
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.059417

ARTICLE

TB-Graph: Enhancing Encrypted Malicious Traffic Classification through
Relational Graph Attention Networks

Ming Liu, Qichao Yang, Wenqing Wang and Shengli Liu*

School of Cyber Science and Technology, Information Engineering University, Zhengzhou, 450001, China
*Corresponding Author: Shengli Liu. Email: mr_shengliliu@163.com
Received: 07 October 2024 Accepted: 26 November 2024 Published: 17 February 2025

ABSTRACT

The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances
user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to
cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted
malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information
embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community:
how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently,
this paper introduces the TB-Graph model, an encrypted malicious traffic classification model based on a relational
graph attention network. The model is a heterogeneous traffic burst graph that embeds side-channel features,
which are unaffected by encryption, into the graph nodes and connects them with three different types of burst
edges. Subsequently, we design a relational positional coding that prevents the loss of temporal relationships
between the original traffic flows during graph transformation. Ultimately, TB-Graph leverages the powerful graph
representation learning capabilities of Relational Graph Attention Network (RGAT) to extract latent behavioral
features from the burst graph nodes and edge relationships. Experimental results show that TB-Graph outperforms
various state-of-the-art methods in fine-grained encrypted malicious traffic classification tasks on two public
datasets, indicating its enhanced capability for identifying encrypted malicious traffic.

KEYWORDS
Encrypted malicious traffic classification; traffic burst graph; graph representation learning; deep learning

1 Introduction

While encryption technology enhances data security, it concurrently poses serious challenges to
network security. The report published by Zscaler reveals that attackers are increasingly resorting to
encrypted communication during their attacks. The low cost of encrypted communication technologies
has significantly aided attackers. Almost 86% of attacks use encrypted channels across multiple
stages of the kill chain. From the initial phases of phishing and malware delivery to the subtleties
of command-and-control activities as well as data exfiltration, cybercriminals leverage encryption to
shield their intentions. Fig. 1 displays the top five industries worldwide that were most impacted by
encrypted attacks from 2022 to 2023. The two industries that experienced the greatest growth were

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.059417
https://www.techscience.com/doi/10.32604/cmc.2024.059417
mailto:mr_shengliliu@163.com

2986 CMC, 2025, vol.82, no.2

Education and Services, with increases of 276.4% and 81.9%, respectively. The increasing adoption
of encryption by these industries to protect sensitive data and communications has, in turn, attracted
threat actors. This has led to a surge in cyber-attacks aimed at stealing sensitive information.

9403.7

6956.1

3978.4

2359.0
1998.3

7494.6 7323.1

2187.3
1827.7

530.9

Manufacturing Tech & Com Services Healthcare Education
0

2000

4000

6000

8000

10000

H
it

s(
m

il
li

o
n

)

 2023year 2022year

-50

0

50

100

150

200

250

300

 increase / decrease %

C
h

an
g

e
%

Figure 1: The top five industries globally most affected by encrypted attacks from 2022 to 2023. The
horizontal axis represents five distinct industries. The vertical axis shows the frequency of encrypted
attacks and the change in growth rate for each sector

Current methods for classifying malicious traffic mainly focus on two strategies: (1) machine
learning-based methods, which extract feature information from traffic data, input these features into
machine learning models for training, and ultimately obtain detection results; (2) deep learning-based
methods, which perform representation learning from raw traffic data, enabling deep learning models
to automatically extract features. However, existing methods have limitations: primarily, machine
learning research concentrates on basic statistical features, failing to capture key attack behaviors
hidden within encrypted traffic. Additionally, encrypted traffic in different scenarios has varying
characteristics, making these statistical features less stable. Most deep learning research focuses on
mining features from raw bytes, sequence information, and transport layer security (TLS) handshake
features, neglecting important host-to-server interaction information and failing to extract critical
attack behavior patterns. Effectively representing encrypted malicious traffic for refined identification
remains a significant challenge.

Recently, employing graph convolution networks (GCN) to process unstructured data like net-
work traffic has shown certain advantages [1,2]. Owing to their powerful representation capabilities,
GCN can simultaneously train on both node attributes and relationships between nodes. To tackle
the challenges posed by encrypted network traffic, this paper introduces the TB-Graph model, an
encrypted malicious traffic classification model based on a relational graph attention network. In
simple terms, TB-Graph first converts traffic sessions into an undirected heterogeneous graph, with
traffic bursts as nodes and three different types of edges connecting them. Subsequently, it embeds
the traffic side-channel features, which are unaffected by encryption, into the graph nodes as node
attributes, thereby enhancing the descriptive power of network traffic characteristics. Following this,
we design relational positional coding combined with RGAT to learn the representation of the traffic

CMC, 2025, vol.82, no.2 2987

burst graph. Finally, the graph representation is fed into a classification layer to predict its label. In
the experimental section, we conduct a series of experiments using public datasets to demonstrate
the effectiveness of our model. The experimental results show that the TB-Graph model surpasses
almost all baseline methods, achieving the best performance on the datasets used. In summary, the
contributions of this paper are as follows:

1. We develop a novel graph model for classifying encrypted malicious traffic. To our knowledge,
this is the first study to treat the traffic bursts as nodes in the graph. It consists of traffic burst graph
construction, relational positional coding, side-channel feature embedding, and the RGAT encoder
module.

2. From the perspective of network traffic transmission behavior, we design three flexible edge
relationships to connect burst nodes in the graph, aiming to comprehensively mine the rich behavioral
information hidden during packet transmission.

3. We design relational positional coding and side-channel feature embedding, integrating this
useful information with the traffic burst graph to assist the RGAT in iteratively updating the features
of graph nodes more effectively.

4. To evaluate the effectiveness of our model, we conducted a series of experiments, and the results
confirmed the validity of our method.

Section 2 reviews related works on encrypted malicious traffic classification; Section 3 provides a
detailed description of our model; Section 4 presents the related experiments and analyzes the results;
Section 5 concludes the paper.

2 Related Work

The field of encrypted malicious traffic detection has evolved over the years, encompassing a
wide array of models. The field of encrypted malicious traffic detection has evolved over the years,
encompassing a wide array of models. The focus is on the current mainstream deep learning-based
traffic identification models and the emerging graph neural network approaches.

2.1 Deep Learning-Based Methods

With the widespread adoption of deep learning models, many traffic classification methods have
been developed based on these techniques. Due to encryption reducing the availability of highly
discriminative features, most efforts attempt to extract as many features as possible from multiple
perspectives, such as different types of features and different feature extraction models. Dai et al. [3]
comprehensively extracted features from multiple angles, including traffic statistical features, TLS
handshake fields, and certificates, and applied various machine learning models for classification,
with the extreme gradient boosting (XGBoost) model achieving the highest accuracy rate of 97.71%.
Gu et al. [4] used three independent feature extraction networks for pre-training, fully exploring
the diversity and heterogeneity of TLS traffic. However, as the TLS protocol continues to evolve,
the features selected by this method need to be updated promptly. Zeng et al. [5] further increased
the number of non-encrypted features (temporal and statistical features) and performed importance
selection on the feature set to enhance the capability of identifying encrypted malicious traffic.
Considering the serialization and bidirectional semantic nature of network traffic, Cai et al. [6]
proposed a structure that utilizes a bidirectional temporal convolutional neural network combined
with a multi-head self-attention mechanism to better capture the semantic features of network traffic.
It demonstrates more accurate detection capabilities for some highly concealed abnormal traffic.

2988 CMC, 2025, vol.82, no.2

Cui et al. [7] constructed a stable channel-level behavior sequence, based on the intent of malware
attacks, which uses multiple transformer modules to capture internal sequence similarities. However,
in practice, it is a binary classification method that requires the construction of multiple independent
subnetworks to capture the relationships between different sequences. This results in a significant
consumption of model parameters and computational resources. Zhu et al. [8] utilized two independent
models: bidirectional long short-term memory (Bi-LSTM) and one-dimensional convolutional neural
network (1DCNN) to extract temporal and spatial features, respectively. To detect encrypted remote
access trojan traffic, Zhang et al. [9] used a representation learning method to learn the embeddings
of flow sequences at different stages of the trojan lifecycle and the payloads of data packets. This
approach improves the binary classification accuracy for remote access attacks. Chen et al. [10]
believed that inputting all features into the model is not advisable, adopting a multi-head self-attention
mechanism to focus on learning key features and generating the most important combined features.
However, this approach has only been tested on datasets with the TLS 1.2 protocol, and its detection
efficiency may decrease on datasets with the TLS 1.3 protocol.

While these methods partially alleviate the issue of insufficient discriminative features, they require
the extraction of multi-perspective features, which complicates the detection process. Furthermore,
existing methods for traffic feature mining often tailor the extraction of traffic features to the
characteristics of each specific scenario, task by task and scene by scene. This results in excellent
performance in certain scenarios for the existing methods, but a decline in performance when switched
to other scenarios. How to extract effective features and ensure their robustness to improve the fine-
grained multi-classification performance of encrypted malicious traffic remains an unsolved challenge.

2.2 Graph Neural Network-Based Methods

Another mainstream approach involves transforming network traffic data into a graph structure,
which encompasses a vast number of packet nodes and connection attribute information. A novel
DApp fingerprinting method using Graph (GraphDApp) [11] used packet length sequences as a node
feature and defined adjacency relationships between nodes based on the upstream and downstream
direction information. It then uses a graph neural network to extract features from the constructed
graph structure data for final classification. However, this method lacks the extraction of flow statistics
and external topological structure information. Traffic interaction attribute graph (G-TIAG) [12]
treated network flows as nodes and used flow features extracted by CICFlowmeter [13] as attributes
for the nodes. It creates edges based on whether different flows share a common IP (Internet Protocol)
address. The experimental results indicate that the G-TIAG approach requires further enhancement in
dealing with imbalanced data. Hong et al. [14] used encrypted sessions as nodes with session statistical
features as the attributes of the corresponding nodes. They construct a KNN (K-Nearest Neighbour)
graph between any two samples based on the visual feature similarity of encrypted traffic and use
the GraphSAGE model to achieve binary classification of graph nodes. Fu et al. [15] explored the
spatiotemporal characteristics of network behavior using graph representation learning algorithms
for the accurate identification of remote-control attacks within the TLS protocol. Additionally, the
selection of comparative baseline methods is limited, lacking the necessary persuasive power. The
attack fingerprint based on graphs of time-window (TGPrint) [16] proposed an attack fingerprint
identification technique based on a time-windowed graph. It treats ports as nodes, the communication
relationships between attacker and victim hosts as edges, and incorporates multiple characteristics as
edge attributes to construct attack graphs for each individual attack. The approaches may result in the
construction of a large-scale graph representation for long-lived sessions. The node in [17] represented
a network flow with attributes corresponding to the protocol field information of the network flow,

CMC, 2025, vol.82, no.2 2989

allowing it to learn complex relationships between any network flows while retaining protocol field
information of the traffic.

The powerful data representation capabilities of graph representation learning can help alleviate
the issues of incomplete data mining, which are common in traditional machine learning methods.
However, these methods are applicable for coarse-grained detection of benign/malicious encrypted
traffic, but they do not perform well in the fine-grained identification of malicious encrypted traffic
categories with covert attack behaviors. Moreover, noise in the traffic flows can easily render these
methods ineffective. Typically, these approaches solely employ the most basic form of Graph Neural
Networks (GNN), failing to capitalize on the unique advantages offered by various cutting-edge GNN
models. In Table 1, we summarize related works and list the main novelties of our approach compared
to these methods: (1) Construction of traffic behavior patterns: we innovatively use traffic bursts as
graph nodes, which not only accurately describe network data transmission and interaction behaviors
but also significantly reduce operation time and save storage space; (2) Introduction of relational
position coding and side-channel information: ingeniously integrated with RGAT networks, this
allows the TB-Graph to flexibly extract the relationships between the current node and its neighbors
during feature extraction.

Table 1: The summarization of different traffic analysis methods based on GCN (graph convolutional
networks)
Category Ref. Year Node and edge Extra features Type of graph Type of GCN Dataset Decision

making
Code

Encrypted
malicious
traffic

ST-Graph [15] 2022 Node: Host, server
IP. Edge: a TLS
handshake
between host and
server.

20 flow features
and 2 host features

Heterogeneous Randomwalk AndMal2019
EncMal2021
(Private)

Multi/binary-
class

o

G-TIAG [12] 2022 Node: IP address.
Edge: one flow of
interaction
between two IPs.

9 features for each
flow extracted by
CICFlowmeter

Homogeneous GCN CIC-IDS-2017 Multi-class o

TGPrint [16] 2023 Node: port. Edge:
communication
relationship
between hosts.

86 features for
statistical,
aggregate,
temporal

Homogeneous GIN+GCN
+GAT

CICIDS-2017
CICIDS-2018
HIKARI-2021

Multi-class •

MalDiscovery
[14]

2023 Node: session.
Edge: the top-k
similar sessions.

24 vectorized
features

Homogeneous GraphSAGE CTU-13
MCFP

Binary-class •

HIG-RF [18] 2024 Node: host or
server. Edge:
session.

19 sessions
features and 19
temporal features

Heterogeneous GraphSAGE CTU-13
MTA

Multi-class o

DGNN [19] 2024 Node:
forward/backward
features. Edge:
Cartesian
products.

11 FWD features
and 11 BWD
features

Heterogeneous DGNN CIC-
DarkNet2020

Multi/binary-
class

o

Malicious
traffic

FT-GCN [20] 2022 Node: flow. Edge:
more relevant
between two
nodes.

11 features of the
traffic flows

Heterogeneous TAGCN USSW-NB15
CIC-
DarkNet2020
ISCXTOR2016

Multi-class o

MateGraph
[21]

2023 Node: destination
IP+port. Edge:
static and dynamic
correlation
between the nodes.

43 packet-level and
flow-level features

Homogeneous GIN CICAndMal2017 Multi/binary-
class

o

(Continued)

2990 CMC, 2025, vol.82, no.2

Table 1 (continued)

Category Ref. Year Node and edge Extra features Type of graph Type of GCN Dataset Decision
making

Code

Encrypted
traffic

MAppGraph
[22]

2021 Node: destination
IP+port. Edge: the
weighted
communication
correlation
between nodes.

63 traffic features
for aggregated,
temporal,
statistical,
categorical

Homogeneous DGCNN Private dataset Multi-class •

GraphDApp
[11]

2021 Node: the length
of packets. Edge:
inter-packet
relationships
present within the
flows

Packet length and
packet direction

Homogeneous GNN(MLP) Private dataset Multi/binary-
class

•

FG-Net [17] 2022 Node: flow. Edge:
the relationships
between the
network flows

Packet size
sequence and
packet arrival time
sequence

Heterogeneous GAT DApp-60
FGNet53(Private)

Multi-class •

IBGC [23] 2024 Node: a mapping
of an interactive
action. Edge: a
transition status
between interactive
actions

12-dimensional
novel statistical
features

Heterogeneous GraphSAGE VNAT
ISCX-VPN
ISCX-Tor

Multi-class •

MeDF [24] 2024 Node: flow. Edge:
the association
between different
flow

Spectrograms and
5 categories of
statistical
characteristics

Homogeneous GCN ISCX-VPN
Malicious TLS

Multi-class o

Ours TB-Graph 2024 Node: traffic
bursts. Edge: the
relations between
different nodes

2 sides-channel
feature: burst
length and burst
size

Heterogeneous RGAT MTA
MCFP

Multi-class •

Note: • represents publicly available; o represents unavailable.

3 Methodology

In this part, we offer an in-depth account of our model. The entire model is depicted in Fig. 2
and consists of data processing, traffic graph construction, the RGAT model and a classifier. The TB-
Graph model first preprocesses the raw data packets and then converts them into a traffic burst graph.
To uncover potential traffic information, side-channel features and meticulously designed relational
positional coding are added to the traffic burst graph. Subsequently, a graph convolutional network
is employed to learn the representations of the traffic burst graph. Further, an aggregation layer
aggregates the representations of all nodes to obtain a holistic graph representation as a feature vector.
Finally, in the classification layer, we utilize a fully connected layer to identify the application of the
packet. In the subsequent text, we will elaborate on the architecture and components.

3.1 Traffic Burst Graph Constructing

Nodes Creation. Unlike previous work, due to the vast number of network packets, we do not
treat each packet as an independent entity. Instead, we use traffic bursts as graph nodes. A sequence
of data packets sent continuously in the same direction is referred to as a burst. To prevent long
intervals between traffic packets from being classified as part of the same burst, we set a burst threshold
t. If the arrival time interval of a new packet exceeds the t, it is considered to belong to a new
burst. This approach offers two benefits: (1) Bursts aggregate packets of the same direction that are
transmitted continuously based on size or time, and they are often associated with corresponding
network events. The features of bursts reflect the characteristics of corresponding network events to

CMC, 2025, vol.82, no.2 2991

some extent. The differences between categories of network flows are manifested in the variations of
their bursts and their combinations [25]. (2) Compared to a complete communication flow generated
in a session, bursts can provide more granular network information. They also offer rich details at the
network event level, compared to individual packets. Given the uncertainty of session lengths, treating
individual packets as graph nodes could lead to enormous storage costs. Using sessions or hosts as
nodes could result in the loss of features. Employing individual bursts as graph nodes allows for a
more accurate description of the information transmission patterns between clients and servers, while
significantly reducing computational costs.

(a) Data Processing

(b) Traffic Burst Graph Constructing

PcapSplitter SessionsRaw Network Traffic

Client

Server
burst-threshold

burst-b burst-c burst-e burst-mburst-dburst-a

burst -in edge burst -out edge burst -between edge RGAT 1 RGAT 2

Classifier

(c) RGAT Encoder and Classifier

RGAT Layer

Relation attention

weight calculation

Node Attention Weight

Calculation

Traffic Burst

Position Coding

S
o

ft
m

a
x

U
p

d
a
te

 N
o

d
e
s

Concat

Concat

Figure 2: It provides an overview of our model. These three components are integrated into an end-
to-end model that can automatically learn network traffic features and generate corresponding graph
representations for each session

Edge Creation. After determining the vertices, it is necessary to introduce appropriate edges to
represent the relationships between traffic bursts and construct the graph. However, simply connecting
these burst nodes can easily lead to the weakening or loss of temporal features [11]. Considering
the status of packet interactions between the host and the server, we design three edges to connect
the relationships between different nodes: (1) burst-in edge: edges between consecutive bursts in the
same direction; (2) burst-out edge: edges between consecutive bursts in different directions; (3) burst-
between (burst-bt) edge: edges between the first and last burst nodes of adjacent bursts in the same
direction. Fig. 3 is a simple example where packets between the client and server are segmented into
different bursts according to the communication transmission direction, treated as graph vertices, and
connected using the three edge types we designed. Initially, bursts that are in the same direction but
exceed the threshold t are connected using the burst-in edges, as shown by the black edges in Fig. 3.
Secondly, two burst-out edges are used to connect the head and tail of two adjacent burst groups with
different directions, as indicated by the green edges in Fig. 3. Finally, the inter-bt edges are used to

2992 CMC, 2025, vol.82, no.2

connect the head and tail of two spaced burst groups that are in the same direction, as illustrated by
the red edges in Fig. 3.

Client

Server
burst-threshold

burst-b burst-c burst-e burst-mburst-dburst-a

burst-in edge burst-out edge burst-between edge

Figure 3: The description of packet burst graph construction. Original packet interaction transmissions
are divided into bursts according to direction and then transformed into a compact graph structure

Since users send different types of requests to the server, the number and frequency of sent packets,
or the sending intervals, may vary. Similarly, the frequency of server responses can change with the
type of user request. The differences in these interactive behaviors will ultimately be reflected in the
patterns of packet transmission, both upstream and downstream. The burst-in and burst-out edges
can effectively capture the frequency of client-server interactions. The burst-bt edges can involve the
characteristics of unidirectional traffic transmission.

3.2 Relational Position Coding

The generated graph structure is inherently an unordered data structure, which diminishes the
temporal nature of the original traffic sequence. The ordered sequence of traffic packets is a crucial part
of the traffic pattern. To preserve as much of this information as possible, FA-Net [26] designed simple
relative and absolute positional coding for packets, combined with the self-attention mechanism in the
transformer to capture the order relationships between bursts. However, absolute positional coding
requires modeling based on the length of the input traffic sequence. If an unpredictable traffic sequence
length is encountered, it would require re-learning. Since most traffic sequences are of unpredictable
lengths, absolute positional coding is not considered. Therefore, we improved the relative positional
coding to assist the RGAT in better identifying the latent structure of the traffic sequence. Based on
the three types of edge relationships in traffic bursts, it is easy to determine that the range of burst-in
edges for a single node is [0, 2], the range of burst-out edges is [0, 4], and the range of burst-bt edges
is [0, 2]. The corresponding coding ranges are [−1, 1], [−2, 2], and [−1, 1], respectively. The design
algorithm for the relative positional coding of a single node is shown in Algorithm 1.

To illustrate the working mechanism of the traffic burst positional coding clearly, Table 2 presents
an example of the positional coding for node e in Fig. 2. Compared to absolute and relative positional
coding, our method not only has a smaller coding range but also brings bursts from the same sender
closer together, enhancing the unidirectional temporal sequence of the traffic flow.

Table 2: Description of relational position coding

Header 1 Node a Node b Node d Node e Node f Node g Node h

Absolute position 1 2 4 5 6 7 8
Relative position −4 −3 −1 0 1 2 3
Relational position −1 −1 −2 0 1 2 1

CMC, 2025, vol.82, no.2 2993

Finally, the generated relational positional coding is added to the edge weights as a scalar
during the RGAT’s calculation of relationship attention weights, and incorporated into the process
of updating node features.

3.3 Side-Channel Feature Embedding

We still choose to use side-channel information to assist in building traffic patterns, in order to
fully utilize the effective information contained in bursts. In previous work [11,16,23], packet size
sequences, packet direction sequences, packet time interval sequences, and message type sequences
were selected as node features. Drawing on previous experience, we focus on integrating the length of
each packet, which is a simple and intuitive feature with easy extraction and computation. It is usually
associated with specific applications, protocols, or communication behaviors. Different applications
and protocols exhibit distinct packet length distribution patterns. This attribute has been most widely
used in previous work and has been proven to have sufficient discriminative power.

Integrating it with our traffic burst graph results in two attributes for each burst: size and length.
The burst size is the number of packets in the same burst. The burst length is the sum of the lengths of
all packets in the same burst. As attributes of traffic bursts, they can enhance the depiction of network
behavior where multiple packets are transmitted in the burst for the same network event in a short time.
Compared to a complete session, bursts can provide more granular network information. Compared
to individual packets, bursts can also provide rich details at the level of network events.

Algorithm 1: Relative position coding
Input: Traffic Burst Graph (V , E) with vertexes V and edges E
Output: the position coding of node i
1: for i in V do //Generate a position coding for each node in the graph
2: if j ∈ N in(i) //node j belongs to the neighbor of burst-in of node i
3: posedge

ij = j − i
4: end if
5: if j ∈ N out(i) //node j belongs to the neighbor of burst-out of node i
6: if j − i < 0 and j − i �= −1
7: posedge

ij = −1
8: end if
9: if j − i = −1
10: posedge

ij = −2
11: end if
12: if j − i = 1 and �x ∈ N in(i)
13: posedge

ij = −1
14: end if
15: if j − i > 0 and ∃x ∈ N in(i)
16: posedge

ij = 1
17: end if
18: if j − i > 1 and �x ∈ N in(i)
19: posedge

ij = 2
20: end if

(Continued)

2994 CMC, 2025, vol.82, no.2

Algorithm 1 (continued)
21: end if
22: if j ∈ N bt(i) //node j belongs to the neighbor of burst-bt of node i
23: if j − i < 0
24: posedge

ij = −1
25: end if
26: if j − i > 0
27: posedge

ij = 1
28: end if
29: end if
30: end for

3.4 RGAT Encoder and Classifier

Node feature update is the most critical process in the construction of traffic classification. As we
have incorporated three distinct types of edges in the construction of the traffic burst graph, utilizing
heterogeneous graphs over homogeneous ones yields more informative data on traffic interactions.
The most classic methods of heterogeneous graph neural networks are RGCN (Relational graph
convolutional network) and RGAT, which are designed with the intention of applying the relationships
between nodes to the update of node features. RGCN builds upon GCN by separating different types
of edges into distinct graphs, yet it retains a fixed weight matrix for each layer. Therefore, we employ the
relational graph attention network, which enhances the expression capability of relationship features
with the assistance of attention mechanisms. RGAT layer first calculates the similarity between the
neighbor and the self-node vectors, then concatenates it with the relational positional coding to obtain
the edge weight between the two nodes as Eq. (1).

αld
ijedge = exp (σ (LeakyReLU(edgeijWd1 + bd1)Wd2 + bd2) + posedge

ij)
∑χi

j=1 exp (σ (LeakyReLU(edgeijWd1 + bd1)Wd2 + bd2) + posedge
ij)

, (1)

χi represents the set of neighbors of node i, d represents the attention head number at layer l,
posedge

ij represents the positional coding for the edge type edge between nodes i and node j. W and b are
learnable model parameters. After obtaining the relationship attention coefficient αld

ijedge , it is necessary
to perform a weighted summation on the features as shown in Eq. (2).

hl+1
reli

= ||D
d

∑E

e=1

∑
j∈χi

αld
ijedgeW

l
dhl

j, (2)

|| represents the concatenation operation, D denotes the number of attention heads used in
the multi-head attention mechanism, and E represents the set of all edge types. W l

d represents a
transformation matrix for the input data. The relationship attention features are concatenated with
the node attention features as Eq. (3).

hl+1
i = hl+1

reli
||hl+1

atti
, (3)

hl+1
atti

refers to the computed attention features for node i. Finally, the output node features, after
passing through a non-linear activation function, are input into the ReadOut function. This function
serves to transform the node features of the graph into a holistic graph feature using a specific strategy.
In this paper, the ReadOut function uses the average node aggregation strategy, which takes the average
of the node features across the entire graph as the current graph’s feature. Finally, the classification

CMC, 2025, vol.82, no.2 2995

feature vector is processed through linear mapping and an activation function to complete the final
traffic classification task. To address the issue of imbalanced training data, we employ the Focal loss
function instead of the widely used cross-entropy loss for training the model.

4 Experiments and Analysis

In this section, we describe our experimental setup, encompassing the dataset, traffic preprocess-
ing, and evaluation metrics. On this basis, we conducted an array of experiments, including ablation
experiments, comparison experiments, GNN architecture variations study, and model efficiency
comparisons. We conducted a comprehensive and specific evaluation of the performance of the TB-
Graph.

4.1 Dataset

Initially, we extracted encrypted malicious traffic samples from two dataset publication websites:
Malware Capture Facility Project (MCFP) [27] and malware-traffic-analysis.net (MTA) [28].

The MCFP [28] dataset has been collecting traffic generated by over three hundred different types
of malware over an extended period. We select 13 different types of malware with a significant number
of sessions, which include common categories such as trojans, worms, viruses, and ransomware. The
information for the 13 PCAP files is provided in Table 3.

Table 3: The number of sessions in each category of MCFP

Name No. Size Encrypted sessions TCP sessions

Zeus 25-6 133 MB 4966 14,613
HTBot 111-1 94 MB 564 8186
Bunitu 141-1 323 MB 3619 10,928
Yakes 203-1 866 MB 1820 71,996
WisdomEyes 219-1 30 MB 731 26,742
TrickBot 240-1 82 MB 11,085 11,233
Emotet 264-1 83 MB 14,060 57,375
Razy 274-1 20 MB 3207 3712
Artemis 275-1 37 MB 8226 8683
Ursnif 313-1 149 MB 10,552 10,558
Artemis 316-1 145 MB 10,246 10,252
CCleaner 320-2 452 MB 5690 6082
Dridex 322-1 308 MB 12,056 16,086

MTA [28] is another long-term updated blog focused on the study of malware traffic. It has
accumulated an amount of traffic generated by malware and related analyses. Our experiments selected
27 samples released in recent years, totaling 952,052 packets and 12,000 encrypted sessions, which
include various versions of encryption protocols. We show the detailed category information of MTA
in Table 4.

2996 CMC, 2025, vol.82, no.2

Table 4: The number of sessions in each category of MTA

Year Name Size Encrypted sessions

2020 Dridex, Valak 10 MB 47
2021 BazaCall, GuLoader, Hancitor, Raccoon,

Squirrelwaffle, STRRAT
112 MB 310

2022 Astaroth, GoogleAd, IcedID, Matanbuchus 138 MB 9596
2023 AgentTesla, Danabot, Emotet, Formbook, Gozi,

JinxLoader, Pikabot, Qakbot, RemcosRAT
327 MB 2001

2024 AsyncRAT, ClickFix, DarkGate, GootLoader,
KoiStealer, TA578-SSLoad

78 MB 309

For each dataset, we filtered out two types of useless traffic packets: (1) empty packets: packets
with no payload, which contain almost no useful information for classification; (2) damaged or
retransmitted packets, which introduce excessive noise into the samples.

4.2 Implementation Details and Baselines

We utilize the DGL library to construct the heterogeneous graph. Before training the traffic burst
graph, we use a randomly generated method to assign different initial weights to each edge relationship.
Considering the efficiency of the model, we build a two-layer RGAT module, with 8 attention heads,
a hidden layer size of 128, and a batch size of 32. We use the Adam optimizer, with an initial learning
rate set of 1E−4. Each experiment is run 10 times independently to take the average on two NVIDIA
RTX 4080 GPUs.

To ensure a fair comparison, we use four metrics, namely Overall Accuracy (AC), Precision
(PR), Recall (RC), and Macro F1 Score (F1), to evaluate the TB-Graph model against state-of-the-
art baselines, including mainstream deep learning algorithms (i.e., AppScanner [29], CUMUL [30],
FlowPrint [31], etc-PS [32], FS-Net [33], Deep Packet [34]) and graph neural network algorithms
(i.e., GraphDApp [11], ECD-GNN [35], MAppGraph [22]). To ensure fair environment settings, when
replicating these methods, we implement them on our server as configured in the original paper.

4.3 Ablation Experiments

To validate the effectiveness of the burst-bt edges (BE), relational positional coding (RP) and side-
channel feature embedding (SF) in this paper, this section conducts comparative ablation experiments.

4.3.1 Effectiveness Analysis of Burst-bt Edges

In this study’s packet relationship graph, we utilize burst-bt edges to connect non-adjacent nodes
with the same direction of burst, aiming to preserve the transmission characteristics of unidirectional
packets. To demonstrate the representational capacity of the traffic burst graph, we have designed
four graph variants: (a) Retaining burst-in edge and burst-out edge, represented using homogeneous
graphs. (b) Retaining burst-in edge and burst-out edge, represented using heterogeneous graphs. (c)
Retaining all three types of edges, represented using homogeneous graphs. (d) Retaining all three types
of edges, represented using heterogeneous graphs. We conduct experiments with different variants of
the traffic burst graph on the MCFP dataset to assess the generalization performance of different

CMC, 2025, vol.82, no.2 2997

edges. The results are shown in Fig. 4. It is evident that our TB-Graph design achieves the best
representational performance. Variants of the TB-Graph structure have achieved results similar to
other current graph methods. Confusion matrices can clearly represent the classification of each type
of malicious sample by different models. The introduction of heterogeneous graphs has significantly
improved the detection results. Compared to Fig. 4a, Fig. 4b shows an improvement in recognition
accuracy for most categories, ranging from 1.0% to 7.5%. The misclassification situation on the dataset
has significantly improved after the addition of burst-bt edges. Nearly half of the data types are
fully recognized. This result demonstrates that introducing new edge types can enhance the feature
expression capability of the original traffic graph.

0.952 0.007 0.002 0.001 0.013 0.004 0.003 0.003 0.000 0.000 0.014 0.000 0.000

0.005 0.830 0.009 0.027 0.030 0.045 0.002 0.020 0.001 0.000 0.000 0.029 0.000

0.013 0.011 0.934 0.015 0.016 0.015 0.000 0.008 0.000 0.000 0.000 0.000 0.000

0.002 0.036 0.007 0.908 0.028 0.024 0.000 0.013 0.003 0.000 0.000 0.000 0.000

0.019 0.032 0.016 0.022 0.857 0.020 0.002 0.016 0.001 0.000 0.000 0.016 0.000

0.000 0.027 0.002 0.016 0.004 0.902 0.009 0.009 0.000 0.031 0.000 0.002 0.000

0.000 0.001 0.000 0.000 0.000 0.004 0.981 0.000 0.000 0.000 0.010 0.000 0.004

0.000 0.019 0.003 0.019 0.013 0.004 0.000 0.949 0.000 0.008 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.978 0.023 0.000 0.000 0.000

0.000 0.000 0.004 0.000 0.008 0.000 0.085 0.000 0.000 0.869 0.000 0.030 0.013

0.000 0.007 0.000 0.031 0.000 0.069 0.000 0.013 0.000 0.000 0.879 0.004 0.000

0.000 0.000 0.000 0.007 0.000 0.010 0.000 0.013 0.000 0.005 0.000 0.966 0.001

0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.003 0.000 0.003 0.000 0.986

0.999 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.879 0.015 0.022 0.022 0.048 0.009 0.017 0.000 0.000 0.000 0.000 0.000

0.000 0.032 0.963 0.006 0.018 0.013 0.000 0.004 0.000 0.000 0.000 0.000 0.000

0.000 0.019 0.004 0.918 0.015 0.022 0.000 0.015 0.011 0.000 0.000 0.000 0.000

0.000 0.023 0.012 0.019 0.920 0.009 0.000 0.009 0.003 0.000 0.000 0.000 0.000

0.003 0.038 0.005 0.008 0.015 0.926 0.000 0.007 0.002 0.000 0.000 0.000 0.000

0.001 0.006 0.000 0.000 0.001 0.006 0.994 0.001 0.000 0.000 0.000 0.000 0.000

0.006 0.016 0.007 0.017 0.019 0.010 0.000 0.931 0.005 0.000 0.000 0.000 0.000

0.000 0.003 0.000 0.003 0.002 0.001 0.000 0.002 0.988 0.000 0.000 0.000 0.000

0.000 0.000 0.021 0.010 0.000 0.005 0.000 0.000 0.000 0.936 0.010 0.000 0.021

0.000 0.025 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.004 0.954 0.000 0.021

0.003 0.000 0.004 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.981 0.000

0.000 0.000 0.008 0.000 0.000 0.000 0.005 0.000 0.000 0.010 0.020 0.000 0.956

0.988 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000

0.001 0.894 0.007 0.031 0.012 0.036 0.000 0.018 0.000 0.000 0.010 0.000 0.000

0.000 0.019 0.934 0.012 0.009 0.022 0.000 0.007 0.000 0.000 0.000 0.010 0.000

0.000 0.020 0.004 0.903 0.021 0.008 0.002 0.014 0.002 0.000 0.000 0.027 0.000

0.001 0.017 0.015 0.017 0.884 0.008 0.000 0.020 0.000 0.038 0.000 0.000 0.000

0.000 0.027 0.006 0.005 0.009 0.897 0.000 0.005 0.000 0.000 0.014 0.000 0.038

0.000 0.000 0.000 0.000 0.000 0.016 0.999 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.020 0.013 0.007 0.013 0.009 0.000 0.923 0.000 0.014 0.000 0.000 0.000

0.000 0.002 0.000 0.005 0.000 0.000 0.000 0.004 0.978 0.000 0.014 0.000 0.000

0.004 0.000 0.004 0.000 0.000 0.004 0.000 0.010 0.000 0.976 0.000 0.004 0.000

0.000 0.000 0.023 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.944 0.017 0.000

0.048 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.958 0.000

0.000 0.005 0.000 0.024 0.000 0.014 0.000 0.004 0.000 0.000 0.017 0.000 0.937

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.046 0.900 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.048 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.989 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.046 0.000 0.927 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000

0.000 0.000 0.010 0.000 0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.001 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.976 0.000 0.000 0.000 0.025 0.000

0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.966 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.001 0.000 0.956 0.000 0.000 0.016

0.000 0.015 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.020 0.000 0.000 0.944 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

(d)

T
ru

e
L

ab
el

Predicted Label

0.0

0.2

0.4

0.6

0.8

1.0

(b)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

T
ru

e
L

ab
el

Predicted Label

0.0

0.2

0.4

0.6

0.8

1.0

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

T
ru

e
L

ab
el

Predicted Label

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

T
ru

e
L

ab
el

Predicted Label

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The confusion matrix of the experimental results for the four variants on the MCFP dataset

2998 CMC, 2025, vol.82, no.2

4.3.2 Analysis of the Effectiveness of Relational Positional Encoding

In Section 3.2, we design relational positional coding between different nodes to enhance the
temporal information during packet transmission. Tests are conducted on both the MCFP dataset.
Table 5 presents the ablation experiment where relational positional encoding is isolated to verify its
actual effect. The experimental results indicate that the inclusion of relational positional encoding
positively affects TB-Graph’s ability to extract the location attributes of packet bursts. The TB-Graph
with RP integration outperformed the version without RP by 4.58%, 4.87%, 5.36%, and 5.11% in
various metrics. This represents a significant impact on the model’s performance. This confirms that
it can enhance the temporal performance of graph representations.

Table 5: Classification results of ablation experiment for relational positional encoding (%)

Dataset MCFP

Model AC PR RC F1

w/o RP 95.28 95.05 94.03 94.54
w/RP 99.86 99.92 99.39 99.65

4.3.3 Analysis of the Time Interval Threshold

Traffic bursts can reflect the characteristics of network events to some degree, and a complete
network communication process may be composed of several different network event bursts. To
prevent two packets with a long arrival time interval during the same transmission from being classified
as the same burst, we set an event interval threshold t and tested various values to select the appropriate
threshold through experiments. The results, as shown in Table 6, demonstrate that the time interval
threshold has a significant impact on the accurate identification of traffic bursts. The time threshold
is ultimately set to 0.5 s.

Table 6: The impact of burst time threshold (%)

Threshold t (s) 0.1 0.2 0.3 0.4 0.5 0.7 1

MCFP (AC) 83.66 87.12 90.75 98.20 99.86 96.17 87.81
MTA (AC) 84.27 90.60 94.25 97.44 97.42 92.25 82.38

4.3.4 Analysis of the Side-Channel Feature

Leveraging our experience, we have selected packet length as a node attribute to enhance the
representational power of TB-Graph. Innovatively, we have introduced two new attributes: burst size
and burst duration. In this section, we analyze the effectiveness of the proposed features through
experiments. For three variants, we have used burst size (BZ), burst length (BL), and their combination
as node features. score on two datasets. Fig. 5 shows the model’s accuracy and F1 score changes across
two datasets. As depicted in Fig. 5: (1) When a single feature is selected as a graph node attribute,
the model’s recognition performance declines. Using burst length alone, the model’s accuracy score
decreased by 4.34% and 3.02%, respectively. The model’s F1 score decreased by 4.27% and 2.83%,
respectively. This also confirms the validity of previous studies that used packet length alone for

CMC, 2025, vol.82, no.2 2999

traffic analysis. This holds true even when the attribute is aggregated into bursts. (2) When using
burst size alone, the TB-Graph’s accuracy suffered the most significant decline, with decreases of
9.58% and 9.42%, respectively. However, the results indicate that burst size still plays a positive role in
identification. (3) It has been demonstrated that the characteristics of traffic bursts can, to some extent,
reflect the behavioral characteristics of network packet transmission, with differences in network flow
categories being reflected in the variations of traffic bursts.

All BS BL
0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

 MCFP MTA

All BS BL
0.5

0.6

0.7

0.8

0.9

1.0

F1

 MCFP MTA

Figure 5: Classification results of ablation experiment for evaluating different side-channel features in
TB-Graph

4.3.5 GNN Architecture Variants Study

Currently, graph neural networks have evolved into various structural frameworks. To illustrate
that RGAT provides more useful traffic interaction information, we selected classic GNN frameworks
as variations (e.g., GCN, GAT, GraphSAGE) and conducted a comparison on the MCFP dataset.
From Table 7, we can observe that RGAT achieved the best accuracy and F1 score. For other
variations, performance degradation is evident, especially for GCN. It can only use fixed convolutional
kernels for information transmission and node update, resulting in relatively weak global information
expression capabilities. GAT can dynamically adjust the attention weights between adjacent nodes,
which is why GCN may underperform GAT on specific tasks. With the addition of the relational
attention mechanism, RGAT outperforms GAT. RGAT aggregates more node relationship features
through the multi-head attention mechanism, better assigning different weights to neighbouring nodes.

Table 7: The result of different GNN architectures (%)

Dataset MCFP

Model AC PR RC F1

GCN 95.54 94.73 94.97 94.84
GAT 96.59 96.38 96.46 96.41
GraphSAGE 96.21 95.74 95.61 95.67
RGAT 98.86 97.92 99.39 98.64

3000 CMC, 2025, vol.82, no.2

4.4 Comparison Experiments

The objective of this section is to compare the performance of TB-Graph with other baseline
methods from a closed-world to, thereby demonstrating the generalizability and feasibility of our
proposed approach.

We initially conducted experiments on the MCFP dataset, which was divided into training and
testing sets in a 9:1 ratio. The experimental comparison results on the MCFP dataset are presented in
Table 8 and Fig. 6a. The following conclusions can be drawn. (1) Compared to the other baselines, the
performance of TB-Graph nearly achieved full marks, obtaining the highest results in four metrics,
which comprehensively demonstrates that our model’s feature construction strategy can effectively
represent the patterns of data packet transmission. (2) The GraphDApp and ECD-GNN methods
also consider the process of traffic interaction, but their recall rates are still relatively low compared to
TB-Graph, at 80.60% and 96.47% respectively. We argue the main reason is that their traffic interaction
graph construction schemes limit the model’s expressive power and fail to uncover latent information
in the transmission behavior. (3) The CUMUL and FS-Net methods only extract statistical features of
packet length and its variants, lacking attention to the correlation between traffic flows. This makes it
difficult to obtain sufficient information from encrypted malicious traffic to support the classifier in
making effective classification. Neither accuracy nor F1 value is very satisfactory, with none exceeding
97.0%. (4) Although AppScanner uses 54 statistical features, it does not select the most valuable
features for classification. The use of multiple-dimensional features without selection and cleaning
may affect the final classification result due to contradictory expressions.

Table 8: Experimental results on two datasets (%)

Dataset MCFP MTA

Model AC PR RC F1 AC PR RC F1

AppScanner [29] 97.90 96.88 96.01 96.44 75.43 66.29 60.42 63.21
CUMUL [30] 98.55 98.35 96.99 97.66 66.86 53.49 48.99 51.14
FlowPrint [31] 86.98 90.07 86.98 88.49 66.06 38.50 44.16 41.13
etc-PS [33] 98.33 97.43 96.85 97.13 74.86 68.11 59.29 63.39
FS-Net [33] 90.92 91.40 90.16 90.77 82.86 74.87 71.97 73.39
Deep packet [34] 96.40 96.50 96.31 96.40 81.46 64.34 70.02 67.05
MappGraph [11] 93.29 93.18 93.23 93.20 88.05 80.04 75.67 77.79
GraphDApp [35] 87.53 76.15 80.60 78.31 42.86 25.57 25.09 25.32
ECD-GNN [22] 98.11 97.22 96.47 96.84 87.89 82.26 82.60 82.42
TB-Graph (Our) 99.86 99.92 99.39 99.65 97.42 97.39 97.38 97.39

Another part of Table 8 and Fig. 6b presents the results from the MTA dataset, from which we
can infer the following insights: (1) almost all baseline models perform poorly on the MTA dataset
due to its more complex composition. However, TB-Graph also achieves stable results on the MTA
dataset, outperforming the best baseline models by over 9.37% and 14.78% in terms of detection
accuracy and recall. This is attributed to TB-Graph’s strong capability to capture malicious traffic
behaviors. (2) The performance of MappGraph and ECD-GNN algorithms is superior to the other
deep learning methods. However, their average accuracy and F1 scores do not exceed 80.0%. This
indicates that using the correlation between traffic flows can uncover deeper information. (3) The

CMC, 2025, vol.82, no.2 3001

features of AppScanner and CUMUL are manually extracted and are not very applicable in the context
of this paper. Consequently, their performance is the most significantly degraded. This may be due to
the fact that some categories have a small amount of data, leading to fewer extractable features and
potential misjudgments by the model.

1 0 0 0 0 0 0 0 0 0 0 0 0

0.0459 0.9 0 0 0 0 0.0212 0 0 0.0482 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0.989 0 0 0 0.042 0 0 0 0 0

0 0 0.046 0 0.927 0 0 0 0 0 0.03 0 0

0 0 0.0095 0 0 0.987 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0.001 0 0 0 0

0 0 0 0 0 0 0 0.976 0 0 0 0.0246 0

0 0 0 0 0.0442 0 0 0 0.9656 0 0 0 0

0 0 0 0.0299 0 0 0 0.00124 0 0.9563 0 0 0.016

0 0.0152 0 0.0094 0 0 0 0 0 0 0.999 0 0

0 0 0 0 0 0.0493 0 0 0.0201 0 0 0.944 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0.941 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.008 0.012 0.000 0.000 0.000 0.000 0.004 0.014 0.000 0.000 0.000 0.000 0.000 0.000 --

0.000 0.925 0.000 0.000 0.002 0.000 0.004 0.003 0.002 0.007 0.000 0.000 0.000 0.000 0.009 0.009 0.004 0.004 0.010 0.004 0.011 0.000 0.000 0.000 0.002 0.000 0.005 --

0.006 0.005 0.896 0.001 0.002 0.001 0.015 0.000 0.002 0.000 0.008 0.009 0.000 0.000 0.000 0.000 0.007 0.004 0.009 0.002 0.010 0.000 0.005 0.000 0.000 0.000 0.017 --

0.008 0.010 0.004 0.911 0.000 0.015 0.000 0.000 0.000 0.006 0.002 0.003 0.000 0.000 0.000 0.000 0.005 0.000 0.002 0.000 0.015 0.000 0.000 0.000 0.003 0.011 0.007 --

0.000 0.000 0.004 0.001 0.983 0.002 0.000 0.004 0.000 0.000 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.008 0.008 0.002 0.000 0.002 0.000 0.002 0.000 0.000 --

0.000 0.000 0.000 0.005 0.000 0.980 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 --

0.000 0.002 0.000 0.000 0.090 0.000 0.893 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.000 0.000 0.003 --

0.009 0.000 0.014 0.022 0.001 0.009 0.000 0.929 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.003 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.002 --

0.001 0.000 0.002 0.002 0.000 0.000 0.000 0.005 0.932 0.000 0.011 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.001 0.000 0.018 0.009 0.000 0.000 0.000 --

0.001 0.001 0.009 0.000 0.000 0.002 0.009 0.000 0.000 0.966 0.000 0.000 0.000 0.000 0.000 0.005 0.002 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.004 0.000 0.000 --

0.000 0.012 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.976 0.000 0.000 0.037 0.000 0.004 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.001 --

0.005 0.005 0.000 0.000 0.000 0.001 0.000 0.003 0.000 0.000 0.006 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.036 --

0.000 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.971 0.000 0.002 0.000 0.000 0.007 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.003 0.000 --

0.002 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.001 0.000 0.004 0.000 0.000 0.997 0.002 0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.000 0.000 0.000 0.002 0.000 --

0.000 0.022 0.000 0.005 0.000 0.005 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.940 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.021 --

0.000 0.000 0.007 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.970 0.000 0.000 0.015 0.005 0.000 0.000 0.003 0.000 0.000 0.002 0.000 --

0.000 0.000 0.000 0.003 0.000 0.022 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.955 0.000 0.003 0.008 0.000 0.000 0.002 0.003 0.008 0.000 0.000 --

0.000 0.009 0.001 0.000 0.000 0.003 0.000 0.000 0.008 0.002 0.004 0.005 0.000 0.000 0.000 0.000 0.007 0.954 0.000 0.000 0.003 0.000 0.006 0.000 0.000 0.000 0.000 --

0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.004 0.000 0.974 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 --

0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.983 0.000 0.003 0.000 0.000 0.000 0.000 0.000 --

0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.996 0.000 0.000 0.003 0.000 0.000 0.000 --

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.992 0.000 0.000 0.023 0.000 0.000 --

0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.971 0.014 0.010 0.000 0.000 --

0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.976 0.000 0.000 0.005 --

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.003 0.008 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.983 0.000 0.010 --

0.000 0.000 0.008 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.989 0.005 --

0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.977 --

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

T
ru

e
L

ab
el

Predicted Label

0.0

0.2

0.4

0.6

0.8

1.0

(a) The confusion matrix of TB-Graph
on the MCFP dataset

(b) The confusion matrix of TB-Graph
on the MTA dataset

1 4 7 10 13 16 19 22 25

25

22

19

16

13

10

7

4

1

T
ru

e
L

ab
el

Predict Label

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The confusion matrix of TB-Graph

This also reflects the challenge of dealing with complex encrypted malicious traffic, where
from the perspectives of application data transmission behavior and packet features, utilizing the
complementarity between different features can achieve high precision and low false positive rates
in detection.

4.5 Model Efficiency Comparisons

In Table 9, we present the floating point operations (FLOPs) and model size of several graph-
based methods. It can be found that GraphDApp, with the fewest parameters. It employs only 3 layers
of MLP (Multilayer Perceptron), 1 layer of fully connected layers, and simple node features. ECD-
GNN and MappGraph, with their complex inputs and numerous GCN layers, result in plentiful
processing time and resource consumption. In contrast, TB-Graph has the second-lowest number
of parameters among the methods, thanks to our lightweight graph construction approach. It
innovatively treats bursts as graph nodes, allowing for an efficient reduction in the size of the graph.
The packet length as a node attribute is a simple and intuitive feature that is easy to extract and
compute.

Table 9: Results of computational cost analysis

Model FLOPs (M) Parameters (M)

MappGraph 5.8E + 1 4.8E + 0
GraphDApp 3.8E − 2 1.1E − 2
ECD-GNN 2.9E + 1 1.4E + 0
TB-Graph 2.3E + 1 8.6E − 1

3002 CMC, 2025, vol.82, no.2

5 Conclusion and Future Work

To effectively extract features from encrypted malicious traffic, our study develops a model named
TB-Graph. The TB-Graph model transforms network traffic into a heterogeneous traffic burst graph,
efficiently mining complex relationships during packet transmission between clients and servers while
embedding side-channel information of network traffic as node features. During graph representation
learning phase, the integration of relational positional coding with RGAT layers further enhances the
spatial and temporal relationships between traffic burst nodes. To validate the effectiveness of the
TB-Graph approach, we conducted detailed comparative experiments on two public datasets, which
demonstrated the model’s robust capability in traffic representation. Moving forward, we intend to
employ contrastive learning to address the issue of rare malicious samples, which is more aligned with
real-world application scenarios.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the National Key Research and Development
Program of China (2019QY1300) and Science & Technology Commission Foundation Strengthening
Project (2019-JCJQ-ZD113).

Author Contributions: Ming Liu: conceptualization, methodology, formal analysis, writing—original
draft, visualization; Qichao Yang: investigation, methodology, validation; Wenqing Wang: data
collection, visualization, writing—review & editing; Shengli Liu: supervisor, conceptual, review, fund
acquisition. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: To validate the model, we used the following public dataset: the
MCFP dataset [27] is available from https://www.stratosphereips.org/datasets-malware (accessed on 10
June 2024); the MTA dataset [28] is available from https://www.malware-traffic-analysis.net (accessed
on 10 June 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] G. Hu, X. Xiao, M. Shen, B. Zhang, X. Yan and Y. Liu, “TCGNN: Packet-grained network traffic

classification via graph neural networks,” Eng. Appl. Artif. Intell., vol. 123, no. 2, 2023, Art. no. 106531.
doi: 10.1016/j.engappai.2023.106531.

[2] X. Han et al., “DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic
classification,” Comput. Netw., vol. 245, no. 5, 2024, Art. no. 110372. doi: 10.1016/j.comnet.2024.110372.

[3] R. Dai, C. Gao, B. Lang, L. Yang, H. Liu and S. Chen, “SSL malicious traffic detection based
on multi-view features,” in Proc. 2019 9th Int. Conf. Commun. Netw. Secur., 2019, pp. 40–46. doi:
10.1016/j.ins.2023.119229.

[4] R. Gu, J. Fei, H. Yu, Y. Zhu, K. Yang and F. Guo, “Meta-TFEN: A multi-modal deep learning approach
for encrypted malicious traffic detection,” in 2023 33rd Int. Telecommun. Netw. Appl. Conf., IEEE, 2023,
pp. 98–104. doi: 10.1109/ITNAC59571.2023.10368511.

[5] Z. R. Zeng, P. Xun, W. Peng, and B. Zhao, “Toward identifying malicious encrypted traffic with a causality
detection system,” J. Inf. Secur. Appl., vol. 80, no. 1, 2024, Art. no. 103644. doi: 10.1016/j.jisa.2023.103644.

https://www.stratosphereips.org/datasets-malware
https://www.malware-traffic-analysis.net
https://doi.org/10.1016/j.engappai.2023.106531
https://doi.org/10.1016/j.comnet.2024.110372
https://doi.org/10.1016/j.ins.2023.119229
https://doi.org/10.1109/ITNAC59571.2023.10368511
https://doi.org/10.1016/j.jisa.2023.103644

CMC, 2025, vol.82, no.2 3003

[6] S. Cai, H. Xu, M. Liu, Z. Chen, and G. Zhang, “A malicious network traffic detection model based on
bidirectional temporal convolutional network with multi-head self-attention mechanism,” Comput. Secur.,
vol. 136, no. 1, 2024, Art. no. 103580. doi: 10.1016/j.cose.2023.103580.

[7] S. Cui, C. Dong, M. Shen, Y. Liu, B. Jiang and Z. Lu, “CBSeq: A channel-level behavior sequence for
encrypted malware traffic detection,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 5011–5025, 2023. doi:
10.1109/TIFS.2023.3300521.

[8] S. Zhu, X. Xu, H. Gao, and F. Xiao, “CMTSNN: A deep learning model for multiclassification of abnormal
and encrypted traffic of Internet of Things,” IEEE Internet Things J., vol. 10, no. 13, pp. 11773–11791, 2023.
doi: 10.1109/JIOT.2023.3244544.

[9] Y. Zhang et al., “ER-ERT: A method of ensemble representation learning of encrypted RAT traf-
fic,” in 2023 IFIP Netw. Conf. (IFIP Netw.), IEEE, 2023, pp. 1–10. doi: 10.23919/IFIPNetwork-
ing57963.2023.10186391.

[10] J. Chen, L. Song, S. Cai, H. Xie, S. Yin and B. Ahmad, “TLS-MHSA: An efficient detection model for
encrypted malicious traffic based on multi-head self-attention mechanism,” ACM Trans. Priv. Secur., vol.
26, no. 4, pp. 1–21, 2023. doi: 10.1145/3613960.

[11] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized application identification via
encrypted traffic analysis using graph neural networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp.
2367–2380, 2021. doi: 10.1109/TIFS.2021.3050608.

[12] G. Ren, G. Cheng, and N. Fu, “Accurate encrypted malicious traffic identification via traffic interac-
tion pattern using graph convolutional network,” Appl. Sci., vol. 13, no. 3, 2023, Art. no. 1483. doi:
10.3390/app13031483.

[13] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. Ghorbani, “Characterization of tor traffic using
time based features,” in Int. Conf. Inf. Syst. Secur. Priv., SciTePress, 2017, vol. 2, pp. 253–262. doi:
10.5220/0006105602530262.

[14] Y. Hong, Q. Li, Y. Yang, and M. Shen, “Graph based encrypted malicious traffic detection with hybrid anal-
ysis of multi-view features,” Inf. Sci., vol. 644, no. 3, 2023, Art. no. 119229. doi: 10.1016/j.ins.2023.119229.

[15] Z. Fu et al., “Encrypted malware traffic detection via graph-based network analysis,” in Proc. 25th Int.
Symp. Res. Attacks, Intrusions Defenses, 2022, pp. 495–509. doi: 10.1145/3545948.3545983.

[16] L. Wang et al., “TGPrint: Attack fingerprint classification on encrypted network traffic based
graph convolution attention networks,” Comput. Secur., vol. 135, no. 3, 2023, Art. no. 103466. doi:
10.1016/j.cose.2023.103466.

[17] M. Jiang et al., “Accurate mobile-app fingerprinting using flow-level relationship with graph neural
networks,” Comput. Netw., vol. 217, no. 1, 2022, Art. no. 109309. doi: 10.1016/j.comnet.2022.109309.

[18] Q. Guo, W. Yang, and B. Cui, “Graph-based detection of encrypted malicious traffic with spatio-temporal
features,” in Advances in Internet, Data & Web Technologies, Cham: Springer Nature Switzerland, 2024, pp.
75–86. doi: 10.1007/978-3-031-53555-0_8.

[19] Y. Zhu et al., “DGNN: Accurate darknet application classification adopting attention graph
neural network,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 2, pp. 1660–1671, 2023. doi:
10.1109/TNSM.2023.3344580.

[20] X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling and K. Xue, “Flow topology-based graph convolutional network
for intrusion detection in label-limited IoT networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 1, pp.
684–696, 2022. doi: 10.1109/TNSM.2022.3213807.

[21] R. Ge, Y. Zhang, C. Si, G. Zhou, and W. Zhou, “MateGraph: Toward mobile malware detection through
traffic behavior graph,” in 2022 IEEE 24th Int. Conf. High Perform. Comput. Commun., 2022, pp. 801–809.
doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00132.

[22] T. D. Pham, T. L. Ho, T. T. Huu, T. D. Cao, and H. L. Truong, “MAppGraph: Mobile-app classification
on encrypted network traffic using deep graph convolution neural networks,” in Proc. 37th Ann. Comput.
Secur. Appl. Conf., 2021, pp. 1025–1038. doi: 10.1145/3485832.3485925.

https://doi.org/10.1016/j.cose.2023.103580
https://doi.org/10.1109/TIFS.2023.3300521
https://doi.org/10.1109/JIOT.2023.3244544
https://doi.org/10.23919/IFIPNetworking57963.2023.10186391
https://doi.org/10.1145/3613960
https://doi.org/10.1109/TIFS.2021.3050608
https://doi.org/10.3390/app13031483
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1016/j.ins.2023.119229
https://doi.org/10.1145/3545948.3545983
https://doi.org/10.1016/j.cose.2023.103466
https://doi.org/10.1016/j.comnet.2022.109309
https://doi.org/10.1007/978-3-031-53555-0_8
https://doi.org/10.1109/TNSM.2023.3344580
https://doi.org/10.1109/TNSM.2022.3213807
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00132
https://doi.org/10.1145/3485832.3485925

3004 CMC, 2025, vol.82, no.2

[23] Y. Li, X. Chen, W. Tang, Y. Zhu, Z. Han and Y. Yue, “Interaction matters: Encrypted traffic classification
via status-based interactive behavior graph,” Appl. Soft Comput., vol. 155, no. 2, 2024, Art. no. 111423. doi:
10.1016/j.asoc.2024.111423.

[24] X. Wang et al., “Combine intra- and inter-flow: A multimodal encrypted traffic classification model driven
by diverse features,” Comput. Netw., vol. 245, no. 4, pp. 1.1–1.12, 2024. doi: 10.1016/j.comnet.2024.110403.

[25] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the burst: Remote identification of encrypted
video streams,” in 26th USENIX Secur. Symp. (USENIX Secur. 17), 2017, pp. 1357–1374. doi:
10.5555/3241189.3241295.

[26] M. Jiang et al., “FA-Net: More accurate encrypted network traffic classification based on burst
with self-attention,” in 2023 Int. Joint Conf. Neural Netw. (IJCNN), IEEE, 2023, pp. 1–10. doi:
10.1109/IJCNN54540.2023.10191615.

[27] M. J. De Lucia and C. Cotton, “Detection of encrypted malicious network traffic using machine learning,”
in MILCOM 2019–2019 IEEE Mil. Commun. Conf. (MILCOM), IEEE, 2019, pp. 1–6. doi: 10.1109/MIL-
COM47813.2019.

[28] B. Duncan, “Malware traffic analysis,” 2024. Accessed: Jun. 10, 2024. [Online]. Available: https://malware-
traffic-analysis.net/

[29] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic,” in 2016 IEEE Eur. Symp. Secur. Priv. (EuroS&P), IEEE, 2016,
pp. 439–454. doi: 10.1109/EuroSP.2016.40.

[30] A. Panchenko et al., “Website fingerprinting at internet scale,” in NDSS ’16, San Diego, CA, USA, 2016.
doi: 10.14722/ndss.2016.23477.

[31] T. Van Ede et al., “FlowPrint: Semi-supervised mobile-app fingerprinting on encrypted network
traffic,” in Netw. Distrib. Syst. Secur. (NDSS) Symp. 2020, San Diego, CA, USA, 2020. doi:
10.14722/ndss.2020.24412.

[32] S. J. Xu, G. G. Geng, X. Jin, D. Liu, and J. Weng, “Seeing traffic paths: Encrypted traffic classification
with path signature features,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 2166–2181, 2022. doi:
10.1109/TIFS.2022.3179955.

[33] C. Liu, L. He, G. Xiong, and Z. Cao, “FS-Net: A flow sequence network for encrypted traffic classi-
fication,” in IEEE INFOCOM 2019-IEEE Conf. Comput. Commun., IEEE, 2019, pp. 1171–1179. doi:
10.1109/INFOCOM.2019.8737507.

[34] M. Lotfollahi, M. Siavoshani, R. Zade, and M. Saberian, “Deep packet: A novel approach for encrypted
traffic classification using deep learning,” Soft Comput., vol. 24, no. 3, pp. 1999–2012, 2020. doi:
10.1007/s00500-019-04030-2.

[35] T. L. Huoh, Y. Luo, and T. Zhang, “Encrypted network traffic classification using a geometric learning
model,” in 2021 IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), IEEE, 2021, pp. 376–383.

https://doi.org/10.1016/j.asoc.2024.111423
https://doi.org/10.1016/j.comnet.2024.110403
https://doi.org/10.5555/3241189.3241295
https://doi.org/10.1109/IJCNN54540.2023.10191615
https://doi.org/10.1109/MILCOM47813.2019
https://malware-traffic-analysis.net/
https://malware-traffic-analysis.net/
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.14722/ndss.2016.23477
https://doi.org/10.14722/ndss.2020.24412
https://doi.org/10.1109/TIFS.2022.3179955
https://doi.org/10.1109/INFOCOM.2019.8737507
https://doi.org/10.1007/s00500-019-04030-2

	TB-Graph: Enhancing Encrypted Malicious Traffic Classification through Relational Graph Attention Networks
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments and Analysis
	5 Conclusion and Future Work
	References

