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ABSTRACT: Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become
a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of the
retina. Classifying OCT images is challenging, as the morphological manifestations of different diseases may be similar.
The OCT images capture the reflectivity characteristics of the retinal tissues. Retinal diseases change the reflectivity
property of retinal tissues, resulting in texture variations in OCT images. We propose a hybrid approach to OCT image
classification in which the Convolution Neural Network (CNN) model is trained using Multiple Neighborhood Local
Ternary Pattern (MNLTP) texture descriptors of the OCT images dataset for a robust disease prediction system. Parallel
deep CNN (PDCNN) is proposed to improve feature representation and generalizability. The MNLTP-PDCNN model is
tested on two publicly available datasets. The parameter values Accuracy, Precision, Recall, and F1-Score are calculated.
The best accuracy obtained specifying the model’s overall performance is 93.98% and 99% for the NEH and OCT2017
datasets, respectively. With the proposed architecture, comparable performance is obtained with a subset of the original
OCT2017 data set and a comparatively smaller number of trainable parameters (1.6 million, 1.8 million, and 2.3 million
for a single CNN branch, two parallel CNN branches, and three parallel network branches, respectively), compared to
off-the-shelf CNN models. Hence, the proposed approach is suitable for real-time OCT image classification systems
with fast training of the CNN model and reduced memory requirement for computations.

KEYWORDS: Local ternary pattern; texture descriptor; optical coherence tomography; parallel CNN; multiple
neighborhood

1 Introduction
In ophthalmology, OCT images have become a standard tool for screening and detecting retinal eye

diseases [1]. Optical Coherence Tomography (OCT) is a non-invasive, comparatively recent tool used by
ophthalmologists to get information about deformation in retinal structure due to any retinal pathology and
the effect of treatment, the pattern of disease advancement, etc. The literature study on retinal OCT image
analysis shows that a large volume of OCT image data is being generated due to the availability of cost-
effective portable OCT machines and increasing awareness for screening of the retina to detect diseases.
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As the number of OCT image acquisitions increases, manually evaluating a large volume of OCT data is
tedious [2] and subject to intra- and inter-observer variability. It has drawn the attention of researchers to
develop an automated retinal disease detection system that will be less prone to human factors such as fatigue,
mindset, and bias to assist the ophthalmologist in screening and eye disease detection.

Diabetic macular edema (DME) and age-related macular degeneration (AMD) are the two most
common diseases by which the world’s majority population is affected. The deformation of the retinal
structure is apparent in OCT images before the symptoms appear. AMD is declared a priority eye disease
by the World Health Organization. Due to the aging population, the number of people suffering from eye
diseases is rising. WHO strongly recommends frequent and early screening to prevent vision loss. If left
untreated, the most common retinal diseases that can cause severe vision loss are DRUSEN/AMD, CNV
(choroidal neovascularization), and DME. Drusen is the early stage AMD, where yellow protein deposition
occurs, which can be very small or medium. In DME, glucose buildup occurs between the layers of the retina.
In the case of CNV, also known as wet AMD, blood vessels grow in the retinal layers [3].

The majority of the OCT image classification work is focused on using deep learning for the segmen-
tation of retinal layers and using changes in the thickness of layers due to diseases as a marker for diseases.
However, the segmentation of layers is challenging in the case of a damaged retina due to disease. Also, the
scale and shape of lesions vary in the case of the same diseases, So classifying grayscale OCT images for
retinal disease detection is challenging. The retinal diseases change the reflectivity property of the retinal
tissues. The texture descriptors encode local intensity or brightness variation between the neighborhood
pixels. It gives information about smoothness/roughness or regularity as human eyes perceive. The texture
variation in the OCT images due to diseases can be considered a robust marker for disease detection. For the
texture analysis of the images, the various methods used are LBP (local binary pattern), GLCM (grey level
co-occurrence matrix), Gabor filter, Histogram of oriented gradients (HOG), and fractal dimensions based,
etc. [4].

This study proposed A hybrid model with a modified LTP (Local Ternary Patterns) texture descriptor,
MNLTP, and parallel deep convolutional neural network (PDCNN) for multiclass OCT image classification.

1. The proposed MNLTP texture descriptor can encode complex localized texture information with three
levels of coding 0, 1, and −1 and investigate the effect of neighboring pixels at different radii.

2. The PDCNN model, with low complexity and a small number of trainable parameters, is directly
trained with two-channel texture descriptors (Upper and lower MNLTP) of the OCT images for robust
classification. PDCNN architecture helps to improve the feature representation and generalizability of
the CNN model.

The paper is organized as follows: Section 2 presents the review of related works, Section 3 presents
methods and material, and Sections 4 and 5 give details of datasets and experimentation performed,
respectively. Section 6 contains the results and discussion, and the conclusion is given in Section 7.

2 Related Work
In Traditional image classification with machine learning, handcrafted features are extracted from the

OCT images and given as input to different classifiers It requires domain expertise, and the distinctive
classification features vary with the datasets. The effective classifiers used for classification using handcrafted
features are the Random Forest algorithm and the Support Vector machine.

Apart from the feature engineering-based approach, nowadays, CNN-based classification has gained
attention [5,6] as it eliminates the need for domain expertise to extract features. CNN models automatically
build the feature map from the training data provided. CNN is sensitive to illumination, rotation, etc., and
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learns the structural features from computationally intense training [5]. In some published work, CNN
models are used for feature extraction. Then, the most distinctive features for classification are selected
using an algorithm like ant colony optimization. Thus, the best-selected features are given to traditional
classifiers like support vector machine and k-NN (K-Nearest Neighbor) etc. [5]. This approach combines
Deep learning as the first stage and traditional machine learning as the second or output stage. In recent
years, the classification of OCT images into four classes (Normal, Drusen, CNV, and DME) using deep
learning models has been the most researched topic using the large public dataset available OCT2017 (84,485
images). The deep learning models are generally selected from popular pre-trained models: ResNet-50,
DenseNet, InceptionV3, GoogleNet, ResNet, etc. [7]. These are fine-tuned to the OCT dataset, as in transfer
learning [8,9]. The other deep learning approach is the ensemble of classifiers, which extract different types of
features. Finally, the fusion of the extracted features by different CNN classifiers is carried out to classify the
OCT images. multiscale feature extraction is also helpful in improving the performance of the OCT images,
as distinctive features may be available at different scales [10–12]. Initial work on OCT image classification
considered binary classification problems like the prevalence of only AMD or DME [5,13]. If sufficient data
of a particular pathology is unavailable for training, Data augmentation using GAN (Generative Adversarial
Network) is also researched [14]. These models yield good results but require large datasets and should be
trained for a large number of trainable parameters.

Texture analysis helps to get inside localized spatial relationships among the pixels of the image and find
any particular pattern in the arrangement of the pixels. The texture of an image gives more information than
the other features of the image [15]. In general terms, texture analysis provides quantitative information about
the degree of smoothness and roughness of images. For this, It mainly considers the variation of intensities
of the pixels on the grey scale levels.

Local Binary Pattern (LBP) [16] is a prevalent tool for statistical texture analysis, generally used for
grayscale images. LBP represents an image’s local features by encoding the relationship between the pixel
and its neighboring pixels.

In LBP, the relationship between the pixels and the central pixel of the selected window is encoded by
using two value representations, 0 or 1. i.e., encoding the texture feature uses two-level, binary encoding,
which may not be sufficient to encode the detailed or complex texture information. It is also more susceptible
to noise in the images. So, the three-level encoding, i.e., Local Ternary Pattern (LTP), was proposed [15].
LBP is used in many medical image analyses for classification and anomaly detection [17]. In [17], binary
classification was implemented to classify the normal and other macular diseases like AMD, MH (macular
hole), and ME (macular edema) using a histogram of LBP with PCA (Principal Component Analysis). Then,
the SVM (Support Vector Machine) is used to identify each disease using a binary classification model.
In [18], the LBP is used with linear and non-linear classifiers, and the effect of various pre-processing methods
is studied.

Initially, LTP was introduced as a solution to the noise sensitivity of the LBP texture feature descrip-
tor [19]. It uses three levels to encode the relationship between neighboring pixels, unlike two levels in LBP.
So, it is capable of encoding more complex texture information. In LTP, the neighborhood (1 to n) pixel values
of a central pixel of the selected window are replaced by three values as 0, 1, and −1 as follows:

in =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+1, in > (ic + th)
0, (ic − th) ≤ in ≤ (ic + th)
−1, in < (ic − th)

(1)
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where the ic and in are the selected window’s central pixel values and n th neighboring pixel. Now, the selected
window has three levels of variations. Next, it is converted into two-channel representations with only two
levels of variations. These two-channel representations are called upper LTP and lower LTP, respectively. Now,
the researchers are also considering hybrid approaches where the texture features and features extracted by
the CNN network are used to improve the classification. In [20], LBP features and CNN features are extracted
separately. These are concatenated to classify the texture of color images using an SVM classifier and reported
significant improvement.

OCT images capture the reflectivity characteristics of retinal tissues, expressed in the B-scans by
the brightness of the individual pixels. The different retinal layers have different refractive indices. The
comparison between OCT scans of a healthy retina and a diseased retina can show two differences. First, it
shows shape or structural deformations in the retinal layers of the diseased retina that are generally captured
by segmentation or by global feature extraction by the CNN model. Secondly, there can be variations in
the texture of the images due to changes in “contrast” or “intensity” of the different layers with healthy and
diseased retinas.

Texture analysis refers to locating pixels with different intensity values in an image neighborhood.
Texture descriptors explore the relationship between specific pixels and their neighbors and evaluate the
homogeneity of the structure. Thus, differences in texture descriptors of normal and abnormal retinal tissue
provide distinctive additional information for disease detection.

In healthy retinal OCT images, generally, nine layers are visible. However, due to pathology, the retinal
layer structure is damaged, like a change in the thickness of retinal layers, the inability to determine the
boundaries of the retinal layers, and the segmentation of retinal layers is also challenging [11].

The changes that happen due to specific diseases cannot be clearly defined. In the case of diseases like
DME and CNV, manifestations are very similar. Also, manifestations of early Drusen, compared to normal,
are not easily distinguishable. In the problem of classification, extracting prominent discriminative features is
an important task and CNN models are very popular for automatically extracting features from the training
data [21]. In deep CNN models, initial layers capture low-level features, and then high-level features are
extracted from the last few layers; these high-level features, also known as global features of the class, are used
for classification tasks. Majorly, it learns the global features, which are generally morphological or structural
deformations in the retinal layers due to the different diseases [20]. In such cases, besides the structural
changes, if we consider the texture changes due to various diseases, it can be a more robust way of classifying
OCT images.

3 Methods and Material
The generalized framework of the work implementation is given in Fig. 1. Based on the quality of the

dataset, required dataset cleaning, selection/sampling from the dataset and resizing of the images can be
carried out. The OCT images are resized to 128 × 128. Then, two channel MNLTP texture descriptors of
the images are obtained. So, the original greyscale OCT images are transformed into two-channel MNLTP
representations. The PDCNN network (Fig. 2) is trained using texture descriptor data, upper and lower LTP.
PDCNN architecture extracts the multiscale features with filters of various sizes in each branch. The trained
model is used to classify images and detect retinal disease.
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Figure 1: Generalized framework of MNLTP and PDCNN based OCT image classification

Figure 2: Proposed PDCNN architecture

3.1 Multiple Neighborhood Local Ternary Pattern (MNLTP)
In local ternary pattern, texture information is encoded using three levels of intensities (+1, 0 and −1). It

has finer texture analysis capabilities, allowing for more detailed texture discrimination. So, capturing subtle
variations carries diagnostic significance. The ability of LTP to provide fine-grained texture information is
very useful in medical imaging (like OCT images), where subtle variations may have diagnostic relevance.

Texture descriptors of images using LTP can be obtained by considering different levels of the central
pixel’s neighborhood (radius R) pixels, as shown in Figs. 3 and 4. The LTP operator with a window of 3 × 3,
i.e., a small radius, cannot detect low-frequency patterns, and with a window of 5 × 5 or 7 × 7 window, i.e.,
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with a larger radius, cannot detect high-frequency texture patterns. The LTP features present at different
scales can be captured by considering the different values of R. For R greater than 1, these effects are weighted,
as the immediate neighboring pixel (R = 1) will have a stronger relationship than the distant neighbors (R =
2,3). In the first step, the Neighborhood Distance (ND) is calculated in 8 directions (refer to Figs. 3 and 4)
using the Eq. (2).

NDi = (Ai − C)R3 + (Bi − C)R2 + (Ci − C)R1 (2)

where Ai , Bi and Ci are neighboring pixels with a radius of 1, 2 and 3 in the 8 directions shown. C is the
central pixel value of the selected window. The ND matrix can be obtained, as shown in Fig. 4 in 8 directions.
The mean of the neighborhood distance (M_ND) is computed using Eq. (3). In the second step, the MNLTP
(three-level representation 0, 1, and −1) is obtained using Eq. (4) for the threshold value th = 5.

M_ND = 1
8

8
∑
i=1

NDi (3)

Figure 3: Multiple neighborhoods for R = 1, 2, and 3 for central pixel C in 8 directions (windows 3 × 3, 5 × 5, 7 × 7)

Figure 4: An example to calculate MNLTP
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MNLTP =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

+1, ND > (M_ND + th)
0, (M_ND − th) ≤ ND ≤ (M_ND + th)
−1, ND < (M_ND − th)

(4)

Upper LTP is obtained by retaining+1 as 1, 0 and−1 are replaced by 0. Lastly, the Central value is replaced
by the decimal value of the binary sequence obtained by concatenating 1’s and 0’ s in a clockwise direction.

Lower LTP is obtained by replacing −1 as 1, 1 and 0 are replaced by 0. Lastly, the central value is replaced
by the decimal value of the binary pattern. This process is repeated for every image pixel to obtain a Lower
LTP representation and Upper LTP representation of the image. The details of implementation are given in
Algorithm 1.

Algorithm 1: To obtain MNLTP texture descriptor
1: Read the number of images im_n.
2: for j= 1 to im_n do
3: Get the image dimension and resize to w=128 and h=128
4: Assign value to R ⊳ as R =1,2,3 in to find MNLTP with multilevel

neighborhood pixels
5: Define window (LxL) size, where L=2R+1
6: for i= 1 to all windows across w and h of image do
7: Identify central pixel ‘C’ and calculate ND using Eq. (2)
8: Obtain LTP representation (in terms of −1, 0 and 1) using Eqs. (3) and (4)
9: Obtain Upper MNLTP by replacing −1 with 0 retaining 0 and 1 as it is
10: Obtain Lower MNLTP by replacing −1 with 1 and 1 and 0 with 0.
11: Replace central pixel value by the decimal equivalent of 8-bit binary sequence obtained for

upper and lower LTP ⊳ Refer to Fig. 4
12: end for
13: Append MNLTP texture descriptor the image to the MAT file
14: end for

3.2 Parallel Deep Convolution Neural Network (PDCNN)
The obtained MNLTP feature descriptor is used to train the deep CNN architecture, as shown in Fig. 2.

The experimentations are done with a single CNN network, two parallel CNN networks, and three parallel
CNN network architectures. Each CNN network branch has four convolutional layers. Each layer has
one convolutional layer, batch Normalization, ReLU (Rectified Linear Unit), and maxPooling layer. The
convolutions are performed with different parameters like kernel size, number of kernels, and padding. Due
to the convolution operation between activations and kernel, the size of the layer’s output decreases. When
building deep CNN, we must preserve the size so zero padding is done. The number of kernels in each CNN
branch is 16, 32, 64, and 96, respectively, for four hidden layers.

The increasing size of the filters in successive layers helps to improve the connectivity between local and
global features extracted through the CNN layers. The filter size in a single CNN branch architecture is 3 × 3
for two parallel CNN networks, 3 × 3 and 5 × 5, and in three parallel CNN networks, 3 × 3, 5 × 5, and 7 × 7 in
each branch, respectively. The larger kernel size looks into a larger image space. The stride for the convolution
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operations is 2. The proposed parallel network architecture provides connectivity and correlation between
local and global features, improving the CNN model’s generalizability. The output of parallel CNN branches
is combined and given to a fully connected layer of 256 neurons. To avoid over-fitting, a dropOut layer (0.5)
is added. Next, the fully connected layer has an output equal to the number of classes, with the softMax layer
for classification. The convolution operation and resulting output size of the feature map are given by Eq. (5).

(I ∗ K)(i , j) = ∑
m
∑

n
I(m, n)K(i −m, j − n) (5)

where I is input activation of size (n × n), and K is the kernel of size (k × k). The size of the feature map after
convolution (m ×m), with padding p and stride s, is given by

m = n + 2p − k
s

+ 1 (6)

The learnable parameters for the fully connected network with 256 nodes are 1.6 million, 1.8 million, and
2.3 million for single CNN branches, two parallel CNN branches, and three parallel branches, respectively.
So, the considerable reduction in the learnable parameters makes a very lightweight CNN model, which will
be trained on the MNLTP image texture descriptor data. The training hyperparameters are set as given in
Algorithm 2.

Algorithm 2: CNN model training and evaluation
1: Load obtained MNLTP data and labels
2: Define training and test data and labels
3: Define PDCNN architecture as shown in Fig. 2
4: Set the hyperparameters and train the PDCNN model with Activation function=Relu, optimizer=‘adam’,

InitialLearnRate=0.01, MaxEpochs=200, MiniBatchSize=256.
5: Evaluate the model with Accuracy, Recall, Precision, and F1-Score and plot the confusion Matrix.

4 Datasets
The details of two public datasets used for evaluation are given in the Table 1. The first public dataset is

obtained at Noor Eye Hospital, Tehran [12]. The dataset was downloaded on 16 June 2024.

Table 1: Details of the datasets used for experimentation on the proposed MNLTP-PDCNN architecture

Dataset ‘A’: (3 class) NEH Dataset ‘B’: Total no. of 84,484 jpeg images (UCSD dataset)

Subfolders Dataset Training dataset Test dataset
CNV 3234 37,205 250

Drusen 3741 8616 250
Normal 5667 26,315 250

DME — 11,348 250

The Dataset ‘A’ has 16,822 images for three classes; after cleaning using the worst-case condition given
by the dataset provider with the database, the total number of images selected is 12,642. No separate training
and testing dataset is provided. The LTP of all 12,642 files is obtained in a MAT file. These are divided into
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80:20 ratio randomly to get the training and test dataset. So, the training dataset size is 10,114, and the test
dataset is 2528.

For Dataset ‘B,’ i.e., OCT2017 (UCSD dataset also used in [22], there are 83,384 images in the training
folder and 1000 in the test folder (250 images for each class). Training on such a large dataset requires high
computational power. Also, the dataset is highly imbalanced, with 37,205 images of Class CNV and only
8616 images for the class ‘Drusen’. So, 8000 images from each class, CNV, DME, DRUSEN, and NORMAL,
were selected randomly. i.e., only 8000 × 4 = 32,000 images are used for training out of 83,384 images. It has
also reduced the computational requirement and time for training the model. The complete test data (1000
images) provided is used to evaluate the model.

5 Experimentations
All the experimentations are done using the workstation with RTXA4000 GPU running MATLAB

R2023b. The experimentation is as follows: Texture descriptor LTP is obtained with R = 1, and CNN models
are trained with Single CNN architecture, with two parallel CNN architecture and three parallel CNN
architecture. The same is repeated with texture descriptors MNLTP for R = 2 and MNLTP for R = 3.

From the literature [8,22,23], and training process observations, the Adam optimizer is selected with an
initial learning rate = 0.01. In the Adam optimizer, the learning rate for the epoch is adjusted automatically
with the advancement of training. Based on observations during some initial trial training process and
observations of the training curve, the number of epochs considered is 200. The mini-batch size of 256 for
fast training is selected based on the availability of memory of the GPU (Graphics Processing Unit). The
effectiveness of the MNLTP for encoding the feature descriptor can be observed from the MNLTP images as
shown in Fig. 5. Row 1 shows the descriptor image representation for the R = 1 is one level of neighborhood,
row 2 images for R = 2 two levels of neighborhood, and row 3. R = 3, three levels of neighborhood for each
pixel. The performance of the models is evaluated using parameters such as Accuracy, Recall, Precision, and
F1-Score. These values are calculated from True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) values from the multiclass Confusion Matrix. Accuracy gives the overall performance
of the model (TP and TN).

Accurac y = TP + TN
TP + TN + FP + FN

(7)

Recal l = TP
TP + FN

(8)

Precision = TP
TP + FP

(9)

F1-Score = 2 ∗ Recal l ∗ Precision
Recal l + Precision

(10)

Recall specifies the model’s capability to minimize FN predictions and correctly classify the positive
instances. The precision specifies the model’s ability to minimize FP instances and maximize TP. The F1-Score
is defined as the harmonic mean of recall and precision. When the F1-Score improves, it might be due to an
improvement in recall or precision.



2840 Comput Mater Contin. 2025;82(2)

Figure 5: Upper and lower LTP representation of OCT images for different values of (R = 1, 2,3)

6 Results and Discussion
For each dataset, nine experiments are carried out. For the Dataset ‘A’, effect of various configurations

(with R = 0, R = 1, and R = 3) is presented in Table 2. The overall effect on the model’s performance for
considering multiple neighborhoods and multiple parallel CNN branches in different model configurations
can be seen in Fig. 6a,b.

Figure 6: Effect of parallel deep CNN (PDCNN)

For Dataset ‘A’ from Table 2, when multiple neighborhoods with windows 3 × 3 and 5 × 5 (R = 2) are
considered to obtain the texture descriptor, better results are obtained 91.9%, 93.6313% and 93.9873% among
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single CNN, two parallel branch CNN and three parallel branch CNN respectively. Further, improvement
in accuracy is achieved by increasing parallel branches in CNN architecture, as it improves the feature
presentation and generalizability of the model.

Table 2: Performance parameters of proposed model: Overall Accuracy, Recall, Precision and F1-Score for Dataset ‘A’
(3 class classification)

Single CNN PDCNN with two CNN
branches

PDCNN with three
CNN branches

R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3
Accuracy (%) 91.5 91.9699 88.9636 93.2358 93.6313 92.0886 93.4335 93.9873 92.8006

Recall 0.9165 0.9159 0.8792 0.9296 0.9299 0.9174 0.9269 0.9352 0.9237
Precision 0.9114 0.9256 0.894 0.9379 0.9379 0.9216 0.9386 0.943 0.9269
F1-Score 0.9139 0.9203 0.8854 0.9334 0.9331 0.9193 0.9317 0.9386 0.9244

Besides accuracy, precision and recall are considered, which can give information in case of class
imbalance and the model’s performance for a particular class performance on positive predictions. The
precision values decreases when the model’s false positive classification increases. The Recall decreases when
the model’s false negative classification increases. So low values of precision and recall indicate the model’s
performance under imbalanced data or error rate in the classification of certain classes. With Dataset ‘A’,
the dataset is made of approximately 25.59% of class CNV, 29.6% of Drusen, and 44.5% of Normal Class
samples. From the confusion matrix for overall accuracy of 94%, maximum good performance comes from
the majority class, Normal as 96.8%. Drusen is the early-stage AMD with very small depositions, making
it challenging to differentiate it from NORMAL samples. The combined effect has reduced the model’s
performance for the class Drusen (in the given confusion matrix, it’s 87.8%). The data imbalance problem
can be solved by incorporating strategies like weight balancing by penalizing the majority class, artificially
generating samples of minority classes, resampling the dataset, Data augmentation, etc.

The comparable results are obtained with the [12] in which the Dataset ‘A’ was released, given in Table 3.
With the proposed model number of trainable parameters was reduced considerably. The comparable results
are obtained with 1.8 and 2.3 million parameters as compared to 14.3, 21.6, lightweight and 31.1 million
parameters in [12]. So, a lightweight CNN network is sufficient to yield comparable results when trained with
the texture descriptor for the classification of OCT images.

For experimentation with Dataset ‘B’ as mentioned in the Dataset section, 32,000 (8000 each class ×
4 classes) images are randomly selected, and MNLTP texture descriptor is obtained, as upper and lower
LTP. The Proposed MNLTP- PDCNN model is trained, and model performance is tested on a provided test
dataset of 1000 OCT images, with 250 test images from each of the four classes. The results are presented
in Table 4. When the window size for calculating texture descriptor is 3 × 3 for R = 1 and 3 × 3, 5 × 5 for R = 2,
it gave an accuracy of 96.8% to 97.9% (for a single CNN branch), respectively. For three parallel branches, an
improvement was shown, from 98.8% to 99 %, for R = 1 and R = 2, respectively. For multiple neighborhoods,
R = 3, i.e., window size for calculating texture descriptor 3 × 3, 5 × 5, 7 × 7 spatial connectivity decreases, so
performance is reduced.

For Dataset ‘B’, the improvement in accuracy is also achieved with increasing parallel branches in CNN
architecture due to improved feature presentation and generalizability of the model.
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Table 3: Comparable performance with [12] in which the dataset was published

Model/method Learnable parameters (millions) Accuracy (%) Recall/sensitivity (%)
FPN-VGG16 [12] 21.6 92.0 ± 1.6 91.8 ± 1.7

FPN-ResNet50 [12] 31.1 90.1 ± 2.9 89.8 ± 2.8
FPN-ResNet50 [12] 14.3 90.9 ± 1.4 90.5 ± 1.9.8

Proposed MNLTP-PDCNN
with (R = 2, PDCNN = 3)

2.3 93.9873 93.52

Proposed MNLTP-PDCNN
with (R = 2, PDCNN = 2)

1.8 93.6313 92.99

Proposed MNLTP-PDCNN
with (R = 1, PDCNN = 2)

1.8 93.2358 92.96

Table 4: Performance parameters of proposed model: Overall Accuracy, Recall, Precision and F1-Score for Dataset ‘B’
(4 class classification)

R = 1 R = 2 R = 3

Single
CNN

PDCNN
with

double
CNN

branches

PDCNN
with
three
CNN

branches

Single
CNN

PDCNN
with

double
CNN

branches

PDCNN
with
three
CNN

branches

Single
CNN

PDCNN
with

double
CNN

branches

PDCNN
with
three
CNN

branches
Accuracy (%) 96.8 98.3 98.8 97.9 98.5 99 97.1 98 98.1

Recall 0.968 0.983 0.988 0.979 0.985 0.99 0.971 0.98 0.981
Precision 0.9684 0.9832 0.9882 0.9791 0.9851 0.99 0.9716 00.98 0.9811
F1-Score 0.968 0.983 0.988 0.979 0.985 0.99 0.971 0.98 0.981

Considering the lowest number of samples of class ‘Drusen’ (8616), only 8000 samples of each class are
selected randomly. The model’s performance for each of the classes is similar (as can be seen in the confusion
matrix for Dataset ‘B’, 98.8% for class CNV, 98.4% for class DME, 100% for class DRUSEN, and 98.8% for
class NORMAL resulting in 99% overall accuracy). So, as there is no data imbalance problem, the model can
give balanced performance for all the classes. A similar pattern can be observed for the confusion matrix for
R = 1 and R = 3.

The proposed Parallel CNN model with different kernel sizes, 3 × 3 for the first CNN branch, can
effectively capture the patterns at low resolution, and 5 × 5 for the second CNN branch and 7 × 7 for the third
CNN branch can effectively capture the patterns at high resolution.

The total learnable parameters (1.6 million, 1.8 million, and 2.3 million for a single CNN branch, two
parallel CNN networks, and three parallel network branches, respectively) are significantly less than the off-
the-shelf models and standard pre-trained models like VGGNet19, ResNet18, MobileNetV1, etc. [25]. Thus,
the proposed CNN architecture with significantly fewer trainable parameters is a lightweight architecture
suitable for real-time fast training of the model with available OCT dataset and with reduced memory
requirement for computations.
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The proposed PDCNN trained with MNLTP feature descriptor data provides better feature represen-
tation capability and improvement in overall accuracy considering the effect of neighborhood pixels and
parallel CNN model. The model performance is best up to R = 2 and three CNN parallel branches, where
it considers two neighborhood levels. For R greater than 2, the spatial connectivity decreases and shows a
slight decrease in performance, so experimentation beyond r = 3 is not considered. The kernel size for the
single CNN is 3 × 3; for two CNN branches, it is 3 × 3 for the first and 5 × 5 for the second branch. The
kernel size for the three branches of CNN is 3 × 3 for the first, 5 × 5 for the second, and 7 × 7 for the third
branch, sufficient to learn the multiscale distinctive features. The sample of the confusion matrix obtained for
different configurations is given in Fig. 7a–d. As discussed above, the effect of various neighborhood levels
and multiple CNN branches can be seen together in Fig. 6a,b.

Figure 7: (Continued)
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Figure 7: (a) Dataset ‘A’ confusion matrix for R = 2 and three parallel CNN branches (b) Dataset ‘B’ confusion matrix
for R = 2 and three parallel CNN branches (c) Dataset ‘B’ confusion matrix for R = 2 and two parallel CNN branches
(d) Dataset ‘B’ confusion matrix for R = 1 and three parallel CNN branches (class 1 is CNV, 2 is DME, 3 is DRUSEN, 4
is NOTMAL)

For Dataset ‘B’, comparable results are obtained with fewer training samples of the large dataset, as
against the off-the-shelf model where either the complexity of the CNN model is increased, or training data
is increased multiple times the original dataset size by data augmentation [24]. This indicated that better
results can be obtained with multiple neighborhood LTP descriptors with comparatively simple CNN model.
The performance of the model with Dataset ‘B’ compared with the other two models is given in Table 5.

Table 5: Comparable results of Proposed model MNLTP-PDCNN for Dataset ‘B’ (OCT2017)

Model/reference Enhanced optical
coherence

tomography
(EOCT) model [8]

Derived models
and data

augmentation [24]

Proposed
MNLTP-PDCNN
with PDCNN = 3

and R = 1

Proposed
MNLTP-PDCNN
with PDCNN = 3

and R = 2
Accuracy 97.4% 99.9% 98.8% 99%

The higher values (0.985 and 99 for R = 2 with two and three CNN parallel branches, respectively) for
Recall, Precision, and F1-Score parameters indicate good performance against False Positive (FP) and False
Negative (FN) classification. In the case of false positive classification, the model detects the images with the
disease when retinal layers are not affected by the detected disease. In case of a false negative, the image is of
a particular disease; the model detects it as unaffected by that disease. In medical image analysis, avoiding
false positive and false negative predictions is of utmost importance.

Beyond three CNN parallel branches, complexity is increased more, compared to improvement in
performance, so it is not considered. In the proposed model, a simple CNN model with comparatively fewer
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learning parameters is trained using the texture descriptor of images. For medical images like OCT images,
texture-based classification can be more robust as the OCT images are constructed using the reflectivity
property of the tissues of retinal layers. The damage to the tissues due to different diseases can affect the
tissues’ reflectivity in different ways; hence, the texture of the OCT images varies. Therefore, the texture
descriptor of images training the CNN model can be a useful distinctive approach for image classification.

7 Conclusion
The performance of the off-the-shelf CNN models has proved very effective in image classifications.

However, disease detection using OCT images, based on structural deformation in the retinal layers using
CNN, can be challenging, as structural changes can be similar for different diseases. This paper presents
a hybrid approach MNLTP-PDCNN, focusing on texture variations rather than structural deformation of
retinal layers (due to diseases) to classify the OCT images. The proposed MNLTP, capable of capturing
complex texture information, is used to obtain texture descriptors. A pixel along low radius R cannot capture
the low-frequency textural pattern changes within the image. So, to improve the spatial feature connectivity,
neighborhood pixels at multiple radii are added. Instead of single neighborhood pixels, a group of pixels
at different radii can give a more distinctive, robust texture descriptor. In the proposed MNLTP-PDCNN
model, PDCNN model is directly trained with MNLTP texture data instead of images. The proposed PDCNN
is comparatively lighter model with 1.6 million for a single CNN network, 1.8 million for two parallel CNN
networks and 2.3 million learnable parameters. The model is tested on two public datasets. The proposed
model has given comparable results with the lightweight CNN model, i.e., a few learnable parameters: 1.6
million for a single CNN network, 1.8 million for two parallel CNN networks, and 2.3 million for three
parallel networks when trained with MNLTP texture data. The proposed parallel CNN network with a 3 × 3,
5 × 5, and 7 × 7 kernel size in three arms improves accuracy between 2%–3%. With Dataset ‘A’, the model has
the best accuracy performance obtained at 93.9873% for R = 2 and three parallel branch CNN.

The proposed model is also analysed for Dataset ‘B’, trained using only 32000 images instead of using
the complete dataset of 83,384 images. The model performance is evaluated on the entire test dataset (1000
OCT images from 4 classes). It has better comparable performance with the highest accuracy of 99% ( for
configuration R = 2 with three parallel branch CNN). First, it requires time to compute MNLTP when the
dataset is large. For the higher values of R, spatial connectivity decreases and shows a slight decrease in
performance, so experimentation beyond R = 3 is not considered.

The reduced learnable parameters make the proposed CNN model lightweight, so it is very useful for
real-time system development, as training time, computational requirement, and memory requirements
are reduced.

The textural variations due to diseases in the OCT images can be effectively used to classify the images.
So, the proposed MNLTP, textural descriptor-based CNN training, and classification is a promising approach
for real-time OCT image classification systems.
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