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ABSTRACT

Under low-illumination conditions, the quality of image signals deteriorates significantly, typically characterized
by a peak signal-to-noise ratio (PSNR) below 10 dB, which severely limits the usability of the images. Supervised
methods, which utilize paired high-low light images as training sets, can enhance the PSNR to around 20 dB,
significantly improving image quality. However, such data is challenging to obtain. In recent years, unsupervised
low-light image enhancement (LIE) methods based on the Retinex framework have been proposed, but they
generally lag behind supervised methods by 5–10 dB in performance. In this paper, we introduce the Denoising-
Distilled Retine (DDR) method, an unsupervised approach that integrates denoising priors into a Retinex-based
training framework. By explicitly incorporating denoising, the DDR method effectively addresses the challenges of
noise and artifacts in low-light images, thereby enhancing the performance of the Retinex framework. The model
achieved a PSNR of 19.82 dB on the LOL dataset, which is comparable to the performance of supervised methods.
Furthermore, by applying knowledge distillation, the DDR method optimizes the model for real-time processing
of low-light images, achieving a processing speed of 199.7 fps without incurring additional computational costs.
While the DDR method has demonstrated superior performance in terms of image quality and processing speed,
there is still room for improvement in terms of robustness across different color spaces and under highly resource-
constrained conditions. Future research will focus on enhancing the model’s generalizability and adaptability to
address these challenges. Our rigorous testing on public datasets further substantiates the DDR method’s state-of-
the-art performance in both image quality and processing speed.
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1 Introduction

Low-light images are commonly encountered in everyday photography and autonomous driving
scenarios [1]. In nocturnal or low-light environments, the quality of captured images tends to degrade
significantly compared to customary conditions, with the primary characteristics being excessive
darkness, reduced resolution, and increased noise. This typically manifests as a PSNR below 10 dB
and a Structural Similarity Index (SSIM) below 0.5 [2,3].
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Low-light image enhancement (LIE) focuses on improving images captured in dim conditions to
make them resemble scenes taken in ordinary daylight, making it an essential area of image processing
[4–8]. The main objective is to brighten low-light images, revealing more information that is easier for
both human observers and machine algorithms to process and analyze [9–11]. LIE techniques have
been widely applied in fields such as aerospace, road recognition, biomedicine, disaster relief, and
rescue operations [12,13]. For instance, using low-light enhancement technology to enhance medical
images facilitates doctors’ precise diagnosis of lesion areas; applying LIE to video surveillance solves
the problem of complex object recognition in low-light conditions [14].

Images captured in low-light settings are frequently subject to a variety of distortions, including
sensor noise, limited visibility, and low contrast [6]. These issues make low-light images unsuitable for
effective information sharing, as they hinder both human visual perception and downstream computer
vision applications [15]. Over the past several decades, considerable research efforts have been directed
toward the development of LIE algorithms, aiming to rectify contrast, uncover textures, and eliminate
sensor noise [4,14]. End-to-end low illumination graphs such as the Low Light Net (LLNet) [16] and
the multi-branch low light enhancement network (MBLLEN) [17] image enhancement work have
demonstrated the possibility of using neural networks to improve the quality of low-illumination
images. Researchers have also observed that the Retinex model performs well in traditional LIE and
image-defogging tasks. This has led to the development of methods that leverage neural networks
to estimate the illumination and reflection components within the Retinex framework. Notable
examples include Retinex-Net [2] and LightenNet [18], which have demonstrated strong enhancement
capabilities and adaptability in low-light scenarios. To enhance the generalizability of neural networks
for LIE, many researchers have developed and collected specialized low-light datasets, such as the See-
in-the-Dark (SID) [19] and Low-Light (LOL) [2]. These datasets have become essential for training and
evaluating LIE models. In recent years, there has been substantial progress in developing unsupervised
LIE methods that do not rely on labeled data, overcoming the limitations of supervised approaches
that require extensive annotations. Unsupervised techniques in LIE have gained significant attention
due to their ability to improve image quality without the need for labeled datasets. These methods are
particularly valuable when collecting annotated data is costly or impractical. One prominent example
is Enlighten Generative Adversarial Networks (EnlightenGAN) [10], which enhances images using a
GAN-based approach that does not require paired training samples. By leveraging adversarial learn-
ing, EnlightenGAN is able to generate high-quality enhanced images even in the absence of ground
truth references, making it an effective unsupervised solution. In addition to GAN-based methods,
zero-shot learning approaches like Zero-reference Deep Curve Estimation (Zero-DCE) [8] and Paired
Low-Light Instances Enhancer (PairLIE) [5] have emerged as powerful tools in unsupervised LIE.
These methods stand out for their minimal data requirements and quick adaptability. Zero-DCE, for
instance, formulates image enhancement as a curve estimation problem, allowing it to learn effective
enhancement mappings directly from the input data without requiring any reference images. Similarly,
PairLIE leverages instance-level learning to perform effective low-light enhancement with low data
costs, providing an efficient alternative for scenarios where large datasets are not available.

Despite their advantages, unsupervised LIE methods still need to work on balancing brightness
enhancement with noise amplification. As images are brightened, noise is often amplified, degrading
image clarity and quality. This problem is particularly acute in unsupervised settings where annotated
data is not available for fine-tuning the model’s response to noise. In this work, we introduce an
unsupervised framework specifically designed to address the challenges of LIE by incorporating
an explicit denoising subnetwork. Unlike traditional approaches, our framework is guided by a
pre-trained denoising model, which provides valuable prior knowledge during the training process.
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The design of this subnetwork serves two primary purposes. First, the denoising subnetwork is
intentionally lightweight, significantly reducing computational overhead compared to the pre-trained
model it learns from. This ensures that our framework remains efficient and suitable for real-time
applications, which is crucial in resource-constrained environments such as embedded systems and
mobile devices. Second, by integrating the denoising subnetwork with the rest of the architecture,
we enable end-to-end training that harmonizes both denoising and image brightening. This balanced
approach allows the model to simultaneously enhance image brightness and clarity while effectively
mitigating noise, resulting in higher-quality outputs. The end-to-end nature of the training also
ensures that the denoising process adapts dynamically to the specific needs of LIE, improving overall
performance. In addition, we further enhance the efficiency of our proposed method through the
use of knowledge distillation. Knowledge distillation is a technique that transfers knowledge from
a large, well-trained “teacher” model to a smaller, more compact “student” model. By incorporating
this approach, we can preserve high performance while substantially reducing the model’s size and
computational complexity, resulting in a more compact and efficient model that is better suited for
real-time applications. Extensive experiments have validated the effectiveness of our approach and
show that it achieves state-of-art-performance. The contributions of our work can be outlined as
follows:

• Our primary contribution is the integration of a pre-trained denoising model into a Retinex-
based framework for LIE. This approach significantly reduces noise and artifacts, tackling a
key challenge in unsupervised LIE.

• Additionally, we employ knowledge distillation to develop a compact model suitable for
resource-constrained environments, achieving both high image quality and efficient real-time
processing.

• Comprehensive experiments show that our method narrows the gap between unsupervised and
supervised LIE techniques, outperforming existing unsupervised approaches in image quality
and speed.

2 Related Work
2.1 Conventional Methods

Conventional LIE techniques are essential for improving image clarity in suboptimal lighting,
and they span Histogram-based approaches and Retinex-based models. Histogram-based approaches
extend the dynamic range to enhance brightness. For instance, Park et al. [20] segmented the
histogram’s range, adjusting gray levels based on the area ratio, while Lee et al. [21] used a hierarchical
representation to heighten inter-pixel gray level contrasts. Retinex-based methods address low-light
issues by separating images into reflectance and illumination components. Enhanced images are
created either by using reflectance directly or adjusting illumination and recombining it. Guo et al. [22]
estimated illumination by taking maximum RGB values and refining them with structural priors, and
Li et al. [23] integrated a noise map to improve Retinex outcomes. The texture-aware Retinex model by
Xu et al. [3] optimizes through iterative steps, while Hao et al. [7] proposed a semi-decoupled approach
based on Retinex, furthering the robustness of conventional models.

2.2 Learning-Based Methods

Learning methods for LIE often necessitate paired datasets comprising both low-light and well-
lit images. Lore et al. [16] crafted a multi-layered sparse denoising autoencoder for LIE, training
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their model using artificially generated image pairs. Wei et al. [2] pioneered the creation of a real-
world dataset comprising matched low-light and normal-light images, which they employed to train
an end-to-end network in a supervised learning framework. Leveraging this dataset, the researchers
further developed a fully convolutional neural network tailored for the enhancement of low-light
images. Wu et al. [24] introduced a novel deep unfolding network inspired by Retinex theory, aimed at
enhancing the network’s adaptability and computational efficiency. Xu et al. [25] integrated a signal-
to-noise ratio (SNR)–aware transformer with a convolutional neural network to achieve better LIE.
Lastly, Zhang et al. [26] devised a network focused on color consistency, aiming to reduce color
discrepancies between their respective ground truth images and enhanced images.

Recently, advancements in networks for unsupervised learning have targeted reducing reliance on
reference images. For instance, Guo et al. [8] have introduced a LIE method that does not require
references, with their network fine-tuned through non-reference loss functions. Jiang et al. [10] have
presented a LIE method that leverages generative adversarial networks and data without pairing.
Liu et al. [27] combined unfolding methods with strategic prior architecture search in a compact
LIE method. Fu et al. [5] introduced an unsupervised model called PairLIE, which used paired low-
light images to learn adaptive priors based on. RetinexFormer, Sharif et al. [9] introduce Transformer
architectures into LIE, further enhancing the model’s expressive power.

In the domain of image classification techniques, recent contributions have innovatively tackled
issues related to low-light conditions. Yang et al. [28] proposed an implicit neural representation for
cooperative low-light image enhancement, which can potentially have a positive impact on downstream
tasks such as image classification by improving image quality under low-light conditions. Additionally,
Hashmi et al. [29] focused on enhancing hierarchical features for object detection and beyond under
low-light vision, which can boost the performance of classification and detection networks in such
challenging lighting conditions.

While supervised models achieve superior quality through verified annotations, unsupervised
approaches generally require minimal data preprocessing and simplifying deployment but often face
challenges in detail fidelity due to intrinsic noise. Here, a denoising subnetwork bolsters robustness
against noise interference. Knowledge distillation techniques complement these methods by speeding
up processing while retaining accuracy, and our approach employs these techniques to ensure the
system balances efficiency with quality output.

2.3 Knowledge Distillation

Knowledge distillation, initially proposed by Hinton et al. [30], effectively compresses model sizes
by transferring learned knowledge from a teacher network to a student network. Chen et al. [31]
developed rapid training techniques by transferring function-preserving transformations, while
Zhang et al. [32] used self-distillation for knowledge transfer within a single network. Attention
map-based methods by Zagoruyko et al. [33] used attentional cues for enhanced knowledge
transfer. Liu et al. [34] explored structured distillation through similarity maps and adversarial
techniques. Distillation techniques have shown promise in single-image super-resolution, as shown by
Gao et al. [35], He et al. [36], and Lee et al. [11]. However, their application for low-light enhancement
is scarce. Notably, Li et al. [37] have explored distillation for low-light image tasks, which informs the
foundation of our approach.
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3 Proposed Method

We begin by introducing the Retinex theory, which forms the foundation of our unsupervised
LIE model. Next, we offer a detailed explanation of the proposed network architecture. Finally, we
outline the workflow and corresponding loss functions. The subsequent subsections will delve into the
specifics of each of these components.

3.1 Unsupervised LIE Model Based on Retinex

In accordance with Retinex theory, a low-light image can be broken down into an illumination
component L and a reflectance component R.

I = L ◦ R, (1)

where ◦ represents element-wise multiplication, L represents the light intensity of objects, which should
be piecewise continuous and devoid of texture. R represents the physical properties of objects, which
should encompass the texture and details visible in the image. The general approach to Retinex
decomposition involves minimizing the following energy function:

argmin
L,R

‖L ◦ R − I‖2 + λRfR (R) + λLfL (L), (2)

where fR and fL are the prior constraints for R and L, respectively. λR and λL represent the weights.
‖L ◦ R − I‖2 is the data fidelity term that measures the difference between the input and the recon-
structed image. Fu et al. [5] proposed decomposing a pair of images to incorporate additional
information and constraints for unsupervised LIE learning. We adopt this approach to build our
unsupervised framework. Mathematically, the decomposition of paired low-light images can be
formulated as follows:{

I1 = L1 ◦ R

I2 = L2 ◦ R,
(3)

where I1 and I2 constitute a pair of low-light images that share the same reflectance component R.
L1 and L2 represent different light intensities. Since I1 and I2 are a pair of low-light images lacking
prior knowledge from ground truth, the proposed DDR model operates in an unsupervised manner.
The reflectance and illumination components obtained through the Retinex Decomposition Module
provide essential inputs for the upcoming L-Net, R-Net, and F-Net network architectures, supporting
specific low-light enhancement processing.

3.2 Network Architecture

In this paper, we advocate a LIE model built upon Retinex theory. Initially, all input low-light
images are processed through a Retinex Decomposition Module (RDM) to separate the illumination
and reflectance components within the image accurately. Our training procedure is divided into two
phases: In the first phase, we focus on training the teacher model, which takes a pair of low-light images
as input. The model utilizes information decomposed by the RDM, employs a denoising module for
efficient noise reduction and feature extraction, and is optimized with a customized loss function to
learn effective denoising and feature enhancement. In the second phase, the student model is trained
under the direct guidance of the teacher model. The student model is designed to improve real-
time processing capabilities while preserving effective LIE performance. Trained on single images, it
employs knowledge distillation techniques to transfer the denoising and feature enhancement expertise
from the teacher model. This approach allows the student model to significantly reduce computational
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complexity and avoid complex denoising modules while still ensuring real-time solid performance. The
subsequent sections of this paper will detail the specific implementation details and testing procedures
of this method.

The RDM, as illustrated in Fig. 1, is a critical component of our method, which harnesses the
power of three specialized networks: L-Net, R-Net, and F-Net. L-Net is dedicated to estimating the
illumination component, while R-Net focuses on the reflectance component of an image. F-Net plays
a pivotal role in enhancing the process by removing spurious features from the original image. Each
network is streamlined to consist of only five convolutional layers, with the first four layers equipped
with the ReLU activation function. The networks culminate in a sigmoid layer that ensures the output
values are constrained within the [0, 1] range. In alignment with Retinex theory, L-Net produces a
single output channel for the standard illumination across all color channels, whereas R-Net generates
three channels to capture the distinct reflectance details of each color. The integration of F-Net boosts
the precision of our decomposition technique, particularly for low-light images, resulting in a more
refined and accurate separation of the illumination and reflectance components. During the training
phase of the Teacher model, we initiate the process by feeding a pair of original low-light images, I1

and I2, into the F-Net. This results in the generation of optimized versions, i1 and i2. Subsequently, we
estimate the potential illuminations (Lt1

and Lt2
) and reflectances (Rt1

and Rt2
) using the L-Net and

R-Net, respectively. The enhanced images are then computed using Eq. (4) and processed through the
Prior Denoising Model (PD-net) and the Denoising Subnetwork (D-net).

Figure 1: The diagram of the unsupervised LIE model based on Retinex presented in this paper can
be described in two phases: Teacher and student. (a) In the first stage, the Teacher model is trained,
in which pairs of low-brightness images are used for input, and then multi-scale features of the image
mapping after noise reduction are learned to improve the model’s capability in reducing noise. (b) In
the second stage, distillation learning is carried out using the Student model. In the distillation learning
process, the Teacher model only deduces without updating parameters, and the Student model obtains
fixed knowledge from the teacher model in each training cycle

For the PD-net, we employ a Self-Guided Neural Network (SGN) [6] that utilizes a distinctive
shuffling mechanism to generate multi-scale images. This method effectively leverages information



CMC, 2025, vol.82, no.2 2543

from low-resolution branches during the high-resolution feature extraction phase, enabling cross-
scale information fusion and significantly improving image denoising quality. However, the SGN’s
complexity and high computational demands present challenges to achieving real-time performance.
To overcome this, we develop the D-net, a streamlined shallow neural network that balances denoising
effectiveness with computational efficiency, which is crucial for real-time applications. After processing
through PD-net and D-net, we obtain the prior denoised feature vector d and the output enhanced
image feature ot, respectively. We boost the denoising performance using the denoising loss LD and the
Projection Loss LO. The LD measures the alignment between the PD-net’s output and the enhanced
image feature, while the LO evaluates the discrepancy between the original and target image features.
By optimizing these loss functions together, we aim to refine the denoising process while efficiently
managing computational resources. For the Student model, the training phase requires only a single
original low-light image I as input into the RDM to estimate the potential illumination L and
reflectance R. To facilitate knowledge distillation from the Teacher to the Student model, we introduce
three loss functions: LDi. This structured approach to training ensures that the Student model inherits
the denoising and enhancement capabilities of the Teacher model while maintaining a smaller footprint
appropriate for real-time applications in resource-constrained environments. The upcoming section
focused on loss design will provide a thorough explanation of the design and implementation of these
loss functions.

During testing, a low-light image is given, and the final enhanced image is calculated using Eq. (4)
by applying F-Net, R-net, and L-net sequentially:

Ien = R ◦ g(L) = R ◦ Lλ, (4)

where Ien represents the enhanced image, and λ is the illumination correction coefficient.

To achieve optimal denoising performance for PD-net and D-net, we detail specific loss function
designs in Section 3.3 to enhance both denoising and feature extraction quality.

3.3 Training Losses

In our method, the loss function is composed of three parts: retinex loss, denoising loss, and
distillation loss; during the teacher model training phase, pairs of low-light images are first processed
through retinex loss to extract illumination and radiance, and then through denoising loss to extract
denoising prior knowledge. Then, during the student model training phase, distillation loss is used to
distill prior knowledge from the teacher model.

Retinex loss: In order to enable accurate processing of the input by an optimal Retinex algorithm,
we first remove inappropriate features:

LP = ‖I1 − i1‖2
2 , (5)

the Lp alters the initial image into a version that is better suited for Retinex decomposition. This
transformation is based on the projection image I1. i1 is the result of I1 processed by F-Net. The Retinex
loss ensures that the input is optimized for the subsequent Retinex decomposition process.

Based on the paired low-light images and the Retinex theory, we calculate the reflectance
consistency loss LE. Compared to manually crafted priors, LE offers greater adaptability and accuracy
as it reveals the physical characteristics of objects. In a mathematical representation, LE is depicted
as:

LE = ∥∥Rt1
− Rt2

∥∥2

2
, (6)
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where Rt1
and Rt2

are the reflectance components of the paired low-light images. LE ensures that the
network predicts the identical reflectance component for the paired low-light images, as they share the
same component.

The decomposition process in Retinex theory typically involves several fundamental constraints
that have proven to be highly effective [5]:

LR = ‖R ◦ L − i‖2
2 + ‖R − i/stopgrad(L)‖2

2

+ ‖∇L‖1 + max(0, L − Ln),
(7)

where i represents the projection image, Ln stands for the preliminary estimation of illumination, and
∇ indicates the horizontal and vertical gradients. The reconstruction term ‖R ◦ L − i‖2

2 ensures that
the decomposed elements fulfill the prerequisites for reconstructing the input image. Upon estimating
the illumination, the reflectance can be computed by performing a pixel-wise division of the low-light
image concerning its illumination map. An additional term ‖R − i/stopgrad(L)‖2

2 is added to guide the
decomposition. The proposed term max(0, L − Ln) ensures that when L is less than Ln, the difference
is capped at 0, preventing negative values in the loss function. This is used to enforce the constraint
L ≤ Ln. The initial estimation of illumination Ln is calculated by taking the maximum value of the red,
green, and blue channels:

Ln = max
c∈{R,G,B}

Ic (x). (8)

where Ic (x) represents the values of each pixel x in the red (R), green (G), and blue (B) color channels.

The total Retinex loss function is given by:

LRe = α1LP + α2LE + α3LR, (9)

where α1, α2, α3 are weights set experimentally to 500, 1, 1, respectively.

Denoising loss: The denoising loss LD based on the SGN network is designed to propagate the
prior knowledge learned from the SGN. It is mathematically represented as:

LD = ‖d − ot‖2
2, (10)

where d is the prediction from the PD-net and ot is the one from the D-net. To prevent the prior
denoising network from losing essential information in the event of failure, we enforce a similarity
between the predictions before and after the D-net using the following loss:

LO = ‖om − ot‖2
2 , (11)

where om and ot represent the predictions before and after D-net. The total denoising loss function is:

LDe = β1LD + β2LO, (12)

where β1 and β2 are weights set experimentally to 1 and 1.5, respectively.

Distillation loss: We utilize an offline knowledge distillation approach due to its benefits of
flexibility, ease of implementation, and cost-effectiveness compared to other methods. Specifically,
we use a similarity-based training method for distillation. This involves measuring the similarity
between the Teacher and Student models’ outputs and intermediate representations. The loss function
encourages the student model to align its outputs and representations with those of the teacher model.
To achieve this, the student model is trained to match the teacher model’s outputs and intermediate
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representations using the following losses based on mean squared error:

LA = ∥∥Lt1
− Ls

∥∥2

2
(13)

LB = ∥∥Rt1
− Rs

∥∥2

2
(14)

LC = ‖ot − os‖2
2 , (15)

where LA and LB calculate the reflectance consistency loss for the illumination and reflectance compo-
nents decomposed according to the Retinex theory. LC represents the prediction similarity between the
teacher network and the student network. Lt1, Rt1, ot and Ls, Rs, os respectively represent the output
and intermediate representations of the teacher network and the student network, respectively. The
total distillation loss function is given by:

LDi = η1LA + η2LB + η3LC, (16)

where the balance coefficients η1, η2, and η3 are all set to 1.

4 Experiments

In this section, we provide a detailed description of our experimental procedures and evaluation
processes. Initially, we describe the specific implementation details of experiments, including the
assessment datasets employed and the performance metrics utilized. Then, we present a qualitative
and quantitative comparative analysis with state-of-the-art methods to evaluate the strengths and
characteristics of our proposed approach thoroughly. Finally, We perform detailed ablation studies to
assess the effect of each key component on the model’s performance, providing a clear understanding
of their roles and contributions.

4.1 Implementation Details

We implemented DDR using PyTorch, with training involving random 128 × 128 image crops and
set batch size to 2. We apply Adaptive Moment Estimation [38], initiating the learning rate at 9×10−5,
which was halved every 100 epochs over 400 epochs. The adjustment parameter λ was set to 0.2 under
normal conditions and 0.14 for darker conditions like those in the LOL dataset. Experiments were
conducted on a laptop with an i5-7300HQ CPU, 16 GB RAM, and an NVIDIA GTX 1050Ti GPU,
as well as on an NVIDIA Jetson AGX Xavier platform.

4.2 Datasets and Metrics

We extract low-light images from the SICE and LOL datasets for the training of the DDR model.
To evaluate our model’s performance, we selected a total of 165 images from the SICE and LOL
datasets, including 15 images from the official LOL evaluation set, to form our test dataset. Given
that both datasets provide ground truth images, we employed a suite of objective metrics, including
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [39], Learned Perceptual
Image Patch Similarity (LPIPS) [40] and the CIE2000 DeltaE [41], to assess the LIE effectiveness of
various methods. Higher PSNR and SSIM scores indicate closer alignment with the reference images,
while lower LPIPS and DeltaE values suggest more effective image enhancement. Furthermore, to
evaluate the model’s capacity for real-time processing, we calculate the computational latency for each
image during the testing. Reduced processing durations evidence an optimized real-time processing
capability.
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4.3 Methods of Comparison

DDR is compared with 13 state-of-the-art LIE methods, which can be categorized into three
groups: traditional methods, supervised learning-based methods, and unsupervised methods.

To demonstrate real-time processing capabilities, DDR is also evaluated against these methods in
terms of Frames Per Second (FPS). It should be noted that all results are obtained by reproducing the
methods using official codes and recommended parameters.

4.4 Quantitative Comparison

Table 1 provides a comprehensive quantitative evaluation of various LIE models across the LOL
and SICE datasets, showcasing a comparison of our proposed DDR method with a range of state-of-
the-art competitors. The results demonstrates that traditional and unsupervised methods fall short of
achieving optimal results, a predictable outcome considering the challenges of developing an effective
enhancement algorithm without the guidance of reference imagery. The absence of denoising and
prior knowledge of these techniques also limits their adaptability across the varied lighting scenarios
typical of real-world settings. Specifically, on the LOL dataset, DDR achieves a PSNR of 19.82 dB,
outperforming the second-best unsupervised method by a margin of 0.31 dB and only 0.02 dB less than
the top-performing supervised method. For SSIM, DDR attains a score of 0.778, a 0.042 improvement
over the runner-up unsupervised method, signifying a substantial enhancement in image quality. The
LPIPS value for DDR stands at 0.232, which is the most favorable among unsupervised methods,
exceeding the second-best by 0.016. DDR also excels in terms of DeltaE and processing speed,
registering a DeltaE of 8.628, an improvement of 2.172 over the second-best unsupervised method
and 2.052 over the best-supervised method, indicating the closest match to the ground truth in color
accuracy. The DDR algorithm demonstrate superior performance on the SICE dataset. Specifically,
it achieves SSIM and DeltaE values of 0.865 and 5.831, respectively, which are 0.022 and 1.897 points
higher than the next-best competitor. DDR also sets a new standard for unsupervised methods in terms
of PSNR and LPIPS, with scores of 21.51 dB and 0.198, respectively. In terms of processing speed,
DDR leads all methods on GPU hardware with a speed of 382.1 fps, outperforming the second-ranked
method by 83 fps. Furthermore, on edge devices with limited computational resources, such as AGX,
DDR attains the second-highest speed of 199.7 fps. The DDR algorithm’s consistent outperformance
across various metrics on both the LOL and SICE datasets, as well as its ability to handle real-time
processing, underscores its remarkable performance in low-light image enhancement and real-time
processing, which highlights its efficiency and efficacy within the domain.

Table 1: Quantitative comparisons with state-of-the-art models on LOL and SICE datasets. “T”, “S”,
and “U” stand for “Traditional Learning”, “Supervised Learning”, and “Unsupervised Learning”
models, respectively. “↑” indicates that higher values are better, while “↓” indicates that lower values
are preferable. Red, blue, and green indicate the first, second and third place

Method Tpye LOL SICE Speed (fps)

PSNR↑ SSIM↑ LPIPS↓ DeltaE↓ PSNR↑ SSIM↑ LPIPS↓ DeltaE↓ GPU AGX

STAR [3] TIP’20 T 12.91 0.518 0.366 23.46 15.17 0.727 0.246 16.35 1.356 0.874
SDD [7] TMM’20 T 13.34 0.637 0.743 21.83 15.35 0.741 0.232 16.08 0.339 0.212
MBLLEN [17] BMVC’18 S 17.86 0.727 0.225 13.68 13.64 0.632 0.297 18.60 0.207 –
RetinexNet [2] BMVC’18 S 17.55 0.648 0.379 12.69 19.89 0.783 0.276 8.715 – 2.228
GLADNet [42] FG’18 S 19.72 0.680 0.321 12.28 18.98 0.837 0.203 8.947 0.324 –
KinD [43] MM’19 S 17.65 0.775 0.171 12.49 21.10 0.838 0.195 8.009 0.405 –
URetinexNet [24] CVPR’22 S 19.84 0.826 0.128 10.65 21.64 0.843 0.192 7.728 2.760 1.743
ZeroDCE [8] CVPR’20 U 14.86 0.559 0.335 18.81 18.69 0.810 0.207 11.93 10.79 9.633

(Continued)
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Table 1 (continued)
Method Tpye LOL SICE Speed (fps)

PSNR↑ SSIM↑ LPIPS↓ DeltaE↓ PSNR↑ SSIM↑ LPIPS↓ DeltaE↓ GPU AGX

RRDNet [44] ICME’20 U 11.40 0.457 0.362 26.43 13.28 0.678 0.221 19.64 – –
RUAS [27] CVPR’21 U 18.23 0.717 0.270 16.85 13.18 0.734 0.363 16.81 132.0 27.64
EnlightenGAN [10] TIP’21 U 17.48 0.651 0.322 15.50 18.73 0.822 0.216 10.42 11.34 2.238
PairLIE [5] CVPR’23 U 19.51 0.736 0.248 10.80 21.32 0.840 0.216 7.835 299.1 67.87
LOLEVT [9] CVPR’24 U 16.44 0.701 0.350 – – – – – – 199.7
DDR (Ours) U 19.82 0.778 0.232 8.628 21.51 0.865 0.198 5.831 382.1 143.4

4.5 Qualitative Comparison

Fig. 2 presents a qualitative comparison with state-of-the-art LIE methods. Our findings can be
summarized as follows:

1) The method we introduced delivers pleasing visual outcomes regarding luminosity, hue, tonal
balance, and overall natural appearance. In contrast, alternative methods encounter difficulties when
dealing with severely dark lighting scenarios. 2) Although it can be seen from Table 1 that supervised
learning methods like KinD, GLADNet, and URetinexNet perform well on the LOL and SICE
datasets, supervised learning models may encounter limitations in generalization ability because of
their high sensitivity to data distribution.

Figure 2: Visual comparison with state-of-the-art LIE methods on MEF unsupervised dataset. Zoom
in to obtain the optimal view. SDD [7], GLADNet [42], KinD [43], URetinext [24], Zero-DCE [8],
RUAS [27], SCI [45], EnlightenGAN [10] and Ours. The visual results highlight DDR’s superiority in
enhancing luminosity, color balance, and texture details, particularly in severely low-light areas

In Fig. 3, we further demonstrate noise suppression examples. Combined with Table 1, it can be
observed that DDR, while introducing manual prior knowledge about noise, actually improves its real-
time processing performance. In this case, our method successfully suppresses sensor noise in the dark
areas, resulting in sharp and authentic images. Conversely, rival approaches often either increase noise
or are unable to accurately correct color and contrast, resulting in subpar image quality, especially
when considering real-time processing performance.
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Figure 3: The visual comparisons of the noise reduction. For the best view, please zoom in. RUAS [27],
SCI [45], EnlightenGAN [10], Zero-DCE [8], PairLIE [5] and Ours. Our result is visually satisfying
with no obvious noise

4.6 Decomposition Visualization

To evaluate the performance of our model, we conduct a visual demonstration of the reflectance
and illumination components. As illustrated in Fig. 4, the reflectance component contains a wealth of
texture and detail, whereas the illumination component appears to be segmented and lacks textural
features, indicating that the DDR method is capable of effectively separating the components of
low-light images. We use different correction factors to demonstrate the enhancement results. As λ

increases, the brightness gradually reduces. Specifically, when λ exceeds 0.4, the enhanced images
exhibit noticeable under-enhancement effects, whereas when λ falls below 0.2, over-enhancement
effects occur. In this work, the default value of λ is set to 0.2. Please note that adjustments to λ can be
made based on user preferences during the testing phase.
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Figure 4: The graphical representation of Retinex decomposition is showcased, with the improved
outcomes displayed across a range of correction coefficients. The standard value for λ is designated as
0.2. Users have the flexibility to modify the λ parameter to suit their specific requirements

4.7 Ablation Studies

Ablation studies are conducted under various configurations to understand the impact of individ-
ual elements on outcomes. The subsequent modifications are made to the initial DDR: Configuration
A: LDe is removed. Configuration B: LDi is removed. Configuration C: Prior terms are removed, i.e.,
both LDe and LDi are eliminated.

Table 2 presents the results of the ablation study conducted on the LOL and SICE datasets. The
data indicate that our proposed method significantly outperforms Configurations A and C in terms
of LIE on both datasets, thereby validating the superiority of incorporating a denoising subnetwork
to learn adaptive priors. This suggests that the denoising subnetwork effectively learns adaptive priors
from low-light images, thereby improving the quality of image enhancement. It is noteworthy that on
the LOL dataset, our method is slightly inferior to Configuration B, with a minimal difference of 0.01
dB in PSNR, 0.003 in SSIM, and 0.004 in LPIPS. In contrast, on the SICE dataset, our method shows a
particular improvement over Configuration B, with increases of 0.08 dB in PSNR, 0.014 in SSIM, and
0.007 in LPIPS, which may be attributed to the enhanced generalization capability of the model due to
knowledge distillation. This improvement may be attributed to the distillation process optimizing the
model structure, reducing the number of parameters and computational complexity, thus speeding up
inference. Regarding real-time processing performance, the DDR method excels. Specifically, on the
LOL dataset, the fps is 139.1, which is 74.7 fps higher than the optimal Configuration B, corresponding
to a 116.0% improvement. On the SICE dataset, the DDR method achieves an even more impressive
processing speed of 147.7 fps, which is 79.9 fps quicker than Configuration B, translating to a 117.8%
increase in speed. These results indicate that knowledge distillation significantly enhances the real-time
processing performance of DDR.
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Table 2: The quantitative outcomes of ablation experiments on the LOL and SICE datasets are
presented. The top results are highlighted in bold

Dataset Configuration Loss functions PSNR↑ SSIM↑ LPIPS↓ Speed (fps)

LDi LDe AGX

LOL A � × 19.31 0.766 0.323 132.6
B × � 19.85 0.781 0.228 52.45
C × × 19.31 0.736 0.257 64.40
DDR � � 19.84 0.778 0.232 139.1

SICE A � × 21.23 0.856 0.250 141.9
B × � 21.43 0.851 0.205 71.34
C × × 21.32 0.840 0.216 67.87
DDR � � 21.51 0.865 0.198 147.7

Fig. 5a demonstrates the impact of knowledge distillation on the processing time for each image
when deployed on AGX devices. The blue line (Ours) represents the processing time with distillation,
while the orange line (Baseline) indicates the time without distillation (i.e., Configuration B). The figure
clearly shows that the processing time with distillation is markedly shorter than the baseline method.
Fig. 5b demonstrates the visual comparison of LIE performance on the LOL dataset under different
ablation experiment Configurations. It can be observed that the visual effect of DDR is significantly
better than Configurations A and C and slightly lower than Configuration B, which is consistent with
the experimental parameters in Table 2. In summary, this distilled representation not only maintains
the performance of image enhancement but also significantly reduces the computational time required
for inference. The results of Configuration C further demonstrate that the removal of the prior term
leads to a substantial degradation in model performance.

Figure 5: Comparison of ablation experiments. (a) Real-time performance on the LOL dataset using
AGX platform, Baseline refers to the Configuration B; (b) Visual comparison of ablation experiments
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4.8 Discussions

We evaluated the impact of DDR on image quality across three different color spaces: YCbCr,
HSV, and CIE-Lab. Table 3 presents the results, which indicate that images in the YCbCr and CIE-Lab
color spaces showed significant improvements in both PSNR and SSIM after enhancement, increasing
from 11.8074 dB and 0.6401 to 17.5135 dB and 0.7799, respectively. This suggests that the enhancement
techniques effectively improved the visual quality and structural similarity of images in these color
spaces. However, the enhancement effects in the HSV color space were not satisfactory, with a decrease
in PSNR and SSIM, from 11.8074 to 10.7047 dB and from 0.6401 to 0.4157, respectively. This may
be attributed to the sensitivity of the HSV color space to changes in brightness. The LPIPS increased
slightly in the YCbCr and CIE-Lab color spaces but significantly in the HSV color space, indicating a
a more considerable perceptual difference between the enhanced and original images. These findings
highlight the critical role of color space selection in the performance of image enhancement techniques.
Future research can further explore the adaptability and optimization methods of different color
spaces to enhance the performance of low-light image enhancement technologies.

Table 3: Image enhancement results in different color spaces

Color space Original Enhanced

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
YCbCr 11.8074 0.6401 0.6617 17.5135 0.7799 0.7842
HSV 11.8074 0.6401 0.6617 10.7047 0.4157 1.0266
CIE-Lab 11.7255 0.6479 0.6674 17.5135 0.7799 0.7842

The limitations of this approach include constrained noise handling effectiveness in complex
scenes and challenges in achieving real-time performance under highly resource-limited conditions.
Future research directions could focus on dynamic noise adaptation, hybrid supervised-unsupervised
denoising techniques, and optimizing the model through pruning or quantization for deployment on
edge devices. The proposed method’s potential economic impact lies in its reduced reliance on costly
labeled data, making it suitable for low-light enhancement in sectors such as surveillance, automotive,
and healthcare. It also supports cost-effective deployment on low-power devices, enhancing the
usability of image data.

5 Conclusions

In this work, we propose an unsupervised LIE method to address the challenges of noise and
detail loss in poorly lit environments by incorporating prior knowledge from a pre-trained denoising
model into the Retinex-based framework. Moreover, knowledge distillation is employed to refine the
model. Experimental results demonstrate that our method achieves a PSNR of 19.82 dB and an SSIM
of 0.778 on the LOL dataset, indicating a significant improvement in image quality. Furthermore, our
model achieves a processing speed of 382.1 fps, outperforming existing unsupervised methods. These
findings demonstrate that our solution offers a practical and efficient approach to LIE tasks, setting a
benchmark in both performance and applicability. However, there is still room for improvement when
enhancing low-light images in other color spaces or under conditions of severe resource constraints.
Future research could focus on exploring the adaptability and optimization methods of different color
spaces and optimizing the model through pruning or quantization for deployment on edge devices.
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