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ABSTRACT

Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-
level engineering design drawings. However, this task faces the challenges of complicated design shapes as well
as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this
article, the transmission tower containing the most complex structure is taken as the research object, and a semantic
segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing
and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then,
based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural
vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-
the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively
eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the
model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line
connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D
model reconstruction and contributes to technological advancements in relevant fields.
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1 Introduction

With the rapid development of digital power grids, numerous intelligent applications require
digital 3D models as technical support, such as intelligent acceptance of transmission lines, which
requires standard 3D design models as acceptance comparison standards [1]. However, construction
units usually have only 2D drawings in PDF, JPG, etc. (we call it pixel-level). In addition, some existing
project designs are only preserved in papery 2D drawings. In such cases, the only way to get a 3D
model is to rely on manual modeling by professional designers. Therefore, intelligently transforming
2D design drawings into 3D models is a worthwhile research topic, among this, the recognition and
analysis of 2D design drawings are crucial. Transmission lines are designed with various transmission
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towers depending on the voltage level. A single transmission tower is typically divided into dozens
of sections, corresponding to dozens or even hundreds of drawings. Each design drawing usually
contains a variety of geometric structures and a large amount of complex textual, symbolic, and
tabular annotations. Thus, the automatic perception and analysis of design drawings face significant
challenges, additionally, for the design drawings represented as document files, the precise extraction
of vector information, such as the coordinates of nodes and line connections, is most important for
the intelligent transformation of 2D design drawings into 3D models.

As early as the late 1970s, industrially developed countries, including Japan, the United States,
and Canada, began to explore the recognition and understanding of CAD (Computer Aided Design)
drawings, and many research projects were undertaken, such as CAD Overlay, Raserrex, GTX
(GeForce GTX), VPStudio, RxAutoImage Pro2000, and Crucoble, each dedicated to various aspects
of drawing processing. Starting from the mid-1980s, some systems have been developed to recognize
and understand CAD drawings, such as the EDIS software from Huazhong University of Science and
Technology and the ANNO system from Tsinghua University in China. Many research works have
emerged to process the different contents of CAD drawings. Feng et al. [2] focused on the recognition
technology of center lines, surface roughness symbols, and geometric tolerance symbols, proposing a
recognition algorithm based on key graphic features. Yu et al. [3] achieved segmentation of engineering
drawings by improving the fruit fly optimization algorithm. Jiang et al. [4] successfully designed a
character recognition system for automated quality inspection in producing and testing mechanical
parts. These methods have made some progress for specific drawings. However, for complex drawings,
there are still issues of low precision, slow processing speed, low level of intelligence, and poor
adaptability in semantic segmentation and vector extraction.

In recent years, some progress has been made in image semantic segmentation and vector extrac-
tion due to the rapid development and widespread application of deep learning in computer vision.
Common image semantic segmentation tasks classify each pixel in a drawing into corresponding
instances, typically categorized into countable and uncountable types. Kirillov et al. [5] incorporated
the recognition of these two types of cases into semantic segmentation tasks by assigning semantic
labels to each pixel, then they detected each object instance using bounding boxes and segmentation
masks. Rezvanifar et al. [6] proposed a deep-learning-based method that improves YOLOv2 to
achieve recognition and detection of countable instance symbols, however, this method is limited
to countable instances. Chen et al. [7] introduced BANet (Bidirectional aggregation network), which
integrates semantic segmentation and instance segmentation methods to enhance model performance.
Wu et al. [8] proposed BGRNet (Bidirectional graph reasoning network), which models the rela-
tionships between modules using graph structures to achieve semantic segmentation. Although these
methods have shown remarkable results in the semantic segmentation of scenes with rich textures and
colors, they cannot be directly used for CAD drawings with complex lines and monotonous colors. For
semantic segmentation of CAD drawings, Fan et al. [9,10] combined convolutional neural networks
(CNNs) and graph convolutional networks (GCNs) to achieve high-precision semantic segmentation
of all lines in the drawings. Then, they introduced attention mechanisms and Transformers, further
improving the recognition results [10]. These efforts have promoted the recognition and understanding
of CAD drawings to a new level. However, they rely on vector graphics to classify instances in the
drawings, requiring many finely annotated vector graphics for model training and testing. As a result,
these methods cannot be used for pixel-level understanding and analysis tasks of design drawings.
Thus, the exact semantic segmentation aiming to extract the mask of the designed shape on a drawing
still needs further study.
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The masks obtained from the semantic segmentation of drawings can succinctly describe the
shapes of geometric objects. However, further vectorization is required to express the topological
structure and parameterization of object instances accurately. Traditionally, vector extraction is often
achieved using skeleton extraction algorithms to describe the topological connections of geometric
cases. However, traditional methods lack precision, depend on selecting empirical parameters, and are
prone to incorrectly decoupling the topological connections between nodes. In recent years, skeleton
extraction methods based on deep learning networks have become mainstream. Simo-Srra et al. [11,12]
divided the input image into blocks and independently estimated vectors for each block using a
feedforward neural network, followed by merging and smoothing the results. However, this merging
and smoothing process is challenging to stabilize. Zeng et al. [13] designed a deep multitask neural
network that extracts vectors and predicts their semantic types by establishing a boundary-guided
attention mechanism in a spatial context module for segmented regions. However, this method is not
suitable for vector extraction of skeletal structures. Zhou et al. [14] proposed a line segment node
extraction network that predicts the node heatmaps of a graph using a node proposal module and
then connects the nodes to form straight lines. Although this method yields good prediction results,
it overlooks the connection relationships of real graphical topological lines, leading to issues such as
incorrect connections and missing connections.

With the issues analyzed above, a novel two-stage strategy for vector extraction from design
drawings of transmission towers is proposed in this paper. In the first stage, we propose a semantic
segmentation network with an encoder-decoder structure, which takes pixel-level design drawings of
transmission towers as input and outputs binarized mask images. During this process, preprocessing
and postprocessing algorithms are also designed to adapt to the high resolution of tower design
drawings and to unify the orientation of each local component for later 3D modeling. In the
second stage, we propose a vector extraction network guided by heatmaps, which takes the binarized
mask images from the first stage as input and outputs precise nodes and line connections. Then,
accurate vector information can be extracted with the designed algorithms. Corresponding training
and testing datasets were constructed during the process. The final experiments demonstrate that
the proposed method can obtain high-quality structural vector information from pixel-level CAD
drawings efficiently and robustly.

2 Vector Extraction of Design Drawings for Transmission Towers
2.1 Semantic Segmentation of Design Drawings

2.1.1 The Constructed Semantic Segmentation Network

The framework of the designed end-to-end semantic segmentation network is shown in Fig. 1.
It adopts the widely used encoder-decoder model [15], adapted to inputting a drawing image and
outputting the same-size binary mask image. During the forward propagation of the model, data in
each layer is a three-dimensional array with dimensions H × W × D, where H and W represent the
spatial dimensions, and D represents the dimension of feature channels. The first layer is the image,
which has pixel dimensions of H × W and D color channels. After being uniformly downscaled to 256
× 256, the design drawings are then input into the network. The encoder extracts high-dimensional
feature maps at a low resolution (56 × 56), which are subsequently upsampled by the decoder to the
original image resolution. The network is built on the principle of translation invariance. The basic
components (convolution, pooling, and activation functions) operate on local input regions and rely
only on relative spatial coordinates. Assuming xij represents the data vector at position (i, j) in a specific
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layer, and yij represents the data vector in the next layer, a convolution operation calculates the output
yij as follows:

yij = fks

({
xsi+δi,sj+δj

}
0≤δi,δj≤k

)
(1)

where k represents the kernel size, s is the stride, and f ks determines the layer type, i.e., for convolution
or average pooling, it is a matrix multiplication; for max pooling, it searches for the maximum value in
the spatial domain; and for activation functions, it is an element-wise nonlinear function. The encoder
consists of a 7 × 7 convolutional block and two ResNet modules that extract deeper features [16],
while the decoder comprises two upsampling modules and a 7 × 7 transposed convolutional block, as
in Fig. 1.
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Figure 1: The framework of the semantic segmentation network

The ResNet modules in the encoding stage extract high-dimensional features from 2D images.
Each ResNet module includes six residual blocks, with each block sequentially applying 1 × 1, 3 × 3,
and 1 × 1 convolutions to extract image features, as shown in the Resnet block part in Fig. 1. After each
convolution operation, a BatchNorm layer and a ReLU (Rectified Linear Unit) activation function is
added to enhance model convergence. Additionally, by adding the skip layer connection, the input
features and the features extracted by convolutions are added as the final output results to solve the
vanishing gradient problem when the network depth increases. The calculation process of the residual
block can be expressed as follows:

y = F (x, {Wi}) + x (2)

where x and y represent the input and output of each layer, respectively, and the function F(x, {W i})
represents the learnable residual mapping, which is expressed as:

F = σ (BN (W3σ (BN (W2σ (BN (W1σ)))))) (3)

where W 1, W 2, W 3 represent the convolutions parameter matrices with size 1 × 1, 3 × 3, and 1 ×
1, respectively. BN(·) is the BatchNorm normalization, σ (·) is the activation function, where ReLU is
chosen.

In the decoding stage, it is necessary to predict high-resolution semantic masks from low-
resolution high-dimensional features, accomplished through upsampling algorithms. Here, a trans-
posed convolution is used, which involves reversing the forward and backward propagation processes
of a standard convolution. Specifically, each upsampling module, as shown in the upsampling block
part in Fig. 1, uses a transposed convolution to upsample the input feature map to twice the resolution,
ultimately outputting a feature map with the same resolution as the original image, with the depth of
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the feature map corresponding to the number of classification categories. The upsampling process can
be expressed as:

y = σ (BN (W4x)) (4)

where x and y represent the input and output of each upsampling module, respectively, and W 4 denotes
the parameter matrix of the transposed convolution.

In the backpropagation process, the cross-entropy loss function is selected as the objective function
for optimization, which can be expressed as:

L = −
∑M

c=1
yc log (pc) (5)

where M denotes the number of categories, yc is a one-hot vector with elements of either 0 or
1, indicating whether the category c matches the sample’s category (1 if it matches, otherwise 0),
and it represents the predicted probability of the sample belonging to category c. Since the 3D
modeling primarily focuses on the shape, c is set only to include two categories: background and tower
components.

Finally, after inputting the 2D design drawings of a transmission tower, the network will filter out
other background interference and output only the pixel-level mask images of the tower components.

2.1.2 Preprocessing and Postprocessing

Our semantic segmentation network takes pixel-level drawings as input. To meet the requirements
of printing precision, the original design drawings have extremely high resolutions, typically around
7000 × 10,000 pixels. However, common semantic segmentation models usually process the input
image with a resolution of 256 × 256 or 515 × 512 pixels. Thus, if a very high-resolution image is input,
it needs to be downscaled by several orders of magnitude before being fed into the network. However,
this will result in a loss of details in feature representations extracted by the network. Based on practical
experience, the design drawings should be uniformly cut into smaller sections before being input
into the network, as illustrated in Fig. 2. To ensure efficiency, parallel computing is recommended
to process these cut sections.

In the postprocessing stage, the binary mask image output from the segmentation network is first
separated into several same-size images, and there is the mask of an independent component on each
image at the same position corresponding to the original drawing. This is to keep the mask of every
component on a different image in the same coordinate system, facilitating the following automatic
reconstruction of the 3D model. However, sometimes, some local component is rotated unreasonably
to keep the components on an original drawing being laid out compactly, such as the one in the red
box marked in Fig. 3. Therefore, such a component should be rotated to adjust the pose back to keep it
ortho-projection in the 2D coordinate. As the flowchart in Fig. 3, the separation of local components
is primarily based on the connected domain method. We first count the areas of each connected
component on the semantic segmentation masks and filter out the noise points and other interference,
then each local component is separated according to the connected component labels. Notably, each
segmented image keeps the same size as the input image to ensure that all local components are unified
in the same coordinate space.
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Figure 2: The diagram of cutting a design drawing

Segment Rotate?

No

Yes

Segment Rotate?

No

Yes

Figure 3: The flowchart of the postprocessing

The posture adjustment for a local component is based on the processing of their bounding boxes.
As shown in Fig. 4, there is a mask image output from the semantic segmentation network and the
local components have been marked with different colors using the connected domain method, as
shown in Fig. 4a. Each independent local component mask is separated in a separate image, as shown
in Fig. 4b. We perform connected component analysis to find the largest outer contour and derive the
minimum enclosing rectangle for the mask shape. The center and horizontal axis of this rectangle are
calculated, and then the rotation angle around the horizontal direction is determined, as illustrated in
Fig. 4c. Finally, the local mask image is rotated according to the rotation angle to achieve the standard
pose in the unified coordinate system, as shown in Fig. 4d.
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(a) (b)

(c) (d)

Figure 4: The diagram of pose adjustment for a local component

2.2 The Proposed Vector Extraction Network

The above method can segment a design drawing into multiple mask images that can be processed
to obtain the main shape of a transmission tower. However, to achieve a standard 3D model with
precise real-world size, it is necessary to assign the real size to each component. To accomplish this,
the mask images from the drawings must be vectorized to convert pixel-level images into vector images,
to obtain the node and line vectors to facilitate the parameterization. For this purpose, we propose a
vector extraction network guided by heatmaps that describe the probability of some targets appearing
at certain locations. Our network takes a pixel-level mask image as input, and outputs nodes and line
connections from the mask images. The lines and nodes are ultimately integrated to get the vector
information of a mask shape.

Traditional vector extraction algorithms often lack precision and robustness, resulting in redun-
dant nodes and fragmented vector segments. L-CNN is an end-to-end node extraction network [14]
that uses a node suggestion module to extract all nodes from the line drawings and then connects
these nodes to obtain line segments. While L-CNN achieves high accuracy in node extraction, the
connection of nodes to form complete line segments often encounters issues such as incorrect or
missing connections, making it unsuitable for complex structures like those of transmission towers.
Inspired by L-CNN, we design a novel vector extraction network that employs the same encoder as L-
CNN during the encoding phase, which encodes the input mask into a high-dimensional feature map.
In decoding, a skeleton heatmap constraint decodes the feature map into a skeleton line heatmap. Then
a merging module is designed to fuse the skeleton lines and nodes to refine the output vectors further.

Fig. 5 illustrates the frame of the proposed vectorization method. The first half of Fig. 5 shows the
main modules of our network. The encoder is composed of a stack of hourglass modules with Pyramid
Residual Modules (PRM), to predict the joints of human bodies originally [17]. Still, here it is to extract
deep features of nodes in design drawings. The encoder performs feature encoding on the input mask
shapes and generates feature maps with dimensions W × H × C. Two decoders then process these
feature maps, each composed of a fully convolutional neural network. The decoder estimates binary



2820 CMC, 2025, vol.82, no.2

values for each point on the grid generated by the decoder (1 for points on the central skeleton line, and
0 otherwise), thus outputting a skeleton line heatmap and a node heatmap separately, with resolution
H × W . These heatmaps show the probability of each pixel belonging to a skeleton line or a node,
with varying probabilities across different pixels. The coordinates of the skeleton line or a node are
determined by selecting the position of the pixels with the highest probability.

The prediction of the skeleton lines or nodes can be viewed as a classification problem, so average
binary cross-entropy is used as the loss function:

L = − 1
N

N∑
i=1

yi · log (p (yi)) + (1 − yi) · log (1 − p (yi)) (6)

where yi is the binary label (0 or 1), p(yi) is the probability of the output belonging to label yi, and N
represents the total number of samples.
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Figure 5: The framework of the vector extraction network

After the heatmaps are predicted, a merging module shown in Fig. 5 fuses the information of
node heatmaps and skeleton heatmaps. The design idea of this merging module is as follows: firstly,
all predicted nodes are connected to construct a list, this list is uniformly sampled and a candidate
line list is generated; then, with the features of the skeleton heatmap are aligned to the candidate line
list, that is, the lines of the candidate line list is grided onto the skeleton heatmap; finally, the heatmap
values are used as the confidence level for filtering to determine the pixel being the right grid line. Here,
the confidence level of each candidate line is defined as the average pixel density along the candidate
line. The correct skeleton line and nodes can be obtained by setting a simple threshold. Benefiting
from the feature fusion of skeleton heatmaps, the predicted nodes can be filtered effectively, and the
correctness of the line connections between the predicted nodes is ensured largely.

3 Experimental Results and Analysis
3.1 Parameter Settings for Experiments

A large amount of sample data is required to train deep-learning models for related tasks. To
produce the labeled binary masks, the open-source Python annotation tool LabelMe was used to
annotate all components of the towers with pixel-level precision by labeling polygons. The masks were
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then annotated to identify all structural nodes, with the lines connecting these nodes representing the
skeleton lines, thereby generating a vector extraction dataset.

The semantic segmentation dataset comprises 392 design drawings of 9 transmission towers (with
resolutions of 6989 × 9897 or 9865 × 7021) and their corresponding binary mask images. This dataset
was split into training and testing sets at a ratio of 9:1. The common data augmentation for image
processing networks was performed on the training set using the following steps: (1) uniform cropping,
(2) random flipping, and (3) random rotation, resulting in 20,000 augmented samples for training the
network.

For the vectorization network training, more types of towers are added. Then the dataset consists
of 1280 design drawings of 20 towers, with corresponding images containing vector nodes and line
segments, also split at a ratio of 9:1.

The experiments were conducted on a computer with an Intel Z270 motherboard, 16 GB of
memory, and a GeForce GTX 1080 Ti GPU. After adjusting the resolution of each sample to
256 × 256, the data were input into the network. Both networks were trained using the SGD (Stochastic
Gradient Descent) optimizer with a learning rate of 10−5, for 20 iterations, and a batch size of 14.

3.2 Test of Semantic Segmentation for Design Drawings of Transmission Tower

The algorithm was tested and analyzed on the constructed dataset. First, the impact of the input
image resolution on semantic segmentation was analyzed. The design drawings were respectively input
into the network in the form of original drawings, 2 × 2 cuts, and 3 × 3 cuts, and then the output
sub-images were spliced to obtain the results shown in Fig. 6. It can be observed that as the cut
number increased, the semantic segmentation results also improved. To evaluate the performance,
we calculated the metric, Intersection over Union (IoU), and the average processing time (seconds per
frame, spf), as listed in Table 1. Cutting an image into sub-images is beneficial for improving the IoU
index, and the efficiency can be maintained by parallel computing like only one complete drawing is
input. Overall, the performance shows well for practical use.

Fig. 7 also presents a processed result, demonstrating that the binary mask extracted by the
semantic segmentation network is highly accurate. The local components, after post-processing,
become sub-images with a unified coordinate system and correct posture.
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1×1

2×2 3×3

The original drawing

Figure 6: The impact of input image resolution on network results

Table 1: The performance of the segmentation network

Case IoU Average time (spf)

3 × 3 cuts 0.819 0.560
Full input 0.763 0.489

The input drawing The segmented mask

The separated and rotated masks

Figure 7: The result of the proposed semantic segmentation network after postprocessing
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3.3 The Results of the Vectorization Network

To demonstrate the accuracy of the proposed vector extraction method, comparisons were
made with state-of-the-art methods: Skeletonize [18]+line segment detector (LSD) [19], L-CNN [14],
Holistically-Attracted Wireframe Parsing (HAWP) [20], and DeepLSD [21]. LSD is a traditional
method that is very classical and effective in detecting line segments, like the task in this paper, and
we added a preprocessing of skeletonizing for better effect. HAWP and DeepLSD are also both
improvements of L-CNN, which are relatively relevant to our method, aiming to extract the nodes
and line connections.

The commonly used structural average precision (sAP) metric was applied for quantitative
evaluation. This metric calculates the ratio of correctly predicted line segments to ground truth line
segments and assesses the situation when the ratio conforms to a certain threshold precision. The
measure to identify whether the predicted line connection is correct is calculated as

min
(||p̃1 − p1||2

2 + ||p̃2 − p2||2
2

) ≤ ϑ (7)

where p̃1, p̃2 are the predicted end points of a line connection, p1, p2 are the ground truth, and ϑ denotes
threshold. sAP10 and sAP15 are sAP metrics with thresholds set at 10 and 15, respectively [17]. The
larger value of sAP means the more accuracy of the method.

We trained the comparison methods on our dataset and tested them on the same data to obtain
quantitative results by calculating the sAP under different thresholds, as listed in Table 2. For the
traditional Skeletonize+LSD method, mask segmentation is necessary, while the other deep learning
methods are all trained using pixel-level images with and without mask segmentation separately. All the
methods perform better with the original drawings being processed as mask images. As the threshold of
sAP is larger, all methods show higher index values, while Skeletonize+LSD shows a severe limitation
even if for sAP15. L-CNN results are better than those of HAWP and DeepLSD since the latter
methods produce more redundant line connections that increase incorrect detection rates. However,
L-CNN, HAWP, and DeepLSD all follow a process that predicts nodes first and then verifies the
correct connections using refinement methods, which is inevitable to retain invalid connections or
miss someone. Our method shows better robustly, benefiting from the fusion of features of nodes and
connections.

Table 2: Comparison of quantitative indicators for vector extraction

Method Mask sAP5 sAP10 sAP15 Average time (s/frame)

Skeletonize+LSD √ 55.3 60.2 62.1 2.52
L-CNN – 46.9 49.1 53.4 –√ 77.6 81.9 84.2 2.26
HAWP – 36.6 40.8 45.8 –√ 52.6 64.8 75.9 1.27
DeepLSD – 41.9 42.8 47 –√ 59.4 66.6 77.2 1.16
Ours – 55.9 61.3 64.7 –√ 82.1 85.3 87.7 1.96
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We also tested the average runtime for these methods to process a complete drawing. All methods
can complete the inference of vector extraction in around 2 s. The traditional method is relatively
slower. HAWP and DeepLSD are both faster due to their efficiency optimization. Our method
maintains a similar level to L-CNN without efficiency optimization. Generally, all methods show
satisfactory efficiency.

The outcomes were visualized to illustrate the results further. First, the intermediate results from
the proposed skeleton extraction module are shown in Fig. 8. Compared to the input mask image, the
skeleton heatmap accurately predicts the locations of the skeleton lines, which thus can provide useful
information for the prediction of correct line connections for our method.

Skeleton heatmaps Extracted linesThe drawings The mask images Skeleton heatmaps Extracted linesThe drawings The mask images

Figure 8: The result of the proposed skeletal line extraction method

Fig. 9 further visually compares the final vector extraction results, where all nodes are displayed in
blue and vector segments are marked in orange. The figure shows that many vector segments are broken
in the results obtained using Skeletonize+LSD, leading to numerous redundant nodes, as indicated by
the red circles. This occurs because the LSD method primarily relies on pixel gradients to identify
line segments, making it highly sensitive to pixel variations. The results from the L-CNN method
are relatively better but still focus solely on node extraction, overlooking the relationships between
segments. As a result, for complex cross-network structures like transmission towers, redundant
nodes, and incorrect connections often occur. HAWP has a node prediction module like L-CNN,
and the obtained nodes are treated as ‘basins’ in a holistic 4-dimensional attraction field to compute
line segment proposals. Still, it inevitably leaves many redundant line connections even if there are
verification modules. DeepLSD shows clean nodes and line connections, but it predicts the edge lines
for both sides of each line in a mask image, while the ground truth is just a skeleton line. Overall,
our method performs the best for this task due to the fusion of node heatmap and skeleton heatmap,
which effectively avoids the creation of redundant nodes and vector segments, thereby enhancing the
precision and efficiency of the vectorization process.
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(a) The drawings (b) Mask+skeletonize+LSD (c) Mask+LCNN

(f) Ours(e) Mask+DeepLSD(d) Mask+HAWP

Figure 9: The comparison of vectorization for design drawings of transmission towers
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3.4 Failure Cases

As with all deep learning methods, our networks also face the challenge of generalization. Our
training data are all obtained from different projects in the real world, which are designed by different
designers or different design units, while the data look the similar types due to certain design standards
in the field of transmission line design. Therefore, for ordinary design drawings of transmission towers,
the trained network models should perform well, as proved above. However, if the used data is distinct
from the training data, the result will be unsatisfactory.

Fig. 10 illustrates a failure case for the mask segmentation, where the resulting mask shapes at the
right regions show satisfactory but the left ones are incomplete. Corresponding to the input drawing of
Fig. 10a, the left components display very complicated annotation styles and some small components
are difficult to be illegible from the dense annotations. This style is not common and has not been
included in the training dataset. Then, the result shows bad when the trained model tests whether
it is cut into 3 × 3 sub-images (Fig. 10b) or more sub-images (Fig. 10c). For the vector extraction,
if the input mask image is bad, the final vectorization result is surely bad. To solve this problem,
we recommend increasing the variety of samples to ensure the training data includes similar styles
for practical data use. In addition, the input image can be cut into a suitable number of sections to
ensure the input resolution of network training. With some simple experiments, we recommend that
the cutting number be adjusted with a law that the sub-image is not larger than a size of about 3000 ×
3000 pixels.

(a)

(b) (c)

Figure 10: (a) An original drawing; The results with input being cut into (b) 3 × 3 sections (c) 4 × 4
sections
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4 Conclusion

Automatic 3D modeling of transmission towers necessitates a thorough understanding and
analysis of their design drawings, among which the vectorization of the structural shapes is a critical
issue. To address this task, we propose a two-stage solution: first, a semantic segmentation network
with an encoder-decoder structure is designed to extract binary mask images of structural components
from pixel-level design drawings. Then, a heatmap-based vector extraction method is introduced,
taking mask images as input to accurately detect skeleton lines and integrate node information,
ultimately achieving precise vectorization. Experimental results demonstrate that the proposed method
exhibits high accuracy and robustness on complex tower design drawings. However, we still have some
issues that need to be solved:

1) As discussed in Section 3.4, the network model will fail if practical data has distinct styles from
the training data. Except for adjusting the dataset, the recent techniques such as domain generalization
[22,23] and large model [24] all worth further studying.

2) The vector information obtained by our method lays a solid foundation for subsequent
automatic 3D model reconstruction. In future work, the mask images obtained using our semantic
network can be taken as the orthographic projection of a component from different views, and so a
3D model can be constructed based on the wire-frame models in graphics. In addition, each of the line
segments of the mask has been vectorized, so we can allocate the real size to the vectors and finally
obtain a 3D model with the same size in the real world.
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