
echT PressScience

Doi:10.32604/cmc.2025.058963

ARTICLE

Machine Learning-Based Detection and Selective Mitigation
of Denial-of-Service Attacks in Wireless Sensor Networks

Soyoung Joo# , So-Hyun Park# , Hye-Yeon Shim, Ye-Sol Oh and Il-Gu Lee*

Department of Future Convergence Technology Engineering, Sungshin Women’s University, Seoul, 02844, Republic of Korea
*Corresponding Author: Il-Gu Lee. Email: iglee@sungshin.ac.kr
#Co-first authors
Received: 25 September 2024; Accepted: 13 December 2024; Published: 17 February 2025

ABSTRACT: As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless
communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent.
There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms
themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks
on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns.
Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks
on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective
corresponding mitigation techniques to restore performance to nodes whose availability has been compromised.
Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly
detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack
type improve the average throughput by more than 440% compared to the case without a response.

KEYWORDS: Distributed coordinated function mechanism; jamming attack; machine learning-based attack
detection; selective attack mitigation model; selective attack mitigation model; selfish attack

1 Introduction
As wireless communication is a key technological enabler in nearly all domains, it is vital that its

components meet the required performance and security demands. Internet of Things (IoT) and wireless
sensor networks (WSNs) are examples of such components, which support various operations using
networks of heterogeneous industrial devices connected wirelessly [1–3]. IoT networks involving sensor
nodes typically operate on battery power, making energy-efficient, low-power communication protocols
crucial to meet low-power consumption requirements. In WSNs, protocols such as ZigBee or Institute of
Electrical and Electronics Engineers (IEEE) 802.15.4 are commonly used to this end. Additionally, the IEEE
802.11 ah (Wi-Fi HaLow) standard is a Wireless Local Area Network (WLAN) standard designed for long-
range communication operating in the sub-1 GHz unlicensed band, excluding the TV white space band,
which is used for long-range communication in IoT applications.

IEEE 802.11 standard defines communication protocols for WLAN. Due to its backward compatibility
and ongoing development, WLAN technology demonstrates excellent scalability, making it a widely adopted
communication technology for wireless devices not only in WSNs but also in IoT networks. In next-
generation WLAN standards, reliability has gained increasing significance, becoming as important as

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.058963
https://www.techscience.com/doi/10.32604/cmc.2025.058963
mailto:iglee@sungshin.ac.kr


2476 Comput Mater Contin. 2025;82(2)

communication efficiency. To ensure WLAN reliability, both communication performance and security
during the communication process must be considered. Since communication reliability directly affects
performance, WLAN security must be addressed to achieve optimal performance and efficiency.

Conventional WLAN technologies have primarily focused on enhancing communication performance
and efficiency. IEEE 802.11n standard was developed to achieve high throughput by leveraging multiple-input
and multiple-output (MIMO) antenna technology. It can accommodate up to four antennas at both the trans-
mitter and receiver, utilizing up to four spatial streams while supporting beamforming. The IEEE 802.11ac
standard increases transmission efficiency by expanding the bandwidth to 160 MHz and improving overall
system throughput through downlink multi-user MIMO (MU-MIMO). To address efficiency challenges
in dense networks, the IEEE 802.11ax standard introduces orthogonal frequency division multiple access
and uplink MU-MIMO, ensuring more efficient use of frequency resources. Most recently, IEEE 802.11be
standard incorporates multi-link operation, allowing simultaneous communication over multiple channels,
further improving communication efficiency.

Although WLAN security technologies have been extensively researched [4], traditional WLAN designs
have focused more on maximizing performance and efficiency than on enhancing security, leaving them
vulnerable to potential attacks. This is a critical shortcoming, esecially because WLAN security extends
beyond direct techniques like data encryption to include defenses against attacks that exploit system blind
spots. For instance, Medium Access Control (MAC) layer header is transmitted without encryption, making
it highly vulnerable to attacks that tamper with unprotected data. An attacker can interfere with normal
communication by altering critical information in the MAC frame header, such as the STA address, packet
number, and duration, to trigger malicious behavior.

Message traffic suffers performance degradation due to interference, collisions, hidden nodes, and
deceptive attacks [5–8]. To address this, the IEEE 802.11 MAC protocol specifies virtual and physical carrier
sensing mechanisms that effectively avoid or mitigate collisions between wireless nodes while competing for
channel access. The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), an access control
technique implemented in the MAC layer, prevents frame collisions based on virtual carrier sensing. To
minimize collisions caused by simultaneous data transmissions, stations (STAs) first perform physical carrier
sensing to verify the availability of the wireless channel before initiating data transmission. After waiting for a
random backoff period, STAs transmit data transmission on idle channels. If the channel is busy, the random
waiting time is increased exponentially. This waiting time implemented to avoid collisions is determined
by the contention window (CW), which ranges between the minimum (CWmin) and maximum (CWmax)
values. STAs with smaller CW values gain access to the medium more quickly. Since CW values are randomly
assigned at each instance, fair competition among all STAs attempting to access the medium is maintained
in a normal network.

However, channel access mechanisms are susceptible to exploitation attacks that can disrupt nodes’
ability to communicate with access points (APs) [9]. For example, denial-of-service (DoS) attacks overwhelm
target networks with excessive traffic, preventing nodes from accessing the communication medium. DoS
attacks typically fall into two categories: selfish attacks, where attackers manipulate the backoff counter value
to monopolize network resources, and jamming attacks, where attackers intentionally transmit continuous
noise to interfere with specific devices. These attack types are explored in further detail below.

In a selfish attack, attackers “selfishly” occupy communication channels with an AP in a WLAN. Such
attacks are carried out by manipulating the CW value of a STA. Generally, CWmin is set to 15 (except in the
802.11b standard) and CWmax to 1023. Selfish nodes are attackers that exploit the fair access mechanism by
consistently gaining priority access to the medium. All parameters of selfish nodes are configured identically
to those of normal nodes, except their CWmin and CWmax values are reduced to ensure lower backoff
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counter values. This allows them to gain unfair access to the communication medium. As a result, selfish
attacks degrade network performance by lowering overall data transmission throughput and reducing
network availability by blocking other nodes from acccessing the medium. While the selfish node’s individual
throughput increases, the overall network throughput suffers significantly.

On the other hand, jamming attacks represent another major threat that compromises the availability
of network systems. In fields such as military security, jammers are used to block data communication with
external networks and unauthorized users. However, attackers can misuse jammers to launch DoS attacks,
disrupting communication signals between legitimate users. Since jamming signals interfere with transmis-
sions from legitimate senders, the signal-to-interference-plus-noise ratio (SINR) deteriorates significantly
under such attacks, preventing receivers from correctly decoding transmitted messages.

In energy-constrained environments like WSN and IoT-based networks, DoS attacks pose an even
greater threat. If data transmission fails in WLAN, the automatic repeat request mechanism retransmits
the data. As a result, persistant DoS attacks not only degrade throughput significantly compared to normal
operating conditions but also consume a large amount of the device’s energy resources, leading to higher
communication costs. Moreover, DoS attacks can escalate into battery depletion attacks, deliberately draining
the batteries of sensor and IoT devices that rely solely on battery power. IoT devices are particularly
vulnerable not only to jamming attacks that disrupt availability but also to battery depletion attacks that
can cause complete system shutdowns. Therefore, detecting jamming attacks is a crucial priority for IoT and
WSN environments.

In normal network congestion scenarios, issues such as reduced throughput and availability of STAs
can occur naturally, making it challenging to distinguish between regular network congestion and malicious
DoS attacks. This is especially true for selfish attacks because nodes’ CW values are set randomly under
normal operation. Similarly, distinguishing between heavy interference caused by environmental factors and
intentional jamming attacks can be equally difficult.

Machine learning models offer promising attack detection solutions for detecting such attacks without
requiring complex or resource-intensive modifications to the MAC protocol [10]. They have been effectively
applied to detect critical attacks, including DoS attacks [11–14]. With numerous studies exploring their use
in IoT and WSN environments [15–18]. In particular, DoS attacks can be identified by analyzing their side
effects, such as reduced throughput across multiple nodes, increased delays, and altered signal reception
patterns within the network. The behavior of selfish and jamming attacks increases the energy consumption
of APs by raising service demands, ultimately blocking multiple connected nodes from communicating.

In this paper, we propose a model for detecting selfish and jamming attacks in IEEE 802.11-based
WSNs operating in diverse, overlapping, and large-scale environments. The model addresses these attacks
using approproate selective response mitigation techniques. To achieve this, a simplified basic service set
environment is considered for each attack, where the machine learning model detects malicious behavior by
analyzing communication occupancy frequencies, packet durations, and CW values. This approach enables
the application of effective defense mechanisms against detected attacks. Specifically, conflicting numbers of
control packets and average throughput are compared to determine the optimal backoff counter value for
selfish attack responses. The main contributions of this paper are summarized below:
• Modeling of Selfish and Jamming Attacks: Selfish and jamming attacks are modeled in IEEE 802.11-

based wireless communication system environments.
• Attack Pattern Analysis: Attack patterns are distinguished by analyzing the effects of the attacks and

the available packet trace log data.
• Machine Learning-Based Attack Detection: The proposed machine learning attack detection method

classifies attacks based on the duration of packet communication, the number of communication
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repetitions with the AP, and the status of the node’s CW value (manipulated vs. not-manipulated). Its
performance is validated by comparing its attack detection rate with that of a state-of-the-art anomaly
detection model.

• Selective Attack Mitigation Model (SAMM): A novel selective attack mitigation model (SAMM) is
proposed that applies appropriate countermeasures based on detected attacks.

The remainder of this paper is organized as follows. In Section 2, related works on selfish and jamming
attacks are reviwed. In Section 3, an overview of the IEEE 802.11 protocol is presented. The simulation
environment and attack models are described in Section 4, and SAMM and extant DoS attack detection
methods are described in Section 5. In Section 6, the proposed model’s performance is validated and its
efficiency is assessed. Finally, the paper is concluded in Section 8.

2 Related Works
In WLANs, the virtual carrier sense mechanism predicts the state of a channel at any time using

a network allocation vector (NAV) by analyzing the duration of the previous frame. Notably, the NAV
mechanism is vulnerable to false blocking, virtual jamming, and ready-to-send (RTS)/clear-to-send (CTS)
attacks [19]. On the other hand, the physical carrier sense (i.e., clear channel assessment (CCA)) mechanism
monitors busy or idle states of channels objectively and continuously and transmits the information to the
wireless network’s MAC sublayer. This process is vulnerable to DoS attacks that interfere with the availability
of other nodes and prevent legitimate users from accessing the channel. This section presents an overview of
the most relevant studies on deceptive selfish and jamming DoS attacks and appropriate response methods.
There is a variety of research focused on detecting and responding to selfish attacks and jamming attacks
individually, but few studies distinguish between these two attacks to detect and respond selectively.

2.1 Selfish Attacks
The distributed coordination function (DCF) mechanism, which is a CSMA/CA medium access

protocol for WLANs, is vulnerable to selfish backoff attacks [20]. This is because selfish devices can set
their backoff timers to very small thresholds, allowing them to access channels more frequently than other
devices [21]. The CW size determines the range of the random backoff counter for all devices. Normally,
minimum and maximum CW values are fixed within the standard. However, a selfish device can manipulate
these values to override its priority. Selfish behaviors can include partial dropping, false accusation, packet
dropping, and insufficient transmission power effects [22].

Several studies have analyzed selfish attacks, and their countermeasures are largely governed by game
theoretic considerations related to managing routing paths, energy usage, and node confidence values.
Konorski et al. proposed a game theory-based approach to handle greedy and honest nodes, enabling
the latter to overcome their throughput disadvantages, especially with increasing number of nodes. Their
simulation results demonstrated that the throughput of greedy nodes gradually decreased because small
manipulations of the CW parameter were equally effective for disruptions and remedies [20].

Fihri et al. proposed a support vector machine-based nonlinear classifier to detect backoff manipulation
attacks. The model exhibited the shortest execution times among machine learning classifiers, especially
when supplied with radial basis function kernel classifiers. Moreover, it exhibited the lowest computational
complexity [23]. Kim et al. proposed a method for detecting selfish attacks by mathematically analyzing
selfish backoff attacks using logistic classifiers [21]. Malicious nodes typically set the CW value to 1 or 2—
their study proved that when it is set to 1, the attacker can immediately access the channel without waiting
for a backoff; however, when it is set to 2, other devices can access the channel first. Chakraborty et al. used
backoff properties to address collisions during simultaneous transmissions; however, their algorithm did
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not work properly with large networks [24]. Nonetheless, their results demonstrated that a random-access
game theoretical protocol exhibited higher average throughput and lower access delay compared to DCF in
the case of WLAN. Odedra et al. combined threshold-based detection methods with watchdog surveillance
techniques [23] to improve network performance and reduce the impact of selfish nodes. However, the
proposed method was unable to detect cooperating selfish nodes and exhibited limited detection of the
incapability of nodes to reengage in routing after isolation.

2.2 Jamming Attack
Jamming attacks are commonplace DoS attacks that cause intentional interference to stifle network

communication [25]. Jammers are generally categorized as proactive or reactive, and the proactive type can
be further divided into constant, deciphered, and random types [26].

Various studies have suggested methods for detecting and responding to deceptive jamming attacks,
but few have suggested an integrated response system that distinguishes between selfish and jamming attack
types. Vadlamani et al. conducted a survey and concluded that although a deceptive jammer is similar to a
constant jammer, the former transmits a legitimate initial bit sequence to impersonate a legitimate node [27].
Deceptive versions also implement defense strategies against transmission power adjustment, frequency-
hopping spread spectrum, channel switching, and directional antenna defenses.

Kanwar et al. proposed the JamSense model, which classifies and detects interference and jamming
attacks in WLANs [28]. Their study distinguished between interference, constant jammers, and deceptive
jammers. The authors classified the preamble and start-of-the-frame delimiters of the constant and deceptive
jammers’ packets in terms of their transmission status. As such, attacks could be identified with up to 96%
accuracy. Despite the excellent findings, the impact of these network attacks has not been analyzed further.

2.3 Threat Detection and Response
Recent advancements in wireless network security have explored various mitigation frameworks aimed

at enhancing system reliability and defense against adversarial threats. Liu et al. proposed the RFL-APIA
framework, addressing federated learning vulnerabilities by identifying and mitigating model poisoning
attacks through robust aggregation mechanisms, which parallels the proposed selective attack mitigation
model’s emphasis on adaptive response strategies in WSNs [29]. Bai et al. introduced a Throughput
Maximization Model for secure multipath transmissions in wireless ad-hoc networks, focusing on optimizing
network throughput while protecting from potential eavesdroppers [30]. Gong et al. explored Computation
and Privacy Protection for Satellite-Ground Digital Twin Networks, emphasizing secure data mapping
and resource optimization, an idea relevant to dynamic resource allocation in mitigating DoS attacks [31].
These works collectively underscore the necessity of adaptive, intelligent frameworks for real-time network
threat detection and response, forming the conceptual basis for the proposed model’s selective attack
mitigation strategy.

3 Key Features of IEEE 802.11

3.1 DCF
Fig. 1 presents typical infrastructure for WLAN, where wireless devices communicate with the AP

within a coverage region. The underlying MAC mechanism of the IEEE 802.11 WLAN standard [32] is DCF,
which uses competition-based algorithms to provide access to shared media [33]. As depicted in Fig. 2, DCF
adjusts channel access using the binary exponential backoff (BEB) algorithm [34], which prevents repeated
retransmissions of the same packet to reduce network traffic [32]. If the sender detects an idle channel, it



2480 Comput Mater Contin. 2025;82(2)

waits in the distributed interframe space (DIFS) and transmits its frame. If the channel is detected to be busy,
the DIFS time is added to the backoff counter, and the packet is transmitted once the counter reaches zero.
The backoff counter is an arbitrary time determined by the BEB and depends on the CW value. If the frame
is successfully transmitted, the sender resets the CW value to the minimum value. If the frames collide, the
CW is doubled to the maximum value, and a random backoff counter value is selected in [0, CW-1]. When
the channel is found to be inactive, its value decreases. When the channel is used, the process is reactivated
when the channel is inactive [35].

Figure 1: Infrastructure of a WLAN system

Figure 2: DCF mechanism
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DCF uses two modes of transport—basic (two-handshake) and RTS/CTS (four-handshake). In the basic
mode, the sender detects whether the channel is busy and transmits a data frame if idle. Once the transmitted
frame is received successfully, the receiver responds with an acknowledgement frame. The RTS/CTS access
mode reserves a channel before data transmission. After receiving the frame, the other nodes update their
NAV values based on the field duration of the RTS/CTS value of the reserved frame. The other nodes transmit
data frames through the DCF when the NAV value reaches zero.

3.2 Multi-Link Operation
The IEEE 802.11be standard is expected to be an extremely high-throughput amendment to improve the

reliability of wireless communications and increase the maximum throughput by 30 Gbps while reducing
latency [36]. Multilink operations comprise the core technology needed to achieve these high expectations.
The multilink framework is advantageous because it exhibits multifrequency bands and low hardware costs,
such that APs and STAs can simultaneously transmit and receive information on different links using
multiple radio interfaces depending on the transmission mode [37].

Multilink transmissions generally include synchronous and asynchronous methods categorized in
terms of their simultaneous uplink/downlink (UL/DL) transmission capabilities. In both types, asyn-
chronous transmissions and receptions on one or more links are allowed, and transmission on one link and
reception on the other can be supported simultaneously. Additionally, DL frames that fail on one link can be
retransmitted to other available links to reduce latency, and some traffic can be switched to other low-load
links to improve the quality of service on overloaded links. During asynchronous operations, each link of the
multilink device executes its channel process separately. Consequently, each link can achieve an independent
maximum favorable throughput. In contrast, in synchronous operations, all links must wait for the idle state
to begin transmission. Multiband and multichannel operations are discussed below in conjunction with
multilink transmissions designed to improve performance despite heavy interference [35].

4 Simulation Environment
NetSim v.13.1, a commercial IEEE 802.11-based packet-level network simulator, is used to simulate

SAMM in this study. NetSim visualizes the WLAN packet flow, and a trace log is produced that reports
the packet arrival time, queuing time, type, payload, overhead, status, and source. Before simulating the
integrated DoS attack environment, a simplified WLAN environment containing one AP and 3–10 connected
STAs is modeled, as shown in Table 1.

The environment is assumed to exhibit limited frame aggregation and rate adaptation. Hence, all
interface parameters are selected based on the 802.11n standard, and the RTS_Threshold is set to 800 bytes to
activate the RTS/CTS mechanism. Wireless nodes can generate a constant bit rate and file transfer protocol
services using either the transmission control protocol or the user datagram protocol. The traffic generation
rate is obtained as follows:

CBRGenerationRate = PacketSize(bytes) × 8
ArrivalTime(microsec)

, (1)

FTPGenerationRate = Fil eSize(bytes) × 8
ArrivalTime(microsec)

. (2)

Maximum packet and file sizes are set to 1460 bytes, and the inter-arrival time is unified at 11.6 μs. As
the link and simulation parameters determine the wireless channel conditions and simulation time, models
combining free-space path loss, shadowing, and Rayleigh fading are used for the simulation.
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Table 1: Simulation parameters

Components Parameters Values
Interface parameters Standard IEEE 802.11n

Number of packets aggregated 1
Channel 36 (5180 MHz)

Rate adaptation FALSE
Short retry limit 7
Long retry limit 4

Dot11_RTS Threshold 800 bytes
Buffer size 1 MB

Guard interval 400 ns
Bandwidth 20/40 MHz

Frequency band 2.4/5 GHz
Transmitter power 100 mW

Antenna gain 0
Antenna height 1 m

Medium access protocol DCF
SlotTime 9 us

SIFS 16 us
CS Min/Max 15/1023

Application parameters Application CBR
Packet size 1460 bytes

Inter-arrival time 11.6 μs
Link parameters PathLoss model Friis free space

Channel characteristics PathLoss and fading and shadowing
Fading model Rayleigh

Simulation parameters Simulation time 10000 ms

The network performance is illustrated in Fig. 3 in terms of the application and average link throughput.
Link throughput considers all traffic passing through a link, including data and control packets, retrans-
missions, errors, and collisions. On the other hand, application throughput only considers the data packets
successfully received at the destination from the source. Link throughput is calculated using Eq. (3), noting
that an application throughput can be measured for each application. As depicted in Fig. 3, the maximum
and minimum throughputs decrease as the number of STAs is increased. However, the link throughput is
maintained at a constant value.

LinkThroughput(Mbps) = Totalbytestransmittedinthel ink × 8
TransmissionTime(microsec)

. (3)
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Figure 3: Network performance of the WLAN simulation model

5 Attack Models

5.1 Selfish Attack Model
Fig. 4 illustrates network performance as a function of the number of STAs during a selfish attack.

The network’s maximum application throughput is exceptionally high compared to a normal WLAN model
because the maximum throughput is measured from the selfish node. Hence, the throughput of other nodes
is diminished to values well below average minimum values. This increases the total bytes transmitted by
the selfish node. Consequently, the average minimum application throughput of the other nodes is reduced
from 2.96 to 0.28 Mbps, representing a 90.54% degradation in performance.

Figure 4: Network performance of the selfish attack model
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5.2 Jamming Attack Model
A deceptive jammer is a type of radio frequency interference device that continuously transmits signals,

similar to a constant jammer, but with a more sophisticated approach. Unlike constant jammers, which
emit random noise or arbitrary bit sequences, deceptive jammers mimic legitimate communication signals.
They transmit seemingly valid data packets or bit patterns that resemble those generated by legitimate
devices in the network. Therefore, deceptive jamming attacks remain undetected for longer periods. Since
their transmissions appear legitimate, distinguishing between real and fake data becomes challenging for
the network. This tactic allows for prolonged disruption without immediate detection, making deceptive
jammers more insidious and effective than constant jammers in denial-of-service (DoS) attacks. In addition,
jammers adjust their signal strength to fine-tune their effects and avoid detection. Fig. 5 illustrates network
performance as a function of the number of STAs during a jamming attack. Table 2 summarizes the
simulation parameters, where the interaction time is used to determine the packet generation rate.

Figure 5: Network performance of jamming attack model

Table 2: Parameters for deceptive jammers

Components Parameters Values
Interface parameters Standard IEEE 802.11n

Number of packet
aggregated

1

Channel 36 (5180 MHz)
Rate adaptation FALSE
Short retry limit 7
Long retry limit 4

Dot11_RTS threshold 3000 bytes
Buffer size 1 MB

Guard interval 400 ns
Bandwidth 20/40 MHz

Frequency band 2.4/5 GHz

(Continued)
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Table 2 (continued)

Components Parameters Values
Transmitter power 100 mW

Antenna gain 0
Antenna height 1 m

Medium access protocol DCF
SlotTime 9 μs

SIFS 16 μs
CS Min/Max 15/1023

Application parameters Application CBR
Packet size 8 bytes

Inter-arrival time 5.8 μs

Notably, reducing the inter-arrival time increases this rate. To validate the proposed model, a jammer
with a transmission power of 100 mW is positioned randomly, and 8-byte packets are transmitted at a rate
calculated to achieve 5.8-μs inter-arrival times, resulting in ~17,241 packets generated per second. Because
all nodes in the WLAN are capable of a robust 6.5-Mbps data rate, the STAs’ locations do not affect network
performance significantly. In our simulation, the jammer follows the same standard as other STAs under
normal circumstances. However, it also transmits periodic jamming packets without using the RTS/CTS
mechanism. During the simulated attack, the number of packets transmitted to the AP is observed to be
~1000, disrupting its communications with other nodes. The attack is also observed to cause a loss of ~2000
data packets due to collision, whereas none typically crashed during normal WLAN operations. Thus, the
jammer reduces the average throughput from 2.96 to 0.12 Mbps.

6 Selective Attack Mitigation Model

6.1 Dataset
Table 3 summarizes the data used in this study based on packet log data collected in an attack-integrated

model and a related description.

Table 3: Dataset components

Feature Description
Queuing_Delay Queuing time between time of arrival of the packet at PHY/MAC layer

Transmission_Time Transmission duration between packet transmission in the link and
arrival at the PHY layer of the transmitter

Propagation_Delay Propagation delay time between packet transmission in the link and
arrival at the PHY layer of the receiver

Total_Packet_Travelling_Time Sum of queuing time, transmission time, and propagation delay time
isContinuoslyOccupied Count if the packet type is a data packet and has the same source node

as the previous one
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Packet trace log data, including type (data or control), source, destination, layer arrival time, payload
size, collision status, queuing time, transmission time, propagation delay, total traveling time, and repetitions
of communication occupancy, are simulated or collected from the attack model and compared with WLAN
statistics in the absence of an attack.

Queuing delays are simulated by subtracting the time of arrival of the packet at the physical layer from
that at the MAC layer [38]. The transmission time is simulated by subtracting the time of arrival of the packet
at the physical layer from the time of initial transmission. The propagation delay is simulated by subtracting
the time initial transmission time of the packet in the physical layer from the final transmission time in
the physical layer. Finally, the total travel time is simulated by summing the queuing, transmission, and
propagation delays.

Packets that monopolize communications with the AP and exhibit long durations are assumed to be
related to attacks [26,28]. During model training, packet trace logs are analyzed to distinguish between
attacks and ordinary packets, and the suspected attacks are classified as jamming or selfish attacks. The data
are labeled by dividing the total number of transmitted packets by the number of packets obtained from the
suspected jammer, the suspected selfish node, and normal packets.

6.2 Classification Algorithms
Fig. 6 describes the proposed attack detection system pipeline, and Algorithm 1 is used to detect

jamming and selfish attacks. Fig. 7 depicts the SAMM mechanism’s attack mitigation pipeline. Unintentional
continuous occupancy of a single STA with an AP can occur when a DCF mechanism is used with
random backoff counters. However, a certain number of constant occupancies can be assumed to be non-
coincidental [16]. In the proposed algorithm, the continuous occupancy of a packet that occurs more than
thrice is considered to be an attack.

Packet Trace Log

Data pre-processing

Attack Detection using 
Machine Learning based 
Classification Algorithms

Normal Attack

Count-based 
Prediction Check

Selfish Attack Jamming Attack

Apply Selective Mitigation Techniques

Figure 6: Attack detection pipeline of SAMM
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Figure 7: Attack mitigation pipeline of SAMM

Algorithm 1: Detection algorithm for jamming and selfish attacks
1: input packet_trace_log_data PTL
2: input attack_prediction_model M
3: output L2
4: list L1, L2
5: n = size(PTL)
6: s1, s2 = size(L1), size(L2)
7: j, k = 1
8: for i = 1 to n do
9: L1[j] =M(PTL[i]) # “normal”, “selfish”, “jamming”
10: j, i = j + 1, i + 1
11: if j > s1 then
12: if half of L1 is normal then
13: L2[k] = “normal”
14: else
15: if there are more selfish than jamming instances then
16: L2[k] = “selfish”

(Continued)
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Algorithm 1 (continued)
17: else
18: L2[k] = “jamming”
19: end if
20: end if
21: k = k + 1
22: j = 1
23: init L1
24: end if
25: end for

The SAMM classification is based on a light gradient boosting machine (lightGBM) decision-tree
model [38] with improved functionality, which exhibits high computation speeds with reduced memory
consumption. Additionally, a normalization process is included to avoid overfitting. Using the GBDT
boosting type, we trained the model with 400 iterative trees, each with a maximum of 31 leaves. The learning
rate was set to 0.1, and the maximum depth of the trees was set to −1. LightGBM is a highly efficient gradient-
boosting framework that uses tree-based learning algorithms. Apart from other tree-based algorithms, It
applies a more complex leaf-wise split approach to prevent overfitting [39]. In experiments comparing
machine learning techniques, LightGBM had the fastest prediction time and model training time [40]. Due
to deep learning generally requiring large volumes of labeled data to achieve optimal performance, SAMM
applied a machine learning-based model requiring less labeled data for effective training.

The classification performance is evaluated in terms of accuracy and a binary confusion matrix that
accounts for true-positive (TP), true-negative (TN), false-negative (FN), and false-positive (FP) predictions.
Precision, Recall, F, and F1 scores are derived from these reports, where Precision = TP/(TP + FP), Recall
= TP/(TP + FN), F score = weighted average of precision and reproduction rates, and F1 score = harmonic
mean of precision and reproduction rates.

6.3 Count-Based Prediction
Although, the jamming node in a jamming attack may be unknown, the attacker is always obvious in

a selfish attack. Hence, a count-based prediction algorithm is used to predict attacks using classified attack
alarms while providing information on the suspected attacker node(s). Because multiclass classification
algorithms detect attack types, accurate prediction based on the number of attack alarms is possible. In
this paper, all predicted attack alarms are placed in a single section, and source-node ratios are calculated
and compared.

6.4 Mitigation Techniques
Following detection and prediction using SAMM, a selective attack mitigation technique is used to

respond selectively to the type of attack. In response to selfish attacks, the proposed mitigation system
dynamically adjusts contention window (CW) values and backoff counters of non-attacking nodes to
immediately reduce network degradation after identifying the attacker. By leveraging game-theoretic prin-
ciples, the system minimizes control packet collisions during backoff counter reduction, ensuring efficient
use of network resources. As illustrated in Fig. 8, smaller CW values significantly enhance the average
throughput of non-attacking nodes while increasing control packet collisions. This trade-off demonstrates
the system’s capability to maintain network performance even under attack conditions. Notably, decreasing
the backoff counter values improves throughput for legitimate nodes. However, if the selfish node detects
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these adjustments and attempts to lower its backoff counter further, it can exacerbate network competition,
causing widespread communication delays. To counter this, the system employs a final mitigation strategy:
link switching. By virtually relocating the entire network—excluding the attacker—to a new channel, the
system isolates the attacker, preserving the integrity and functionality of the legitimate network.

Figure 8: Comparative analysis of colliding control packets and average throughput with respect to CW values

In response to jamming attacks, the proposed mitigation model suggests adjusting the Receiver
Sensitivity (RX sensitivity) and Clear Channel Assessment (CCA) threshold to reduce the impact of
interference and maintain network performance. RX sensitivity refers to the minimum signal strength
required at the receiver’s antenna port to decode a signal accurately. Reducing RX sensitivity filters out
weaker signals, such as those caused by the deceptive jammer, effectively decreasing its disruptive effects.
On the other hand, increasing the CCA threshold allows devices to tolerate higher levels of background
interference before deciding that the channel is occupied. This adjustment can enhance the ability of
legitimate nodes to access the channel despite interference, improving throughput in dense environments.
While CCA threshold adjustments primarily aim to mitigate interference rather than identify attackers,
they play a crucial role in maintaining network stability by dynamically adapting to the jamming environ-
ment. Together, these techniques ensure robust mitigation against jamming attacks without compromising
legitimate communication.

7 Performance Evaluation

7.1 Attack Response
A random forest-based anomaly detection model incapable of distinguishing between different attack

type or average throughput of the nodes is simulated, and the results are compared with those of SAMM
(Fig. 9) [41]. The average node throughput and the number of out-of-service nodes (throughput = 0) are
measured during a simulated attack lasting 10 s. Applying the SAMM model is observed to reduce the number
of out-of-service nodes significantly and maintain an average throughput of 2.69 Mbps, irrespective of the
number of nodes. In comparison, the peak average throughput of the normal detection model is observed
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to be 0.61 Mbps with no mitigation actions. Notably, surplus nodes impact network performance due to
collisions. However, throughput is observed to improve when more than five nodes are implemented in the
proposed SAMM environment. Anomaly detection using random forest delivers high performance with a
relatively high true positive rate, but for a large dataset, it requires a lot of computational power and leads to
long training times. In comparison, the SAMM model provides fast learning by applying LGBM and higher
detection accuracy compared to the conventional model by adding a multi-classification detection algorithm
to classify attacks apart from normal communication.

Figure 9: Performance evaluation with respect to the number of nodes

7.2 Attack Detection
Fig. 10 depicts the precision, recall, accuracy, and F1 score of SAMM and the ordinary anomaly detection

model. Because the normal model assumes all packets apart from normal ones to be related to attacks,
it achieves a precision of 100% but at the cost of a very high FN rate. Additionally, in the absence of an
algorithm to determine attack types, it is incapable of mitigating network degradation despite exhibiting an
accuracy of 82%. In contrast, SAMM achieves a classification accuracy of 96% and restores/retaines network
performance successfully using mitigation techniques. In the experimental environment, the number of
STAs was limited to 10, and a significant improvement in throughput was observed under these conditions.
Although large-scale WSN environments were not tested, similar performance improvements are expected
due to the adaptive nature of the proposed technique. Future research will focus on evaluating scalability and
performance in large-scale WSN environments with resource-constrained devices.
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Figure 10: Comparison of attack detection model

8 Conclusions

Wireless communication systems based on the DCF mechanism are vulnerable to competition-based
selfish and jamming attacks. Dense overlapping WLANs are particularly susceptible to interference from
hidden nodes and intentional DoS attacks. However, further research is required to develop multiple attack
detection and response capabilities. The SAMM model proposed in this paper is demonstrably effective at
detecting and responding to selfish and jamming attacks based on performance comparison with a standard
anomaly detection model. Its accuracy is higher than that of the standard model by more than 14%, and
it is capable of choosing and implementing accurate responses quickly by distinguishing between the two
types of attacks. For example, it is observed to restore network performance to normal levels in response to
a simulated selfish attack. Nevertheless, the simulation scenario considered in this study is limited because
performance results depend on the calculation methods and thresholds used. Future works should attempt to
further improve the accuracy of attack detection by including attack patterns that do not depend on a single
threshold. Furthermore, the algorithm is to be developed to respond not only to selfish and jamming attacks
but also to DoS attacks such as battery depletion attacks, which cause network performance degradation
and compromise device availability. In real wireless communication environments, performance is easily
degraded due to various interferences that disrupt normal communication beyond the attacks presented
in this paper. Enhancing the SAMM algorithm to distinguish not only intentional selfish and jamming
attacks but also unintentional interference, makes it possible to improve the performance of real wireless
network environments.
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