.9. This is because higher s values require more redundancy to maintain
playback quality, which increases the amount of storage required per program and thus reduces the total
number of stored programs. In our system, the total redundancy volume required for storing each program
comprises a base redundancy volume, which is necessary to guarantee availability (as determined by the
n(k ,a pv ,a pg) value), and an additional redundancy volume, which is essential to ensure playback quality. Figs. 8
and 9 illustrate the composition of the base and the additional volume of redundancy for each case
depicted in Fig. 6. As shown in Fig. 8, while the base redundancy volume remains consistent for the same
apv regardless of the s values, the additional redundancy volume increases significantly for more popular
programs as s increases. For example, when apv = 0.2, the additional redundancy volume was equivalent to
31.4 programs at a s of 0.3, but increased to 4815 programs at 0.9. Consequently, an increase in the additional
redundancy volume leads to a decrease in the total number of stored programs.
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Figure 8: Base redundancy volume for different apv values under varying Zipf parameter s in our adaptive redundancy
scheme (ARS), compared to a static redundancy scheme (SRS)

Figure 9: Additional redundancy volume for different apv values under varying Zipf parameter s in our adaptive
redundancy scheme (ARS), compared to a static redundancy scheme (SRS)

We can also see that when s is 0.3, which indicates the smallest difference in popularity among programs,
the increase in additional redundancy volume is only slight, making it nearly identical to that of SRS. SRS
does not consider fluctuations in popularity over time, instead fixing the redundancy factor (r) based on a
given apv and determining r values only to ensure minimum availability. For example, with an s value of
0.3, ARS increased the additional redundancy volume by only 6.4% compared to SRS. Consequently, SRS
allows for storing more programs compared to ARS. However, it may fail to guarantee playback quality as
the number of playback requests exceeds a certain threshold, as discussed in Section 4.4.

As expected, when apv increases, the n(k ,a pv ,a pg) value required to ensure the target program availability
(apg) decreases, thereby reducing the redundancy factor (r) needed to store a program. Consequently, more
programs can be stored in the system because each program requires less storage space. For example, with
an s value of 0.7, the system could store 4269 programs when apv was 0.8, but only 1009 programs when apv
was 0.2.
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4.4 Impact of Adaptive Redundancy Control on Playback Continuity
Fig. 10a–d illustrates the ratios of continuous playback sessions–defined as those maintaining over 95%

playback continuity–relative to all requests. These figures compare the performance of ARS and SRS across
different Zipf distribution parameters s of 0.3, 0.5, 0.7, and 0.9, respectively. The total number of playback
requests per hour for each program varies with s values. It is assumed that after the initial peak hour following
a broadcast, the number of playback requests for each program decreases by 10% per hour. Consequently,
programs with higher popularity maintain a larger number of playback requests over a longer period, which
leads to a higher total number of playback requests. To clearly demonstrate the differences between the
two schemes, we analyzed the performance around the points at which the ratios of continuous playback
sessions reach saturation while varying the number of playback requests for each s value. As the number of
playback requests per hour increases beyond the capacity of the aggregated upload bandwidth provided by
the PVRs, both schemes show a decline in the ratios of continuous playback sessions. Specifically, the ratios
of continuous playback sessions began to decrease noticeably when the number of playback requests per
hour reached 1070, 1580, 2470, and 3540 for s values of 0.3, 0.5, 0.7, and 0.9, respectively.

Figure 10: Ratios of continuous playback sessions relative to all requests in ARS and SRS for different Zipf parameters
s: (a) s = 0.3, (b) s = 0.5, (c) s = 0.7, (d) s = 0.9

In Fig. 10a–d, ARS outperformed SRS by an average of 1.8%, 14.9%, 33.3% and 43. 5% in terms of the
ratio of continuous playback sessions s of 0.3, 0.5, 0.7, and 0.9, respectively. SRS focuses only on ensuring
program availability without considering program popularity, which limits its ability to provide sufficient
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upload bandwidth as the number of requests increases. Consequently, as popularity bias among programs
increases, SRS struggles to support playback requests without quality disruption, especially for more popular
programs. This limitation leads to a marked decrease in the overall ratio of continuous playback sessions.
Specifically, the ratio was on average 43.7% lower for s = 0.9 compared to s = 0.3. In contrast, by adaptively
controlling the degree of redundancy of each program based on its popularity, ARS not only ensures program
availability but also provides sufficient upload bandwidth for high-quality playback of popular programs.
ARS maintained average ratios of continuous playback sessions at 96.6%, 96.8%, 96.9%, and 94.3% before
reaching the saturation points for each respective s value. This performance indicates that irrespective of
the s value, ARS effectively adjusts the total number of fragments to match the playback demand of each
program. As a result, it efficiently utilizes the system’s aggregated upload bandwidth for each program until
it is exhausted. Therefore, ARS performs more advantageously compared to SRS, particularly in practical
situations where disparities in program popularity frequently occur.

4.5 Effect of Varying apv and apg on Storage Requirements and Performance
We conducted a sensitivity analysis to examine how variations in apv and apg affect the storage

requirements and system performance. By altering one parameter at a time while keeping the other constant,
we were able to isolate and understand the individual effects of each parameter on the system. First, we
analyzed the effects of varying apv while keeping apg fixed at 95%. Fig. 11 illustrates the impact of changing
apv from 0.2 to 0.8 in increments of 0.2. As apv increases, the amount of required storage space per
program decreases. Specifically, at apv = 0.8, the storage requirement is 79.2% lower compared to apv = 0.
This reduction occurs because higher apv values indicate that a PVR is more likely to be available, allowing
the system to achieve the target apg with fewer fragments. The number of supported concurrent playbacks
increases as apv increases. At apv = 0.8, the system supports 3.8 times more playbacks than at apv . This
is due to the increased availability of PVRs, which provides greater aggregate upload bandwidth. These
results demonstrate that apv significantly influences both storage requirements and system performance,
with higher apv values leading to better resource utilization and playback capacity.

Figure 11: Storage requirement per program and the number of supported concurrent playbacks according to varying
apv while fixing apg = 95%

We also examined the impact of varying apg from 91% to 99% in increments of 2% while keeping apv
fixed at 0.4. Fig. 12 shows the effects on storage requirements and concurrent playbacks. As apg increases,
the required storage space per program also rises. At apg = 99%, the storage requirement is 28.3% higher
than at apg = 91%. This is expected as achieving higher program availability requires storing more fragments
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to account for potential PVR failures. The number of supported concurrent playbacks remains largely
unaffected by changes in apg . This is because playback capacity is determined by the system’s available upload
bandwidth, which is independent of apg . These findings suggest that while apg primarily impacts storage
requirements, its effect on playback performance is minimal compared to variations in apv . Consequently,
this sensitivity analysis provides insights into the system’s ability to maintain consistent performance under
different conditions.

Figure 12: Storage requirement per program and the number of supported concurrent playbacks according to varying
apg while fixing apv = 0.4

5 Conclusions
In this paper, we proposed a collaborative TV content recording system that addresses the limitations

of standalone PVRs and on-line catch-up TV by leveraging the combined resources such as storage and
upload bandwidth of distributed PVRs without additional costs. By pooling these resources into a virtual
shared storage pool, our system increases storage efficiency for program recording and accommodates as
many playback requests as possible while maintaining high-quality streaming performance.

Our system considerably expands recording capacity through efficient resource sharing among PVRs,
enabling the recording of a much larger number of programs. This collaboration also allows for simultaneous
recording of multiple programs regardless of the user’s current activity or device status. By employing
erasure coding, our system minimizes the required storage space per program while maintaining high
data availability. Additionally, we introduced an adaptive redundancy scheme that dynamically controls the
degree of redundancy based on each program’s playback demand, ensuring high-quality playback for popular
programs. We also implemented a contribution-based incentive policy, which rewards PVRs that actively
donate resources and promote fair use of the shared storage pool.

Our experiments demonstrated that our system not only surpasses standalone PVRs in terms of storage
efficiency and capacity but also outperforms static redundancy schemes in terms of ratios of continuous
playback sessions. As online streaming and catch-up TV services continue to increase in popularity,
our proposed collaborative recording system has the potential to play an increasingly important role in
supporting scalable high-quality TV content recording and playback.

As future work, we plan to improve the selection criteria for PVRs that manage erasure coding
by developing a multi-criteria evaluation framework that incorporates additional factors in addition to
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availability. Additionally, we plan to refine our incentive policy on user behavior by monitoring actual user
responses in real-world system deployments.
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