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ABSTRACT

Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP).
The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition
approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic
features across different domains. Additionally, these methods face challenges in accurately capturing complex
emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a
novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and
contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to
new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features
within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive
learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling
the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains
simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby
improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated
the performance of DTCML across four cross-domain settings, and the results show that our method outperforms
the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
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1 Introduction

With the increasing use of the internet, emotion recognition is expanding into a variety of
new applications, especially on social media platforms where people frequently share their opinions
and emotions. By analyzing user-generated content such as comments, posts, and expressions, we
can gain valuable insights into their emotional states and interests, which can be used to enhance
personalized recommendations and services. In mental health, analyzing social media posts can aid
in the early detection of potential depressive symptoms, enabling timely intervention. Additionally,
emotion recognition helps businesses understand consumer emotional needs, guiding adjustments in

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.059115
https://www.techscience.com/doi/10.32604/cmc.2024.059115
mailto:selobdvat@gmail.com


2332 CMC, 2025, vol.82, no.2

product and service strategies. However, practical applications often face challenges such as variations
in data distribution and limited training data, caused by differences in data sources and volumes.
Consequently, improving model robustness in the face of data scarcity, as well as effectively transferring
emotional information across domains [1–4], remains a significant challenge in emotion recognition
research.

In emotion recognition, addressing data limitations has led to the widespread use of few-shot
learning methods. Meta-learning, which is essential in few-shot scenarios, has significantly advanced
the field of emotion recognition with limited data [5–7]. The main advantage of meta-learning is its
ability to enable rapid learning, allowing models to quickly acquire task-specific knowledge from a
small number of samples and generalize to new tasks. Early research in data scarcity addressed the
issue through data augmentation techniques [8,9], but the scope and effectiveness of these methods
are often limited. In contrast, meta-learning offers a more adaptive approach, allowing models to
personalize learning strategies and quickly adapt to new tasks, thereby increasing model flexibility.

In cross-domain emotion recognition, the limited availability of labeled data across domains, along
with differences in style, vocabulary, and context, often results in decreased model performance when
transferring from one domain to another. The challenge lies in effective feature transfer between the
source and target domains [10–13], which significantly affects emotion recognition accuracy. Most
research has focused on domain adaptation, a form of transfer learning [14,15] aimed at enhancing
target domain performance through model transfer and cross-domain emotional feature capture.
Bozorgtabar et al. [16] proposed an adversarial domain adaptation approach to achieve cross-domain
emotion recognition in facial expression analysis by aligning features across domains. Similarly,
Han et al. [17] introduced a model that combines meta-learning with adversarial domain adaptation
(MLADA), using a meta-knowledge generator and adversarial domain discriminator to produce
features that bridge source and target domains, enabling effective domain adaptation. However,
adversarial learning in current approaches often faces training instability, particularly in emotion
recognition, where the inherent complexity and ambiguity of emotions can cause model collapse
during adversarial training. While adversarial learning is effective in addressing global distribution
differences, it frequently lacks the ability to capture fine-grained emotional details. By contrast,
contrastive learning facilitates cross-domain knowledge transfer by distinguishing unique sample
features, helping the model better capture and understand subtle emotional nuances. Additionally,
a dual-task approach enables the model to learn from data across both domains, allowing it to capture
richer and more diverse features, which can improve performance in the source domain as well.

Based on this, we developed a dual-task contrastive learning framework to enhance the cross-
domain generalization and emotion recognition abilities of deep learning models. In our dual-task
design, we construct two unique meta-learning tasks from different domains, creating a dual-task
structure that broadens the model’s adaptability. Our framework, which combines dual-task and
meta-learning components, allows the model to process data from both domains concurrently. Each
iteration includes learning from both domain datasets and performing emotion recognition on these,
dividing the data into support and query sets with data augmentation applied to prevent overfitting.
Specifically, we use random token replacement and integrate both the augmented and original data
into the encoder, creating positive and negative cases for each text. The inclusion of contrastive
learning further strengthens the model’s semantic comprehension and resilience. Prototype contrastive
learning aids in accurately identifying distinct features for each emotion category, refining the
boundaries between categories. In addition, instance-level contrastive learning brings representations
of individual emotional instances closer to their augmented versions while distancing them from other
instances. This approach enhances the model’s sensitivity to subtle emotional differences. To make
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final predictions, we utilize a matching network with cosine similarity and convert labels into one-hot
encoding, deriving classification results through the cross-entropy loss function. The methodology and
technical innovations of our research are detailed in this paper, including each of the above techniques
and steps.

• We combine meta-learning with a dual framework to enhance effective feature transfer across
different domains. At the same time, meta-learning continuously adjusts the relationships
between tasks, helping the model quickly adapt to new emotional tasks.

• We introduce the concept of prototype contrastive learning, which enables better differentiation
of similar emotions that may exist within the same category by learning the prototypes for each
emotional category.

• We introduce the concept of instance contrastive learning, which allows the model to distin-
guish the emotional states of each specific instance during training, enabling the learning of
more latent emotional features and effectively handling more complex and diverse emotional
expressions.

• Our method outperforms state-of-the-art models on four few-shot datasets, including a multi-
category emotion dataset that we processed and a food-related dataset.

The rest of the paper is structured as follows. Section 2 reviews the relevant conceptual knowledge
of this study, Section 3 describes DTCML and introduces the construction of the emotion recognition
model, Section 4 provides a detailed description of the validation process of the emotion recognition
model, including stability analysis, ablation experiments, and final visualizations and visual analysis.
Section 5 discusses the main conclusions drawn and future work.

2 Related Work
2.1 Few-Shot Learning

Few-shot learning [18,19] enables models to quickly generalize to new tasks by leveraging prior
knowledge and experience, even when only a limited number of samples are available. The core idea is
to learn and generalize from just a few examples, allowing for accurate predictions or classifications
when encountering new instances. This approach emulates human learning when facing new tasks,
making it well-suited for data-scarce situations. To address this challenge, researchers have developed
several methods, including the use of meta-learning. Meta-learning [20–22] simulates few-shot learning
scenarios during training, enabling models to quickly acquire task-specific knowledge from limited
samples. Zhang et al. [23] proposed a two-stage framework consisting of a meta-encoder and a base
learner, which initializes label word embeddings using an external knowledge graph and continuously
refines these embeddings, thereby enhancing the model’s generalization and semantic representation
for few-shot text classification. Another approach is the use of prior knowledge [24,25], such as
category structures and similarities, which can provide additional constraints and assumptions to
improve generalization in few-shot learning. For example, Qin et al. [26] introduced prior knowledge
and attention mechanisms to meta-learning, proposing three stepwise methods Attention-based Meta-
Learning (AML), Representation and Attention-based Meta-Learning (RAML), and Unsupervised
Representation and Attention-based Meta-Learning (URAML) to integrate attention mechanisms
and prior knowledge into meta-learning. Qin also identified overfitting issues in existing meta-learning
methods and developed a new Cross-Entropy across Task (CET) metric to measure the impact of
the Task-Over-Fitting (TOF) problem on these methods. Combining meta-learning with contrastive
learning has become common in emotion recognition. Traditional contrastive learning often relies
heavily on large sample sizes for model optimization, making it sample-dependent. This dependency
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poses limitations in few-shot and cross-domain tasks, and traditional contrastive learning can also lack
precision in fine-grained emotion recognition. Integrating meta-learning with prototype contrastive
learning and instance contrastive learning offers a solution to these challenges.

2.2 Cross-Domain Emotion Recognition

Cross-domain emotion recognition refers to the task of recognizing emotions across different
domains. Previously, text emotion recognition primarily focused on modeling and training within
specific domains. However, current emotion recognition efforts are beginning to address the issue
of data distribution differences between different domains. As a result, various methods have been
proposed to learn domain-invariant features, including adversarial learning and contrastive learning.
Moreover, cross-domain emotional samples are scarce, particularly labeled data, making it challenging
for emotion recognition models to transfer to other domains. Therefore, semi-supervised learning
[27], unsupervised learning, and few-shot learning have gradually become hot topics, with multi-task
learning [28,29] and reinforcement learning also being widely utilized. Nguyen et al. [30] proposed
a deep cross-domain transfer learning framework that experimentally addresses emotion recognition
through joint learning. Specifically, he first evaluated the performance of pre-trained models on the
same data sources and different data sources. Then, he presented results for cross-domain transfer
between visual and auditory domains. Finally, he validated the effectiveness of joint learning across
multiple datasets. Fan et al. [31] introduced a cross-domain discriminative subspace classification
algorithm specifically for text emotion recognition. After extracting deep features using a BiLSTM
(Bidirectional Long Short-Term Memory) model, he incorporated conditional distribution adaptation
and the distance between conditional distributions to enhance intra-class compactness and inter-
class separability. Wang et al. [32] designed a decoupled loss function to learn domain information
within emotion-specific features, and then further enhanced the quality of these features through
prototype learning. From a causal perspective. Wang et al. [33] considered the causal relationships
among text, emotion labels, and domains, and employed a backdoor adjustment method to eliminate
domain bias, extracting the pure causal effects between text and emotion to address the issue of
domain generalization. However, none of these methods effectively address the contextual semantic
issues inherent in cross-domain challenges. To this end, we introduced a dual-task strategy in our
model, which helps the model learn discriminative features across domains by processing data from
both domains. This approach encourages the model to acquire richer semantic knowledge in different
domains, thereby enhancing its generalization capability in the target domain.

2.3 Contrastive Learning

Contrastive learning [34–36] is a machine learning approach aimed at enhancing model per-
formance by discerning the similarities and differences between samples. In this method, models
are trained to maximize the similarity between positive sample pairs while minimizing the simi-
larity between positive and negative pairs. Contrastive learning has demonstrated state-of-the-art
performance in the unsupervised training of deep image models and is increasingly applied to text
classification tasks, where it addresses data imbalance, strengthens feature learning, and effectively
improves model classification performance and adaptability to real-world applications. When com-
bined with self-supervised learning, contrastive learning can generate pseudo-labels or apply data
augmentation to derive effective emotional representations from unlabeled data, reducing the need
for large-scale labeled datasets. Khosla et al. [37] enhanced supervised classification tasks through
supervised contrastive learning, noting that traditional methods using cross-entropy loss often fall
short with large datasets and complex tasks. Azuma et al. [38] tackled domain shift by integrating
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contrastive learning with domain adaptation techniques, combining contrastive models with domain
discriminators to achieve domain-invariant feature representations using adversarial loss.

However, these methods may struggle to capture nuanced or implicit emotional expressions, such
as distinguishing “sadness” from “depression.” To address this, we employ instance and prototype
contrastive learning strategies. Prototype contrastive learning optimizes the model by clustering
similar samples closer to their respective class prototypes, which is essential for fine-grained emotion
recognition. Instance contrastive learning further refines the model by distinguishing unique features
within each category, enabling it to better differentiate complex emotional expressions.

3 Methods

In this section, we will introduce the proposed DTCML (Dual-Task Contrastive Meta-Learning)
framework. As shown in Fig. 1, we aim to combine contrastive learning to achieve efficient and stable
accuracy in cross-domain emotion recognition with our model. To this end, Section 3.1 introduces
the dual-task, Section 3.2 describes the data augmentation methods, and Section 3.3 details how to
fine-tune BERT (Bidirectional Encoder Representations from Transformers) to overcome the impact
of unknown domain samples on model performance. In Sections 3.4 and 3.5, we provide detailed
explanations on how to apply contrastive learning to cross-domain emotion recognition. Finally, in
Section 3.6, we describe how to predict emotion labels.

Figure 1: DTCML model. icl for instance contrastive learning loss, ce for classification loss and pcl
for prototype contrastive learning loss

3.1 Problem Definition

In the few-shot cross-domain emotion recognition task, the entire dataset is divided into three
distinct subsets: the training Settrain, the validation Setval, and the test Settest. The training Settrain provides
essential learning resources for the Dual-Task Contrastive Meta-Learning (DTCML) model. The
validation Setval serves to assess the model’s learning progress during training, while the test Settest

is utilized to evaluate the final performance of the model. Within the DTCML framework, each
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meta-learning task requires defining a support set S and a query set Q. For the n − way k − shot
emotion recognition, n categories are selected from the entire dataset, with k × m sample randomly
drawn from each category. The support set consists of n × k labeled samples that provide essential
feature learning for the DTCML model, whereas the query set contains n × m unlabeled samples. The
main objective of the DTCML model is to utilize the limited labeled information in the support set S
to enhance the classification capability on the samples in the query set Q. This approach significantly
boosts the model’s generalization capability, enabling effective feature recognition across categories
even when labeled samples are scarce.

3.2 Dual-Task

Dual-task [39,40] strategy typically constructs a symmetrical model learning framework that
inputs two different learning tasks simultaneously into the model to aid in acquiring domain
knowledge. In our approach, we incorporate dual tasks into our framework to enhance the model’s
generalization capability and domain adaptability. Specifically, for the support set and query set of a
single task, we generate augmented samples through data augmentation techniques. These samples
help the model capture a greater diversity of emotional expressions. Subsequently, we input all
these data into the model to obtain its semantic representations. Next, we compute the prototype
representations, which capture the overall characteristics of each emotional category, and estimate
the prototype contrastive learning loss pcl, as well as the instance contrastive learning loss icl.
Crucially, by calculating the similarity matrix between the support set and the query set, we learn
cross-domain emotion recognition, aiding the model in performing this task more effectively. Due
to the symmetry of the dual-task strategy, the learning steps for the other task are identical to
those described above, further enhancing the capacity for feature sharing and transfer. The dual-task
strategy encourages the model to learn richer and more general features by simultaneously addressing
two related tasks. This learning mechanism enables the model to better adapt to different tasks
and domains, thereby improving its generalization ability. Additionally, by establishing relationships
between samples through contrastive learning, the model can more effectively differentiate between
different categories.

In addition, by incorporating contrastive learning, we introduce prototype contrastive loss and
instance contrastive loss. The prototype contrastive loss is used to align the overall emotional features
across domains, while the instance contrastive loss helps the model refine the distinctions between
different emotional categories within a domain. By jointly optimizing these two types of losses, the
model can capture domain-independent general emotional features while also learning to address
the subtle differences between domains, leading to superior performance in cross-domain emotion
recognition.

3.3 Datas Augmentation

Data augmentation has been shown to be beneficial for contrastive learning [41]. To enhance data
diversity and improve the model’s generalization ability, we used a robust data augmentation technique
in our experiments. Specifically, before feeding data into the encoder, we randomly replaced a small
portion of tokens in sentences to generate new sentences that maintain similar meanings with slight
variations. This data augmentation strategy aims to introduce more sentence variations, enriching the
training data and helping the model better capture semantic information and sentence representations.
Furthermore, by reducing dependency on specific sentence structures, this approach enhances the
model’s understanding and clustering of input data, thus boosting its performance. In our method, we
treat the augmented data as positive samples and the original unaugmented data as negative samples,
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allowing the model to compute similarity between the two domains through contrastive learning. By
clustering similar samples closer and aligning samples with their respective category prototypes, the
model effectively differentiates features across samples.

3.4 Fine-Tuning BERT

BERT [42] is a pre-trained encode language model based on the Transformer [43]. Our fine-
tuning task utilizes the 10th, 11th, and 12th layers of the Encoder. This fine-tuning approach helps
reduce the number of parameters and lowers the computational burden. Selecting specific layers for
fine-tuning strikes a good balance between model complexity and performance, resulting in features
that often exhibit stronger generalization capabilities. This means the model not only performs well
on the training set but also maintains high performance on unseen data, thereby enhancing the
model’s adaptability. Here, BERT is used as a text encoder to map textual information into latent
space. After inputting the augmented and original data into the encoder, we obtain the corresponding
token embeddings. These embeddings are represented as points in a low-dimensional continuous space
within the encoder network, where each point represents the semantic representation of a sentence. By
encoding both augmented and original data, we obtain rich and expressive sentence embeddings that
capture the semantic information and features of the sentences. These embeddings will serve as inputs
for subsequent tasks, specifically for contrastive learning. In a given set, two N-way-K-shot tasks are
provided D1 = {(
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1
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where s represents the length of BERT sentence embeddings, and h represents the dimensionality of
BERT embeddings’ hidden layers. Similarly, the embedding representations of Mq
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both be derived from the aforementioned formula. They are respectively: Ebq

1 ∈ RNK×s×h, Ebs
2 ∈ RNK×s×h

and Ebq
2 ∈ RNK×s×h.

3.5 Prototype Contrastive Learning

We employ prototype contrastive learning, aiming to bring similar samples closer and push
dissimilar samples farther apart. Therefore, after obtaining the embedding vector representations, we
use datas augmentation separately for ZS1 and Z′

S1, ZQ1 and Z′
Q1, ZS2 and Z′

S2, ZQ2 and Z′
Q2, as a positive

pair, and similarly, ZSi and Z′
Si as well. For each sample B = {ZSi, ZQi}M

i=1,2, we compute their similarity
by comparing the distances between sample pairs. Specifically, we measure the similarity between them
by comparing the distances between sample pairs and then use these similarity measures to construct
the loss function. To compute the contrastive loss, we construct an adjacency matrix A’ for B’, which
is a binary matrix of size 2M × 2M. For each sample pair, if they belong to the same category (positive
sample), we want their distance to be closer to 0; if they belong to different categories (negative sample),
we want their distance to be farther from 0. Therefore, we can express the contrastive loss as:
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Ci ≡ {
A′

i,j = 1|j ∈ {1, . . . , 2M}} represents the cardinality of the set of instances, where ZSi, ZQi are
positively correlated, ZSi, ZQi are vector embeddings. τ is temperature, sim (·, ·) is a similarity function
on a pair of normalized feature vectors.
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Meanwhile, we partition the augmented and original datas into two groups each, specifically, ZS1

and ZQ1 as one group, totaling four groups, and compute the prototype as Pi (i = 1, 2, 3, 4). For each
sample x, we calculate its distance to each class prototype Pi. In our model, we employ cosine similarity
as the distance metric to measure the similarity between samples and prototypes. The calculation of
cosine similarity is as follows:

sim (x, Pi) = x · Pi

‖x‖ · ‖Pi‖ (3)

We utilize the computed similarity between samples and class prototypes to calculate the prototype
contrastive learning loss. We chose prototype contrastive learning because it effectively clusters and
classifies emotional features, thereby enhancing emotion recognition performance. By constructing
prototypes, the model can learn the central characteristics of categories, which improves performance
in cross-domain emotion recognition.

3.6 Instance Contrastive Learning

Instance Contrastive Learning (ICL) is a method designed to enhance data representation by
examining the relationships between samples. Its main aim is to assist the model in acquiring meaning-
ful representations by leveraging the similarities observed in different perspectives of a single sample.
By increasing the similarity between various views of the same sample while decreasing the similarity
across different samples, the model can effectively identify significant features, thereby improving
its capacity to distinguish between different categories or semantic concepts in the representation
space. Unlike prototype contrastive learning, which focuses on optimizing model performance using
representative prototypes, instance contrastive loss functions specifically optimize the model by
assessing the spatial relationships between individual sample instances. Typically, this loss function
works by minimizing the distance between pairs of samples from the same class and maximizing
the distance between pairs from different classes. After calculating the similarities of samples in set
B = {ZSi, ZQi}M

i=1,2, based on the similarity matrix S, the support set sample with the highest similarity
to each query set sample is selected as its contrast sample. The generated instance contrast samples
are used to construct the contrastive loss function:

CLoss
(
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) = 1
N

N∑
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1
2

D2
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p

))
(4)

Here, xq denotes a query set sample, xp denotes a contrast sample, xn denotes a negative sample,
N represents the number of samples, yi is the binary indicator function, which equals 1 when xi

q and
xi

p are of the same class and 0 otherwise, and D represents the euclidean distance or other distance
metric.

In combining prototype contrastive learning and instance contrastive learning, prototype con-
trastive learning captures the central features of categories, providing a global perspective, while
instance contrastive learning focuses on the fine-grained differences between samples. This combi-
nation allows the model to learn simultaneously at different levels, effectively enhancing the accuracy
of emotion recognition. The choice of these two contrastive learning strategies lies in their comple-
mentary nature, collectively improving performance in cross-domain emotion recognition. Through
prototype contrastive learning, the model can learn representative features of categories, while instance
contrastive learning deepens the understanding of subtle differences among similar samples, enabling
more accurate emotion classification.
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3.7 Emotion Label Prediction

Finally, in our model, we use a matching network to compute cosine similarity, convert labels
to one-hot encoding to generate predictions, and use the cross-entropy loss function to measure the
difference between predicted and true labels. We successfully predict the labels of emotion words.

F.cross_entropy = − log
e−sim(x,Py)

∑
j e−sim(x,Pj)

(5)

where Py represents the prototype vector corresponding to the true class of the sample, and j represents
all classes. Emotion Label Prediction is as follows:

pred = XQ · XST · YS_onehot (6)

loss = F .cross_entropy
((

XQ · XST
) · YS_onehot, YQ

)
(7)

where XQ represents sample feature matrix in the query set, XS represents sample feature matrix
in the support set, YS_onehot represents unique thermal coding of labels supporting centralised
samples, pred represents predicted results, YQ represents the true labels of the samples in the query
set. F .cross_entropy represents the cross-entropy loss function.

4 Experiment

We conducted extensive experiments to validate the effectiveness of the proposed method.
Section 4.1 provides a detailed overview of the experimental setup, including statistics on the datasets
used, baseline comparisons, and implementation details. The performance of both the proposed
method and baselines across various datasets is validated, with the analysis of the results presented
in Section 4.2. Section 4.3 discusses the ablation study, while Section 4.4 presents the visualizations of
the proposed approach.

4.1 Experiment Setup

4.1.1 Dataset

GoEmotions [44]: Proposed by Demszky et al. in 2021, this dataset contains 58,000 Reddit
comments across 27 emotion categories, capturing a broad spectrum of emotional experiences, from
basic emotions like joy, sadness, and anger to more nuanced ones like jealousy, surprise, and confusion.
YELP dataset: Collected from the YELP platform, this dataset focuses on reviews within the food
domain and includes 17 categories that address various aspects of food-related experiences. DailyDi-
alog [45]: This dataset comprises over 10,000 manually annotated multi-turn dialogues gathered from
an English learning website, covering topics such as daily life, culture and education, travel, and work.
It includes annotations for 7 distinct emotion categories.

4.1.2 Baseline

Prototypical networks [46]: Designed to address few-shot learning challenges, prototypical net-
works aim to create an embedding space where each category is represented by a central prototype. This
method employs a neural network to map input data into an embedding space, where the prototype
of each category is defined as the mean of its support set within this space. Classification of a given
query point is then performed by determining its closest category prototype. In our experiments, we
followed the standard configurations typically associated with prototypical networks.
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Induction networks [47]: Induction Networks are a type of inductive network designed for few-shot
text classification. They capture relationships between samples and categories using dynamic routing
and matrix transformations. In Induction Networks, samples are encoded as vectors through neural
networks. A dynamic routing mechanism then interacts sample vectors with category vectors, assigning
weights to each sample for each category. These weights are transformed into final category predictions
through matrix transformations and nonlinear functions.

DS-FSL (Distributional Signatures Few-Shot Learning) [48]: DS-FSL is a text classification
method that assesses word importance by weighting their frequencies and biases within specific
documents in a collection. This helps identify word relevance for different categories, improving
classification accuracy. Using limited labeled data, DS-FSL estimates word importance for target
categories and refines this estimation through a meta-learning framework. By leveraging distributional
features, DS-FSL enhances the model’s generalization to new categories.

MLADA (Meta-Learning Adversarial Domain Adaptation Network) [17]: MLADA is a model
designed for few-shot text classification. It combines adversarial domain adaptation with episode-
based meta-learning techniques to enhance model performance with limited data. MLADA leverages
domain-adversarial tasks to expand training data and extract transferable features through meta-
learning. The model consists of several key components: a word representation layer that encodes
each word as a vector, a domain discriminator to distinguish between source and target domain
samples, and a meta-knowledge generator that uses bidirectional LSTM to create context embeddings.
The interaction layer merges transferable features with sentence-specific features to form sentence
embeddings, while the classifier, trained on support sets, produces the final classification results.

TART (Task-Adaptive Reference Transformation) [49]: TART is a method for enhancing few-
shot text classification tasks. It improves model generalization by constructing task-adaptive metric
spaces. TART uses linear transformation matrices to project category prototypes to fixed reference
points for each category, enhancing differences between category prototypes in transformation space.
Additionally, TART introduces a discriminative reference regularization method that maximizes dif-
ferences between transformed category prototypes in the task-adaptive metric space, further improving
performance.

DualAN (Dual Adversarial Network) [50]: primarily explores a meta-learning-based knowledge
transfer method for addressing few-shot text classification problems. It begins by acquiring task-
relevant domain knowledge and then utilizes word embeddings along with this domain knowledge
to compute sentence representations. A domain discriminator is introduced to differentiate between
knowledge from different domains, and a ridge regression classifier is employed for classification.
During model training, implement a dual adversarial training strategy, simultaneously training the
knowledge generator, classifier, and domain discriminator. This approach enables the model to learn
how to transfer knowledge from the support set during each meta-training cycle, allowing for effective
classification on the query set.

BiLSTM-Attention-CNN [51] is a model that combines Bidirectional Long Short-Term Memory
networks (BiLSTM), attention mechanisms, and Convolutional Neural Networks (CNN), and is
commonly used in text classification and emotion recognition tasks. It utilizes methods such as
word2vec to convert words in the text into word vectors, preserving semantic information. The word
vectors are then input into the BiLSTM to generate contextual representations of the words. The
attention mechanism is used to compute the context vector for each word, extracting key information.
The output from the attention mechanism is fed into the CNN to extract salient topic features. Finally,
a fully connected layer is used to classify the extracted features, resulting in the categorization of
the text.
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4.1.3 Experiment Detail

The BERT encoder is a lightweight version based on BERT proposed in the Hugging Face code
repository, used as a text encoder. When using BERT as the encoder, we selected a model pretrained
with specific strategies as the pretrained model. We strictly limited the number of BERT’s output layers,
choosing only the outputs from layers 10, 11, and 12 as the final encoder output.

During the model training process, we experimented with four datasets: Y(Yelp) → D(Daily
Dialog), Y(Yelp)→ G(GoEmotions), G(GoEmotions) → D(DailyDialog), and G(GoEmotions) →
Y(Yelp). We used the Adam optimizer for parameter optimization with a learning rate set to 0.00001.
To prevent overfitting, we randomly partitioned the training, testing, and validation sets, and used an
early stopping strategy to prevent performance degradation on the validation set. Specifically, training
was stopped if the accuracy on the validation set did not improve over 10 epochs to avoid overfitting.

During meta-training, we performed 100 training tasks per epoch to assess model performance.
We evaluated the model’s classification accuracy and scenario standard deviation using a test set
containing 1200 samples, verifying the model’s stability across different domains. This experimental
design comprehensively evaluates the model’s generalization ability and performance across various
scenarios.

All experiments were conducted on Nvidia Geforce RTX 6000 GPUs.

4.2 Experiment Result and Analysis

The experimental results of the six methods on the four datasets are shown in Table 1 and Fig. 2.
Based on these results, we made the following three observations.

Table 1: The experimental results of the four methods for the Y → D, Y → G, G → D, and G →
Y transfer tasks are presented. Bold and underlined entries indicate the best and second-best results,
respectively

Model Y→D Y→G G→D G→Y

3-way 1-shot 3-way5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot

Prototypical 46.04 ± 1.13 58.28 ± 1.02 47.31 ± 1.23 59.14 ± 1.17 46.84 ± 1.13 61.67 ± 1.03 58.16 ± 1.41 71.79 ± 1.23
Induction 44.77 ± 1.23 52.74 ± 1.10 49.24 ± 1.52 62.03 ± 1.28 48.99 ± 1.26 55.20 ± 1.10 63.74 ± 1.61 75.14 ± 1.32
DS-FSL 45.44 ± 0.85 58.39 ± 0.84 44.07 ± 0.84 57.19 ± 0.92 45.45 ± 0.88 58.42 ± 0.83 48.77 ± 1.02 64.60 ± 1.10
MLADA 45.07 ± 0.91 56.42 ± 0.87 48.87 ± 1.02 65.29 ± 1.07 43.80 ± 0.87 58.81 ± 0.89 53.75 ± 1.17 67.79 ± 1.16
TART 47.09 ± 1.10 62.20 ± 0.88 50.38 ± 1.19 64.83 ± 0.96 44.92 ± 0.97 60.96 ± 0.89 54.98 ± 1.24 73.24 ± 1.15
DualAN 47.92 ± 1.23 56.54 ± 1.12 52.98 ± 1.34 64.95 ± 1.26 43.98 ± 1.12 56.75 ± 1.09 52.23 ± 1.34 63.62 ± 1.17
BiLSTM-
Attention-CNN

45.34 ± 1.33 59.29 ± 1.19 51.34 ± 1.48 64.96 ± 1.37 50.04 ± 1.31 63.80 ± 1.18 63.35 ± 1.64 76.80 ± 1.34

DTCML 51.53 ± 1.23 64.22 ± 1.10 59.16 ± 1.54 70.73 ± 1.10 54.77 ± 1.36 66.96 ± 1.06 65.86 ± 1.39 77.65 ± 1.33

Model Y→D Y→G G→D G→Y

5-way 1-shot 5-way5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Prototypical 30.96 ± 0.75 42.49 ± 0.70 34.01 ± 0.94 44.70 ± 0.84 35.15 ± 0.80 46.00 ± 0.69 34.72 ± 0.63 56.46 ± 0.91
Induction 31.42 ± 0.77 39.98 ± 0.71 40.78 ± 1.18 49.37 ± 1.09 34.21 ± 0.85 43.72 ± 0.87 49.23 ± 1.16 61.86 ± 1.07
DS-FSL 32.12 ± 0.62 44.40 ± 0.61 30.78 ± 0.63 44.01 ± 0.74 31.72 ± 0.61 43.53 ± 0.79 35.32 ± 0.75 51.10 ± 0.88
MLADA 32.02 ± 0.66 44.24 ± 0.62 35.51 ± 0.75 54.04 ± 0.83 32.59 ± 0.69 46.05 ± 0.83 43.09 ± 0.93 59.32 ± 1.01
TART 30.52 ± 0.89 45.43 ± 0.62 37.39 ± 0.91 55.82 ± 0.84 33.54 ± 0.91 44.57 ± 0.59 43.53 ± 0.97 57.43 ± 0.97
DualAN 32.50 ± 0.85 45.31 ± 0.85 35.90 ± 0.97 54.84 ± 0.96 34.14 ± 0.72 44.31 ± 0.83 45.60 ± 0.91 57.36 ± 0.91

(Continued)
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Table 1 (continued)

Model Y→D Y→G G→D G→Y

3-way 1-shot 3-way5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot

BiLSTM-
Attention-CNN

31.04 ± 0.83 43.36 ± 0.82 40.33 ± 1.17 51.66 ± 1.12 36.24 ± 0.94 50.15 ± 0.86 49.45 ± 1.19 65.24 ± 1.14

DTCML 37.94 ± 0.99 49.16 ± 0.78 44.89 ± 1.14 59.55 ± 1.00 38.41 ± 0.93 53.90 ± 0.88 51.05 ± 1.10 67.41 ± 1.05

Figure 2: Experiment results of the six methods on three datassets
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Firstly, under all datasets and settings, Dual-Task Contrastive Meta-Learning (DTCML) signif-
icantly outperforms all baseline methods. Compared to the second-best methods, DTCML improves
performance by an average of 4.48%. For various cross-domain transfer tasks, DTCML shows
average performance improvements of 5.88%, 12.04%, 8.49%, and 8.40% on Yelp→DailyDialog,
Yelp→GoEmotions, GoEmotions→DailyDialog, and GoEmotions→Yelp, respectively. These results
thoroughly demonstrate the effectiveness and superiority of the DTCML method. This outstanding
performance is attributed to the synergistic combination of multi-domain datasets and contrastive
learning, significantly enhancing the training quality of contrastive learning models. Additionally, by
employing dual tasks where two tasks are simultaneously inputted in one episode, DTCML obtains
more reliable supervision signals from different domains, further strengthening the model’s robustness.

Secondly, in the field of cross-domain few-shot emotion recognition, our DTCML model demon-
strates significant performance advantages. Compared to adversarial network-based approaches such
as TART and MLADA, DTCML exhibits greater robustness when handling data from different
domains, particularly in the learning of emotional features. By leveraging a dual-task contrastive
learning mechanism, DTCML achieves performance improvements across various task settings. For
instance, in the 3-way 1-shot task on the G→Y dataset, DTCML reaches an impressive performance
of 65.86%, clearly outperforming other models. This enhancement in performance can be attributed
to DTCML’s ability to effectively capture emotional features within cross-domain data. Unlike tradi-
tional models that face challenges due to inconsistent feature distributions across different domains,
DTCML promotes a deeper understanding of similar samples through contrastive learning, thereby
better adapting to the emotional information in varying domains. Additionally, we also included
a model based on the dual-task learning framework, DualAN, and the BiLSTM-Attention-CNN
baseline model. The experimental results show that both methods can achieve good performance.
However, the proposed method still outperforms them. We analyze that DualAN effectively addresses
the few-shot problem, but its performance in cross-domain few-shot emotion recognition is not ideal.
This may be due to its inability to adequately solve the issue of domain generalization. The BiLSTM-
Attention-CNN architecture is typically used for feature extraction from samples. However, in few-
shot learning, the scarcity of samples limits the ability of the BiLSTM-Attention-CNN neural network
combination to learn sufficient sample features, leading to overfitting.

Thirdly, models in the realm of cross-domain few-shot text classification exhibit a greater
sensitivity to sample quantity than to the number of methods employed. For example, the performance
of models in a 3-way 1-shot setting is, on average, 14.75% higher than in a 5-way 1-shot scenario.
Similarly, the average accuracy in 3-way 5-shot classification surpasses that of 5-way 5-shot classi-
fication by 15.26%. These findings suggest that in few-shot learning, both controlling the number
of categories and increasing the sample size are crucial strategies for enhancing model performance.
Reducing the number of categories can improve performance by minimizing confusion among fewer
categories, thereby simplifying the classification task for the model. This is particularly important
during domain transfer between training and testing data, where the model may become significantly
confused, leading to a notable decline in performance. Additionally, this insight clarifies why methods
that leverage supplementary data, such as DTCML, MLADA, and TART, frequently outperform
other approaches. Their superiority largely stems from the effective mitigation of bias through the
incorporation of more labeled data.

4.3 Stability Analysis

Given the scarcity of labeled data in each N-way-K-shot task, few-shot models demonstrate
notable sensitivity to changes in the few-shot configurations. Therefore, experiments were carried out
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to evaluate the stability of the models across a spectrum of N-way-K-shot settings, as presented in
Table 2 and Fig. 3.

Table 2: The stability of DTCML and baseline models was evaluated across various N-way-K-shot
settings

Model N-way-5-shot on G→Y

N = 2 N = 3 N = 4 N = 5

DS-FSL 76.89 ± 1.18 64.60 ± 1.10 56.74 ± 0.94 51.10 ± 0.88
MLADA 80.62 ± 1.22 67.79 ± 1.16 63.76 ± 1.02 59.32 ± 1.01
TART 80.23 ± 1.20 73.24 ± 1.15 64.64 ± 1.07 57.43 ± 0.97
DTCML 82.74 ± 1.39 74.57 ± 1.23 69.80 ± 1.12 67.41 ± 1.05

Model 5-way-K-shot on G→Y

K = 1 K = 2 K = 3 K = 4

DS-FSL 35.32 ± 0.75 42.12 ± 0.79 46.16 ± 0.85 48.88 ± 0.87
MLADA 43.09 ± 0.93 49.43 ± 0.90 53.79 ± 0.90 53.56 ± 0.86
TART 43.53 ± 0.97 51.93 ± 0.95 55.55 ± 0.92 58.20 ± 0.97
DTCML 51.05 ± 1.10 54.28 ± 1.10 66.07 ± 1.14 67.66 ± 1.10

Figure 3: Stability assessment of DTCML and baseline models across various N-way-K-shot settings

As the number of samples K increases, all models generally exhibit improved classification
performance, as shown in Fig. 3a. In contrast, an increase in the number of categories N leads to a
noticeable decline in performance, as illustrated in Fig. 3b. Notably, the DTCML model consistently
maintains the highest performance across various experimental settings, demonstrating its robustness
and consistency. This advantage stems from the model’s effective use of dual-task contrastive learning,
which enables it to draw insights from multiple N-way-K-shot tasks across diverse domains. Conse-
quently, the DTCML model excels at accurately classifying data from different domains within each
set. Through iterative training, the model enhances its adaptability to the unique features of these
domains, resulting in significant performance gains.
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4.4 Ablation Experiments

Table 3 displays the findings from the ablation study conducted on the two datasets. Fig. 4
illustrates how the number of N-way-K-shot tasks influences model performance. A dual-task network
was introduced, where two tasks are processed within a single network and trained using contrastive
learning techniques. Additionally, several variants were explored to investigate the underlying sources
of effectiveness.

• W/1 Task : Without dual-task training, only one task is accepted for training.
• W/2 Task: Elimination of instance contrastive learning, accepting only prototype con-

trastive loss.
• W/3 Task: Elimination of prototype contrastive learning, accepting only instance con-

trastive loss.

From the results presented in Table 3 and Fig. 4, three key conclusions can be drawn. First, our
method consistently outperforms others across all datasets and settings. Second, the performance of
the three individual tasks does not exceed that of our method. The dual-task mechanism acts as a
regularization strategy during the model training process, facilitating the learning of more generalized
feature representations. By incorporating dual tasks, the model is compelled to develop the ability to
adapt to multiple tasks concurrently, enhancing its overall generalization performance. Consequently,
removing the dual-task component from DTCML may lead to a decline in performance on specific
tasks, as the model loses the mechanism for joint optimization across multiple tasks, thereby restricting
its learned feature representations.

Table 3: The ablation studies on the four datasets

Model Y→G G→Y Y→G G→Y

3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot 3-way 1-shot 3-way 5-shot

W/1 task 50.53 ± 1.25 65.78 ± 1.25 51.13 ± 1.35 73.91 ± 1.35 40.59 ± 1.12 54.50 ± 0.99 48.71 ± 1.10 60.20 ± 1.07
W/2 task 56.77 ± 1.49 62.68 ± 1.28 65.02 ± 1.52 74.51 ± 1.33 37.44 ± 0.95 57.46 ± 1.06 51.10 ± 1.15 64.42 ± 1.09
W/3 task 53.95 ± 1.38 68.86 ± 1.25 65.14 ± 1.56 74.94 ± 1.36 36.05 ± 0.92 57.26 ± 1.07 51.09 ± 1.14 62.12 ± 1.12
DTCML 59.16 ± 1.54 70.73 ± 1.10 67.49 ± 1.53 78.55 ± 1.34 44.89 ± 1.14 59.55 ± 1.00 54.77 ± 1.21 65.17 ± 1.13

Figure 4: The impact of the number of N-way-K-shot tasks on model performance
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Similarly, instance contrastive learning establishes relationships among samples by comparing
their similarities, which aids the model in acquiring more discriminative feature representations.
Without prototype contrastive learning, the model struggles to adequately identify similarities between
samples, resulting in diminished differentiation among various categories. Lastly, prototype con-
trastive learning maps samples into a prototype space, allowing for the learning of category prototypes
at the task level, which fosters better generalization to new tasks. Therefore, the absence of prototype
contrastive learning hinders the model’s ability to effectively learn shared features across tasks, leading
to decreased performance on novel tasks. As indicated in Table 3, the performance of both tasks
experiences a significant drop after the removal of contrastive learning, demonstrating that models
trained without this mechanism face challenges in handling data from different domains. This further
underscores the importance of dual-contrastive learning in enhancing domain adaptation for few-shot
models.

4.5 Visualization

To visually demonstrate the effectiveness of the DTCML model in distinguishing emotional cat-
egories, we employed T-SNE (T-Distributed Stochastic Neighbor Embedding) to visualize the latent
space. We conducted 5-way 1-shot model training on the Yelp→DailyDialog and Yelp→GoEmotions
datasets, randomly selecting five categories from the test set, with each category containing 100
samples. The visualization results are shown in Fig. 5. These t-SNE plots illustrate how the model
clusters and separates different emotional categories in the latent space.

The figures clearly show that our method, DTCML, produces feature spaces with more distinct
and separable representations across both datasets, whereas the feature distributions of other baseline
models are more mixed. In Fig. 5b, for instance, samples of the same class are tightly clustered,
especially for class 40, which effectively pushes apart representations from different classes. This
clustering of similar samples demonstrates the effectiveness of DTCML in enhancing class separation
in cross-domain emotion recognition. Due to the nature of contrastive learning, DTCML creates a
latent space where samples from the same class are grouped closely together, while those from different
classes are pushed farther apart. This approach improves the discriminative power of the model for
emotional features. In contrast, the MLADA and DS-FSL models show more overlap between class
distributions, with less defined boundaries between classes, further highlighting the superior perfor-
mance of DTCML in distinguishing emotional categories. These visualization results align with the
quantitative findings from our experiments, confirming that DTCML not only improves performance
across various cross-domain emotion recognition tasks but also generates more discriminative feature
vectors, leading to better emotion classification accuracy.

4.6 Error Analysis

To demonstrate that our method can maintain good accuracy even under random data sampling
conditions, we have introduced a new error analysis experiment. The data for this experiment was
randomly sampled from 100 episodes in the test set. The prediction results for the query set are shown
in the Fig. 6.
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Figure 5: Visualization of the latent space for DTCML, MLADA, and DS-FSL using t-SNE under
5-way 1-shot on the Yelp→DailyDialog and Yelp→GoEmotions datasets
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Figure 6: Error analysis
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The figure clearly demonstrates that our proposed method outperforms other models in terms of
correctly predicted categories, with fewer misclassifications. In Fig. 6f, the values along the diagonal
are significantly higher than those of the baseline models, and the color intensity is also more
pronounced. For example, in the “happiness” category, the surrounding values are all single digits,
which strongly indicates a lower error rate in our model. This improvement can be attributed to
our use of contrastive learning, which effectively differentiates complex emotions within the samples.
Specifically, when compared to the DualAN model in Fig. 6b, our method shows a substantial increase
in correct predictions, further emphasizing the effectiveness of the dual-task approach in improving
the model’s adaptability across domains.

5 Conclusion

Recent research emphasizes the difficulties in transferring emotional features effectively across
various domains and capturing semantic characteristics in textual contexts during cross-domain
sentiment analysis. To tackle these issues, we introduce a method called Dual-Task Contrastive Meta-
Learning (DTCML). This method constructs a training framework using a multi-domain dataset
to improve the model’s ability to adapt to different domains and learn features that are invariant
across them. Once the model has undergone meta-training, it can generalize to previously unseen
domains without the need for additional retraining or fine-tuning. Additionally, by combining dual-
task networks with contrastive learning techniques, we utilize multi-domain training data to enhance
the model’s flexibility in adapting to a range of domains. We performed comprehensive experiments
to assess the effectiveness of our proposed method, and the results indicate that DTCML surpasses all
other methods across four datasets, achieving an average performance boost of 4.48% compared to the
second-best approach. These findings substantiate the efficacy of DTCML. Our experimental analysis
indicates that effectively addressing few-shot problems hinges on reducing few-shot bias. DTCML
accomplishes this by employing two tasks within each task set, which significantly diminishes bias and
enhances model performance. Additionally, we performed ablation experiments to identify the sources
of the DTCML model’s effectiveness, revealing that the inclusion of two tasks from different domains
within each task set contributes to the model’s ability to generate improved domain knowledge.

Despite certain advantages, DTCML has some limitations. First, the method heavily relies on
diverse multi-domain datasets, which may not always be available in practical applications. This can
impact the model’s transferability, especially when there are significant domain gaps. Second, although
DTCML has achieved certain success in capturing complex or implicit emotional expressions, further
exploration is needed for more subtle emotional differences. Lastly, the complexity of the dual-task
framework may increase computational costs, potentially affecting scalability in larger datasets or
real-time applications.
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