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ABSTRACT

The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a
realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently
encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of
intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on
framework that integrates an attention mechanism, comprising a garment warping stage and an image generation
stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the
critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details
commonly observed in virtual try-on images produced by existing methods. During the image generation stage,
with the aim of maximizing the utilization of the information proffered by the input image, the input features
undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing
alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate
the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment
details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline
methods, establishing its advantage in generating realistic and high-quality virtual try-on images.
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1 Introduction

Numerous studies have highlighted the growing demand for virtual fitting technology in response
to the increasing prevalence of online shopping. This area has attracted significant research attention
due to its potential to enhance the online retail experience. Virtual try-on technology provides an
innovative solution, enabling customers to visualize how garments purchased online would appear
when worn, without the necessity of physical fitting. The primary objective of virtual try-on is to
generate realistic and precise fitting images by seamlessly integrating a given garment with a reference
image. The synthesized image should adhere to the following criteria to the greatest extent possible: (1)
Preserve the garment’s inherent attributes, including its color, texture, contour, and shape; (2) Maintain
the original physical characteristics of the figure, such as body structure, posture, and proportions;
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(3) Ensure the garment is naturally adjusted to align with the figure’s position and posture; and (4)
Accurately render the body regions covered by the garment. The primary challenge in virtual try-on
lies in accurately aligning the target garment with the corresponding anatomical regions of the figure,
a task that is inherently complex.

Prior studies have attempted to address the alignment challenge through explicit distortion
models. While these algorithms effectively mitigate issues of clothing alignment and distortion, the
limited resolution of the generated images (e.g., 256 × 192 pixels) often fails to meet the visual quality
expectations of end users. To address this issue, methods such as VITON-HD [1] and HR-VITON [2]
have been developed for virtual try-on using high-resolution datasets, producing high-quality fitted
images. These approaches not only enhance visual impact but also effectively resolve issues related
to clothing warping in high-resolution images, facilitating better alignment with the human body.
However, challenges remain in accurately preserving critical clothing characteristics, such as color
fidelity, intricate patterns, collar structure, and sleeve length integrity.

We propose a novel two-stage virtual try-on framework, consisting of a garment warping stage
and an image generation stage, to facilitate the precise extraction of essential clothing features and
address the aforementioned challenges effectively. In the garment warping stag stage, we introduce a
channel attention mechanism, which effectively preserves important clothing details. During the image
generation stage, to maximize the utilization of input image information, we design an upsampling
normalization module (SNM) that collects two samples during the normalization process. The main
contributions of this work are summarized as described subsequently:

• A channel attention method is incorporated into the garment warping step to evaluate the
significance of each feature channel in the feature map, highlight important channels, suppress
unimportant features, and address the loss of clothing details in producing fitting pictures.

• We address the issue of target information loss by designing an SNM module into the generator,
which enhances subsequent model training and learning.

• The SmoothL1 loss function is used instead of the L1 loss function to train the clothing warping
stage, guaranteeing the correctness of the warping clothing information.

2 Related Work

Virtual Try-On Based on Image: Research in virtual try-on generally focuses on two techniques:
three-dimensional (3D) modeling [3–7] and two-dimensional (2D) image-based methods [8–12].
While 3D fitting technology shows promise, its adoption is currently limited by high costs, complex
modeling requirements, and the need for specialized equipment. In contrast, 2D techniques are gaining
popularity due to their simplicity, cost-effectiveness, and accurate results. Thin Plate Splines (TPS)
are commonly used to warp clothing, aligning apparel images with the target object’s posture. This
technique, initially proposed by Han et al. [13] as part of VITON, employs a coarse-to-fine image
generation approach. Several studies [10,14–17] have further utilized TPS for warping, establishing
relationships between clothing and figure images through feature extraction and adjusting the clothing
to fit relevant body sections. However, most two-stage approaches require training multiple networks.
VITON-HD [1] and HR-VITON [2] improve conditional GAN performance for high-resolution
images, but challenges such as detail loss remain. Our method addresses these limitations, producing
images that better align with inputs while preserving finer details.

Effective Attention Mechanism: In deep learning (DL), especially in Natural Language Processing
(NLP), the attention mechanism is crucial for identifying key information and efficiently allocating
processing resources. The core idea of the attention mechanism is to assign weights to different input
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parts, adjusting the model’s focus accordingly to the human visual system, which highlights important
scene elements while ignoring minor ones. This selectivity helps reinforce key information, boosting
model performance. Bahdanau et al. [18] applied the attention mechanism to machine translation
by assigning different attention weights to each word in the source sentence. This enables the model
to focus on relevant information, capture long-sequence context effectively, and enhance translation
quality. Vaswani et al. [19] introduced the self-attention mechanism in the Transformer model, which
assigns weights to each word based on its relationships with other words in the input sequence. This
allows the model to focus on relevant information, effectively capturing context in long sequences and
improving translation quality. Hu et al. [20] introduced a channel attention technique that assigns
weights to each channel in the feature map. This allows the model to prioritize important infor-
mation, optimize resource allocation, and improve expressiveness and performance. Woo et al. [21]
introduced the Convolutional Block Attention Module (CBAM). This module combines spatial and
channel attention mechanisms to enhance important features by weighting various spatial positions
and channels in the feature map. This method improves feature selectivity and optimizes resource
allocation, allowing the model to process crucial information more efficiently. Originally popular in
machine translation, researchers now widely adopt attention mechanisms in image generation. In this
study, a channel attention mechanism was incorporated into the garment warping stage. This addition
captures local cross-channel interaction data, learns the critical features of each channel in the feature
map, and highlights critical feature channels. This approach helps retain more detailed information
about clothing and ensures the effectiveness and accuracy of the generated data.

Normalized Module: As deep neural networks grow deeper, the distribution of activated input
values shifts, causing nonlinear functions like sigmoid to saturate, which results in vanishing gradients
and slower convergence during backpropagation. To address this, data normalization is commonly
used; however, it may erase semantic information and make features overly similar, negatively impact-
ing image generation. Park et al. [22] proposed spatially adaptive normalization, which uses semantic
layout as input to generate scaling coefficients through convolution. This approach preserves semantic
information while enhancing image realism. Building upon this principle, the method proposed in this
study is similar to spatially adaptive normalization, as it ensures spatial normalization of generator
activations at multiple granularity levels. By operating at different resolutions, this method effectively
utilizes input data, preserving critical information while enhancing output quality.

Appearance Flow: Appearance flow refers to 2D coordinate vectors indicating which pixels in
the source can be used to synthesize the target. Originally introduced in image-based virtual try-
on (VTON) by [8], appearance flow has since garnered considerable attention. Chopra et al. [23]
applied 3D appearance flow to generate images of people in target poses, calculating appearance
flow as supervision by fitting a 3D model-an approach not available for 2D try-on. PF-AFN [24]
employed knowledge distillation to extract the appearance flow between human and clothing images,
achieving an accurate, dense correspondence between the two. He et al. [17] proposed estimating the
appearance flow by applying a global style vector through style modulation. Similarly, HR-VITON
[2] incorporates appearance flow to enhance model performance and visual quality. Beyond VTON,
appearance flow has proven useful in other tasks, such as novel view synthesis and feature mapping that
distorts human pose transfer. In the garment warping stage of this paper, we use existing appearance
flow technology as the sampling grid for clothing warping, which offers the advantages of lossless
information transfer and detail preservation.
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3 Method

In this section, the proposed high-resolution virtual try-on model with attention mechanism is
introduced.

3.1 Architecture

Using a reference image of a person I ∈ R3×H×W and a garment image G ∈ R3×H×W (H and
W denote the height and width of the images, respectively), the objective is to generate an image
IC ∈ R3×H×W , depicting a person wearing garment G while preserving body structure and posture.
The proposed framework achieves this goal through two main stages, as illustrated in Fig. 1: (a) the
garment warping stage and (b) the image generation stage. In the garment warping stage, given the
clothing image G and the human body segmentation image S, which shows clothing occlusion, the
method simultaneously deforms G and generates the segmentation map S∧ (refer to Section 3.2). The
outputs C∧ and S∧ from the garment warping stage serve as inputs to the image generation stage, where
the final try-on image IC is synthesized (refer to Section 3.3).

Figure 1: General frame diagram. The figure pose heatmap P ∈ R3×H×W and segmentation map S ∈
LH×W are obtained via the figure image I processing, where L is a set of integers indicating the semantic
labels and the clothing mask image Cm is obtained by clothing image G processing

3.2 Garment Warping Stage

The main objective in this stage is to generate the segmentation diagram S∧ of the figure wearing
the target costume G, warp the costume G to fit the human posture, and then employ the warped
costume image C∧ and the segmentation diagram S∧ as inputs for the image generation stage. The
basic structure of the proposed garment warping stage is illustrated in Fig. 2. It consists of a decoder
and two identical feature encoders: a garment encoder EC and a segmentation encoder ES. The given
(G, Cm) and (S, P) are processed through the feature encoders to extract the features. The features
extracted by the garment encoder are then fed into the attention module to enhance them. Feature
fusion of each layer from both encoders is achieved using an information fusion module. Consequently,
the segmented image wearing the target clothes and the distorted clothing image’s appearance flow are
predicted using the fusion module. Ultimately, the segmented figure S∧, the warped clothes G, and the
warped clothing mask Cm are obtained.
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Figure 2: Garment warping stage. The ECABlock and Information switching module are described in
detail

ECAAttention Module: It is not straightforward to determine which feature layers play a major
role and which play a minor role when extracting features from feature maps. To address this, the
Efficient Channel Attention (ECA) module adjusts channel weights based on the feature extraction
process. This ensures that feature maps with greater significance exert a larger impact on the results,
achieving more effective feature extraction compared to regular convolutional layers. Moreover,
the ECAAttention [25] builds upon the SEAttention [20] by replacing the Multi-Layer Perceptron
(MLP) module with one-dimensional (1D) convolution, as illustrated by the ECABlock in Fig. 2.
This modification substantially reduces computational complexity. The comparison of the associated
computational complexities is presented in Table 1, and the data presented herein is derived from ECA-
Net [25].

Table 1: Comparison of the ECAAttention and SEAttention models on ImageNet, focusing on
network parameters (Param), floating point operations per second (FLOPs), and inference speed
(frames per second, FPS)

Model Param FLOPs Inference

SEAttention(MLP) 63.68M 10.85G 761FPS
ECAAttention(Conv1D) 57.40M 10.83G 785FPS
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Given the aggregate features generated by average pooling [1, 1, C], the ECABlock computes
channel weights using 1D convolution with a kernel size of K, where K is adaptively determined
by mapping the channel dimension C through a nonlinear function. In addition, the number of
convolution kernels is set to 2K , as the typical channel size is 2. The corresponding expressions are
defined in Eqs. (1) and (2):

C = 2(γ ∗k−b) (1)

k = ψ(C) = | log2(c)
γ

+ b
γ

|odd (2)

where ||odd indicates that k must be odd, γ and b are set to 2 and 1, respectively, to adjust the ratio
between the channel count C and the convolution kernel size. Nonlinear mapping is applied in lower-
dimensional channels to produce shorter interactions, while linear mapping achieves this in higher-
dimensional channels.

Before injecting the relevant clothing features into the information switching module, we first
pass them through the ECABlock for feature enhancement. ECA Attention assigns weights to
these channels, selectively emphasizing key features to improve the network’s ability to discriminate
important characteristics. Initially, each channel of the input feature map undergoes global average
pooling to capture comprehensive information. Next, fully connected layers are used to scale the
features, generating channel-specific weights through an activation function. Finally, these weights
are applied across the channels of the original feature map, strengthening important features while
suppressing less significant ones. This approach effectively preserves critical attributes, such as color
and texture, as confirmed by subsequent experiments.

Information Switching Module: The information switching module consists of two branches: the
garment appearance flow branch FCi and the segmentation flow branch FSi , as shown in Fig. 2. The
garment appearance flow branch FCi extracts clothing appearance features, while the segmentation
flow branch FSi processes features obtained from the segmentation encoder. These features are passed
into the information exchange module, and the outputs are forwarded to the next stage. The two
branches interact to compute the appearance flow and segment the image.

3.3 Image Generation Stage

In this stage, the final fitting image IC is generated by integrating the unknown clothing image Ia,
the warped clothing image C∧, the segmented image S∧, and the pose image P guided by S∧. Fig. 3
shows the generator’s network framework, composed of residual blocks and upsampling layers. Each
residual block, except the first layer, receives additional input, ensuring progressively more information
is captured.

The generator employs a set of residual blocks with an upsampling layer (referred to as SNM
Resblocks). Each SNM Resblock consists of three convolution layers and three normalization layers,
as shown in Fig. 3b SNM Block. The operation of SNM is similar to that of SPADE [22]. SNM
samples the segmented map (Seg) twice. In Fig. 3b, Seg is first upsampled and downsampled before
interpolation, which we refer to as double sampling. This process reduces high-frequency noise while
preserving the image’s approximate structure and size, thereby efficiently utilizing the input data and
enhancing the model’s ability to recognize objects of various sizes and shapes, ultimately producing
higher-quality images.
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Figure 3: Image generation stage. The composition of Image generation stage and SNM Block are
described in detail

The SNM ResBlock operates at multiple resolutions, so inputs are resized before normalization
and fed into each layer. Similarly, the generator’s input values are adjusted to different resolutions.
Before each SNM ResBlock, the convolutional layer connects the resized inputs to the previous layer’s
activation, and each SNM ResBlock uses these connected inputs to enhance activations.

The input resolution for each subsequent SNM ResBlock is 2n−1 times the initial input resolution,
where n denotes the number of SNM ResBlocks, and the input resolution for the first SNM ResBlock
is set to the lowest resolution (8×6 pixels). This approach enables multi-scale feature-level refinement,
which better preserves garment details compared to single-scale pixel-level refinement.

3.4 Training Losses

To train the garment warping stage, pixel-level cross-entropy loss £CE is applied between S (the
one-hot encoding of the analytical graph) and the projected segmentation graph S∧. To ensure
accurate clothing deformation aligned with human posture, SmoothL1 loss and perceptual loss are
also employed. These loss functions regulate the intermediate flow, preventing vanishing gradients
and improving training efficiency. Formally, the losses £SmoothL1

and £vgg are defined in Eqs. (4) and (5):

SmoothL1(x) =
{

0.5 ∗ (x)/beat, if |x| < beat
|x| − 0.5 ∗ beat, otherwise (3)
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£SmoothL1
=

3∑
i=0

wi · SmoothL1(W(Cm, FCi), Sc) + SmoothL(S∧, Sc) (4)

£vgg =
3∑

i=0

wi · φ(W(G, FCi), Ic) + φ(C∧, Ic) (5)

where wi denotes the relative significance of each component, W represents warping, as proposed
in the warping method of HR-VIION [2], φ denotes the VGG loss function, and finally, Sc and Ic,
respectively represent the parsed cloth and its mask.

Moreover, £tv denotes the total variation loss, which promotes the smoothness of the appearance
flow, as formulated in Eq. (6):

£tv = ||∇FC4
||1 (6)

For end-to-end training at the warping garment stage, the objective function is shown in Eq. (7):

£w = λCE£CE + £cGAN + λSmoothL1£1 + £vgg + λtv£tv (7)

where £GAN is the conditional GAN loss between S and S∧, λCE, λSmoothL1, and λtv represent the
hyperparameters of relative importance between different losses.

To train the image generator, the same loss used in SPADE and pix2pixHD [26] is employed in
this algorithm. Conditional antagonistic loss, perceptual loss, and feature matching loss represent the
different parts of our objective loss function. Therefore, the target loss function is expressed by Eq. (8):

£G = £CG + λvgg£vgg + λF£F (8)

where £CG, £vgg, and £F denote the antagonistic loss, perceptual loss, and feature matching loss,
respectively.

4 Experiment
4.1 Dataset

In this experiment, we employed the high-resolution virtual try-on dataset provided by VITON-
HD [1]. The dataset includes 13,679 positive samples of women wearing various garments, with each
image originally sized at 1024×768 pixels. Images were down-sampled as necessary to meet resolution
requirements. A training set of 11,647 pairs and a test set of 2032 pairs were created from the dataset.

4.2 Implementation Details

All experiments were implemented using PyTorch on an NVIDIA RTX 3090 GPU. The batch sizes
for the garment warping and image generation stages were set to 8 and 1, respectively. The generator
learning rate was fixed at 0.0002, and the discriminator learning rates were set to 0.0002 and 0.0004,
respectively. The AdamW optimizer was adopted with parameters β1 = 0.5 and β2 = 0.999 for the
garment warping stage, and β1 = 0.0 and β2 = 0.999 for the image generation stage. Training was
conducted over 100,000 and 200,000 iterations for the garment warping and image generation stages,
respectively, with the model being saved every 10,000 iterations.
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4.3 Qualitative Results

Comparison with Baselines: To qualitatively evaluate the proposed strategy, we compared it with
several State-of-the-Art (SOTA) baseline methods. Due to limitations in experimental resources, we
excluded diffusion models from the comparison. The selected methods include VITON-HD [1], HR-
VITON [2], PF-AFN [24], and SD-VITON [27]. Fig. 4 presents the results of our approach compared
to these baselines, using publicly available code implementations for the baseline methods. It is evident
that the previous approaches struggle to generate satisfactory images. While recent methods have
improved clothing fit to the body, they often fail to retain critical details, such as the original color,
pattern, and neckline shape of the garments. In contrast, the proposed method ensures that the outfit
conforms to the character’s physique while preserving the original garment’s features.

Figure 4: (Continued)



2762 CMC, 2025, vol.82, no.2

Figure 4: Qualitative comparison with baselines. Compared with Copyright 2021, IEEE. VITON-HD:
Reprinted with permission from Reference [1]. Copyright 2021 IEEE. HR-VITON: Reprinted with
permission from Reference [2]. PF-AFN: Reprinted with permission from Reference [22]. Copyright
2022 ECCV. SD-VITON: Reprinted with permission from Reference [27]. Copyright 2024 AAAI

Referring to the first row of Fig. 4, the baseline method fails to preserve the original neckline
shape, sleeve length, and other details after warping the garment. The fifth row presents results using
a side view, where the baseline approach struggles with significant pose deformations, leading to a
poor fit. In contrast, the proposed approach successfully adapts the garment to the character’s body
shape and performs well even when parts of the body are occluded.

Effectiveness of the Attention Mechanism: We incorporated the attention mechanism to retain
more information during garment warping, as illustrated in Fig. 5 (first row, fifth column). The red
and yellow dotted lines highlight regions where the baseline method loses details, such as the pattern
near the arm (red box). In contrast, the proposed method preserves more visual information (yellow
box). Furthermore, in the second row (third and fourth columns), the proposed approach generates a
garment color that more closely matches the original.

Figure 5: Effectiveness of attention mechanisms
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Fig. 6 shows that the attention mechanism improves the alignment of warped clothing with body
parts. In the first row, our method matches better the segmap clothing regions, with sleeve width
aligning more accurately with the arm. The second row highlights our approach that warps the clothing
to fit the body’s curvature more precisely, validating its effectiveness.

Figure 6: Demonstration of the effectiveness of attention mechanism on garment warping

4.4 Quantitative Results

We quantitatively compare our method to baseline approaches under both paired and unpaired
settings. In the paired setting, the task is to reconstruct the person’s image using the original clothing
image, while in the unpaired setting, the objective is to swap the clothing item of the person’s image.
It is important to note that variations in experimental equipment and environmental conditions may
result in discrepancies between the data reported here and those in the original paper.

Compared With the Baseline Method: As shown in Table 2, we compare our approach with
industry-standard methods, including VITON-HD [1], HR-VITON [2], FS-VITON [17], PF-AFN
[24], and SD-VITON [27]. In the paired settings, we evaluate the quality of the generated composite
images using metrics such as the Structural Similarity Index Measure (SSIM) [28], Peak Signal-to-
Noise Ratio (PSNR) [29], and Learned Perceptual Image Patch Similarity (LPIPS) [30], comparing the
composite images to the target (ground truth) images. For unpaired settings, we assess performance
using the Fréchet Inception Distance (FID) [31].

Utilize The 512 × 384 Dataset: Additionally, we evaluated our method on a dataset with a reso-
lution of 512 × 384 pixels and compared its performance against several state-of-the-art approaches,
including VITON-HD [1], HR-VITON [2], FS-VITON [17], DAFLow [32], PF-AFN [24], and SD-
VITON [27]. The results of this quantitative comparison are summarized in Table 3. Our method
demonstrates robust performance, even with lower-resolution images.
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Table 2: Quantitative comparison with baseline methods on a dataset with a resolution of 1024 × 768

Methods SSIM ↑ LPIPS ↓ PSRN ↑ FID ↓
PF-AFN 0.8079 0.2134 15.0392 32.2668
VITON-HD 0.8716 0.0806 20.8346 12.3131
FS-VITON 0.8430 0.1043 19.7314 37.0364
HR-VITON 0.8840 0.0654 22.0112 11.8212
SD-VITON 0.8956 0.0627 22.4036 12.5387
Ours 0.8960 0.0630 23.2814 10.6912

Table 3: Quantitative comparison with baseline methods on a dataset with a resolution of 512 × 384

Methods SSIM ↑ LPIPS ↓ PSRN ↑ FID ↓
PF-AFN 0.8540 0.0935 21.0184 27.8159
VITON-HD 0.8568 0.0813 21.2007 11.8384
DAFLow 0.7623 0.2500 16.2416 92.5041
FS-VITON 0.8476 0.1035 20.1014 29.3052
HR-VITON 0.9090 0.0720 21.8201 26.9497
SD-VITON 0.9167 0.0673 22.0065 11.6040
Ours 0.9223 0.05987 22.7936 23.0787

4.5 Ablation Study

Fig. 7 presents the results of sub-optimization experiments, where we excluded the attention
mechanism in the clothing warping stage, removed SNM from the image generation stage, and omitted
SmoothL1 loss during model training. Compared to the results generated by our approach, these
results show notable issues such as loss of garment detail and poor generation quality, demonstrating
the effectiveness of our proposed method.

Figure 7: (Continued)
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Figure 7: Ablation diagram. It shows the effects of different methods and works best when all methods
are used together

Additionally, the line plot in Fig. 8 shows that training the model with SmoothL1 loss improves
the overlap between the predicted results and the actual combinations, thereby enhancing the accuracy
of the generated images.

Table 4 presents the results of the ablation study, which evaluated suboptimal configurations where
the attention mechanism was excluded from the garment warping step, the model was not trained with
SmoothL1 loss, and SNM was not used in the image generation stage. The comparison demonstrates
that incorporating the attention mechanism and SmoothL1 loss in the clothing warping stage, as
well as using SNM in the image generation stage, significantly improves the model’s accuracy and
performance, thereby highlighting the effectiveness of the proposed approach.
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Figure 8: The model trained with SmoothL1 loss and L1 loss achieved an Intersection over Union
(IoU) score on the validation set. The IoU measures the overlap between the region predicted by the
model and the corresponding ground truth region. The values range from 0 to 1, with higher values
indicating greater overlap

Table 4: Ablation experiment

Methods SSIM ↑ PSRN ↑
w/o attenion mechanism 0.8474 21.1594
w/o SNM 0.8646 21.2292
w/o smoothL1 loss 0.8850 22.2733
Our method 0.8960 23.2814

5 Conclusion

This study has significant implications for the field of virtual try-ons, offering a wide range of
potential applications. We propose a virtual try-on framework that utilizes an attention mechanism to
improve feature transmission, resulting in better preservation of clothing texture, pattern, color, and
sleeve lengths. Experimental results demonstrate that our approach outperforms existing techniques
at a resolution of 1024 × 768 pixels. In future research, we aim to develop more refined methods and
further advance virtual fitting technology. Our future work will focus on enhancing the realism of
fitting images and expanding the framework’s applicability to a broader range of apparel categories.
We anticipate continued progress and advancements in subsequent studies.
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