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ABSTRACT

Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife.
This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO
Lightweight Fire Detector (YOLO-LED), to address the limitations of traditional sensor-based fire detection
methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference
speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded
systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature
extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage
Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks
(C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction
and semantic information processing, thereby significantly increasing inference speed. To enhance the detection
capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which
effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental
results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases
inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only
a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to
YOLOV5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable
for real-time detection tasks on mobile and embedded devices.
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1 Introduction

In recent years, with the increasing demand for fire detection, traditional methods employing
smoke sensors, temperature sensors, and similar devices have proven effective in small indoor environ-
ments but exhibit significant limitations in large spaces and complex outdoor settings. These sensors
typically detect only late-stage fire signals (e.g., changes in smoke concentration and temperature),
resulting in insufficient early warning capabilities. This limitation is particularly pronounced in rapidly
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spreading forest fires, where the sensors’ response speed and sensitivity significantly decline [!]. In
contrast, deep learning-based visual detection methods offer a more forward-looking solution for fire
detection. By utilizing image processing techniques, visual methods can capture early flame features
in real-time. This approach demonstrates enhanced detection capabilities, especially in large-scale and
complex environments. Among these methods, the YOLO (You Only Look Once) series of single-
stage object detection models has garnered considerable attention for its efficiency and real-time
performance [2].

YOLOVS [3], one of the most popular single-stage detection models, generates detection results
directly from input images, bypassing the complex region proposal and classification steps found in
two-stage detection models [4]. This makes YOLOVS highly suitable for real-time deployment on
resource-constrained devices such as drones and embedded systems. However, despite the YOLO
series’ impressive performance in detection speed and accuracy, challenges remain, particularly in
handling complex backgrounds and detecting small objects.

To address these challenges, this paper proposes an improved lightweight fire detection model—
YOLO-LFD (YOLO Lightweight Fire Detector). By optimizing YOLOVS, we have significantly
improved inference speed and the detection accuracy of small flames, while only slightly sacrificing
overall detection accuracy. This makes the model particularly suitable for deployment on resource-
constrained devices.

The main contributions of this work include:

e Introducing Depthwise Separable Convolutions (DSConv) to significantly reduce computa-
tional complexity and model parameters.

e Designing and implementing the Cross Stage Partial (CSP) Bottleneck with 2 Convolutions
(C2f-Light) and CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace
the C3 modules in YOLOVS. This substitution substantially improves inference speed while
maintaining efficient feature extraction capabilities.

e Utilizing the Normalized Wasserstein Distance (NWD) loss function to enhance the detection
of small fire objects, thereby improving the model’s performance in small-object detection tasks.

2 Related Works

Fire detection is a core task in fire prevention and safety management, fundamentally aimed at
inferring the system’s state (i.e., whether a fire has occurred or there is a potential fire risk) based
on a series of cues or signals. These cues may include smoke concentration, temperature variations,
gas composition, and visual characteristics. To improve inference accuracy, traditional methods
often employ multi-signal inference, sensor fusion, or ensemble techniques. These methods integrate
signals from multiple sensors, such as smoke sensors, temperature sensors, and gas sensors, to make
comprehensive judgments. For instance, Sahid et al. [5] proposed an early fire detection model by
combining flame, carbon monoxide, and smoke sensors. Recently, Nakip et al. [6] introduced a hybrid
architecture, that enhances multi-sensor fire detection and risk assessment by using flattened sample
regularization and environmental variable time trends, achieving high accuracy, low computational
load, and robust generalization capabilities.

However, applying such multi-signal fusion methods in large spaces or complex environments
poses significant challenges. In vast forest environments, deploying and maintaining numerous physi-
cal sensors is costly, and the equipment is prone to aging or damage due to environmental influences.
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Moreover, the complexity of multi-sensor systems increases the burden on data processing and trans-
mission, making real-time monitoring challenging [7]. Therefore, while multi-signal fusion methods
perform well in small indoor environments, their efficiency and feasibility are limited in large-scale
forest fire detection.

To address the limitations of traditional sensor-based detection, visual-based fire detection meth-
ods have garnered increasing attention from researchers. These methods rely on image processing and
machine learning techniques to analyze visual characteristics, such as flames and smoke. Rudz et al. [&]
developed a more precise fire detection model by analyzing the color and shape of flames. Similarly,
Surit et al. [9] utilized static and dynamic image features to detect smoke in forest fires. Although
these machine learning-based visual methods offer new approaches to fire detection, they often rely
on predefined feature extraction, resulting in limited robustness in complex scenarios and making
detection results vulnerable to environmental changes.

With the rapid advancement of deep learning technology, particularly the introduction of Con-
volutional Neural Networks (CNNs) [10], the field of object detection has seen the emergence of
more intelligent detection models. Compared to traditional fire detection methods, CNN-based fire
detection models require less manual intervention and exhibit strong generalization capabilities. These
models can automatically learn fire-related features from data, enabling better performance in fire
detection tasks. CNN-based object detection methods can be broadly categorized into two types: two-
stage detection methods and single-stage detection methods.

Two-stage Detection Methods: These methods first generate candidate regions and then classify
them, achieving higher detection accuracy. Typical two-stage models include Regions with CNN
features (R-CNN) [11] and Faster R-CNN [12]. For instance, Cai et al. [13] proposed the Cascade
R-CNN, a multi-stage object detection framework that addresses issues arising from training with low
Intersection over Union (IoU) thresholds, which can lead to noisy detections, and high IoU thresholds,
which may degrade performance. Despite their high accuracy in detecting large objects, two-stage
methods often have high computational complexity and are challenging to deploy on resource-limited
devices.

Single-stage Detection Methods: In contrast, single-stage detection methods perform classifica-
tion and localization directly across the entire image, bypassing the region proposal stage. Examples
of this type include the YOLO series [14] and SSD [15]. The YOLO series of models have gained
widespread application in real-time detection tasks due to their efficient inference speed and good
detection accuracy. For instance, Xiao et al. [16] recently proposed the EMG-YOLO algorithm, which
leverages multi-scale attention modules, a global feature pyramid network, and pruning techniques to
enhance fire detection accuracy while significantly reducing computational complexity.

Additionally, some studies have combined YOLO with other deep-learning methods to improve
detection performance. For example, Qian et al. [17] integrated a Conditional Generative Adversarial
Network (CGAN) with an improved YOLO model to achieve automated polyp detection, showcasing
YOLO'’s potential for broader applications. However, in forest fire detection tasks, real-time perfor-
mance and extensive monitoring are critical requirements. Although two-stage detection methods and
combining YOLO with other deep learning methods may offer improved accuracy, they typically
increase model complexity and computational resource demands, which conflicts with the real-time
detection needs in resource-limited environments. On the other hand, single-stage detection methods,
such as the YOLO series, exhibit faster inference speeds that can meet real-time detection needs.
Moreover, the YOLO model structure is relatively simple, making it easier to deploy on resource-
constrained devices.
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In our study, we compared various deep learning-based object detection models. Considering the
unique requirements of forest fire detection, it is necessary to strike a balance between accuracy,
speed, and resource consumption. YOLOVS, as a mature version within the YOLO series, offers
improved feature extraction efficiency and reduced computational load compared to YOLOV3 [1§]
and YOLOV4 [2]. By incorporating the Focus layer [3] and Cross Stage Partial Network (CSPNet)
[19],YOLOVS achieves a more lightweight model structure. Additionally, the application of Mosaic
data augmentation enhances adaptability to various target sizes and positional changes, demonstrating
excellent performance in small object detection tasks. We also evaluated the latest models, YOLOVS
[20] and YOLOV10 [21]. YOLOvVS8 optimizes the CSPDarknet backbone and the PANet [22] neck
structure, boosting feature fusion capabilities, and introducing an anchor-free design that simplifies
the model architecture and improves small-object detection. Meanwhile, YOLOV10 leverages an NMS-
free [23] training mode and large-kernel convolutions to further optimize multi-scale feature extraction
and real-time performance. While YOLOv8 and YOLOvV10 performed well in certain tasks, YOLOVS5
demonstrated the best overall performance on our fire detection dataset. It maintained high detection
accuracy, had a fast inference speed, and exhibited good stability and generalization capabilities [24].
Consequently, we selected YOLOVSs as the baseline model, as it achieved an ideal balance between
accuracy and speed. Although YOLOv5n is the most lightweight version in the series, possessing fewer
parameters, it does not meet our accuracy requirements as effectively as YOLOvSs does. YOLOVSs
provides higher detection accuracy and exhibits excellent inference speed, better satisfying our dual
needs for accuracy and efficiency in fire detection tasks.

In recent related studies addressing the issue of missed detections of small objects, most YOLO-
based improvement methods have incorporated attention mechanisms to enhance small object detec-
tion performance. For example, Luan et al. [25] proposed a UAV-based fire detection method
called YOLO-CSQ, which integrates the CBAM attention mechanism to improve multi-scale fire
feature extraction capabilities. Attention mechanisms indeed allow models to focus more on critical
features, thereby enhancing detection accuracy for small objects. However, incorporating attention
mechanisms often increases the model’s computational overhead, resulting in slower inference speed,
which conflicts with the real-time detection needs in resource-limited environments. In our study,
we addressed the small-object detection problem by utilizing the Normalized Wasserstein Distance
(NWD) loss function instead of the traditional IoU metric. This approach improved the model’s
performance in detecting small flames, and significantly reduced the rate of missed detections, all
without compromising inference speed.

3 Methodology
3.1 Network Architecture

To address the challenges posed by objects of varying sizes and the difficulty of detecting small
targets in fire detection tasks, this paper presents an improved lightweight model based on YOLOvVS5
v7.0, named YOLO-LFD. The model significantly optimizes inference speed while maintaining
detection accuracy, making it suitable for real-time applications on resource-constrained devices,
including drones. Four key modifications were made to the original YOLOVS5 architecture:

(1) Introduction of DSConv: Reduces network complexity while improving computational
efficiency.

(2) Replacement of the shallow C3 module with the C2f-Light module: Simplifies convolu-
tion operations, significantly boosting inference speed while maintaining effective feature
extraction.
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(3) Replacement of the deep C3 module with the C3CIB module: Improves deeper feature
extraction and semantic information processing.

(4) Adoption of the NWD loss function: Replaces the traditional IoU loss, enhancing performance
in detecting small fire targets and significantly reducing the missed detection rate.

Among these, modifications (1) and (4) are based on existing methods, whereas (2) and (3)
constitute the novel contributions of this paper. By integrating these improvements into the network
architecture, YOLO-LFD achieves an optimal balance between speed and accuracy for fire detection
tasks. The overall architecture is illustrated in Fig. 1.
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Figure 1: Overall architecture of the YOLO-LFD

3.2 DSConv

The Depthwise Separable Convolution (DSConv) module was introduced [26] into the YOLOvS
network, replacing the original standard convolution (Conv) module to reduce computational over-
head and decrease the number of parameters, thereby accelerating the model’s inference speed. As
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shown in Fig. 2, DSConv consists of a Depthwise Convolution (DWConv) [27] and a Pointwise
Convolution (1 x 1 convolution)[1]. The key characteristic of DWConv is that it performs convolution
independently on each input channel without fusing information between channels. The computation
of traditional convolution can be expressed as follows:

K-1 K—-1 Cjy—1
}]i,/',c = Z Z Z AX/ier,/'Jrn,d . Wm,n,d,c (1)

m=0 n=0 d=0

In traditional convolution, the input feature map X and convolution kernel W are weighted

and summed across all input channels to generate the output feature map Y. In contrast, DWConv
performs independent convolution on each input channel, and the formula simplifies to:

K-1 K-1

}]i,/,c = Z Z X+I71J+n.c : Wn.,n,c (2)

m=0 n=0

This method reduces the computational cost from the standard convolution’s complexity of O(H
X W x Cy, x Coy x K x K)to OH x W x C,, x K x K), achieving an approximately C,,-fold
reduction in computation. However, since DWConv only performs convolution within channels and
lacks inter-channel feature fusion, we address this limitation by applying PWConv. The computation
formula for pointwise convolution is:
Cin—1

ijid = z XiM' Wlxl,d,c’ (3)
d=0

Depthwise
convolutional kernel

Pointwise %)
convolutional kernel "

Input Output

Figure 2: Depthwise-separable-convolutions-DSConv

PWConv is utilized for linear combinations between channels, enabling the integration of features
from different channels. By comparing the computational complexity of standard convolution and
DSConv, it becomes clear that the former has a computational cost of H x W x Cy, x Cy x K x K,
while DSConv’s computational cost is reduced to H x W x Cj, x K x K+ H x W x C;, x Cg.
This design significantly reduces the overall computational load and the number of parameters, thus
enhancing the inference efficiency of the model.

3.3 C2f-Light

In the C2f module of YOLOvVS8 [20] (as shown in Fig. 3b), the design aims to enhance feature
extraction and information flow by cascading multiple convolutional layers. While the C2f module
excels in improving feature extraction, its structural complexity results in increased computational cost
and parameter count. To address these issues, we propose the C2f-Light module (as shown in Fig. 3d)
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that significantly reduces computational complexity and resource consumption while maintaining
efficient feature extraction.
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Figure 3: (a) Bottleneck module used in C2f; (b) C2f module used in YOLOVS; (¢) The proposed Pruned
Bottleneck module; (d) The proposed C2f-Light module

The core innovation of the C2f-Light module is the introduction of DSConv. DSConv decomposes
the traditional standard convolution into two parts: Depthwise Convolution (DWConv) and Pointwise
Convolution (PWConv). DWConv operates independently on each input channel, focusing on spatial
feature extraction without involving inter-channel information exchange. PWConv, through 1 x 1
convolution, restores the interaction between channels by performing a linear combination of features
across channels. This decomposition not only effectively reduces computational burden but also
maintains strong feature extraction capabilities.

Compared to traditional convolution, DSConv significantly reduces computational complexity
by separating spatial and channel-wise computations, leading to improved efficiency, especially when
the number of input channels is large. This optimization greatly reduces the number of floating-point
operations (FLOPs), thus improving the inference speed and computational efficiency of the model.
Additionally, although the Bottleneck structure of the C2f module (as shown in Fig. 3a) enhances
feature extraction through a series of Convolution-Batch Normalization-SiLU (CBS) modules, it also
inevitably increases the computational load. Therefore, we introduce the Pruned Bottleneck structure
(as shown in Fig. 3c), which replaces standard convolution with DSConv, substantially reducing
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both computational cost and parameter count. The C2f-Light module, by simplifying convolution
operations and integrating DSConv, achieves a significant boost in inference speed while ensuring
effective feature extraction.

3.4 C3CIB

As shown in Fig. 4c, the C3 module in YOLOVS is designed to enhance feature extraction
capabilities and information flow through the Bottleneck structure [28]. While the Bottleneck structure
improves feature extraction by cascading multiple CBS modules, it also leads to increased computa-
tional complexity and a higher number of parameters. This can become a performance bottleneck
when handling tasks that require high efficiency and precision. To address this issue, we propose
an innovative improvement based on the CIB module from YOLOv10 [21], introducing the C3CIB
module, as illustrated in Fig. 4d.
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Figure 4: (a) RepVGGDW module used in CIB; (b) CIB module used in C3CIB; (¢) C3 module in
YOLOVS; (d) The proposed C3CIB module

The C3CIB module first incorporates the Compact Inverted Block (CIB), which aims to signifi-
cantly reduce computational overhead and improve computational efficiency by combining Depthwise
Convolution (DWConv) and Pointwise Convolution (PWConv). Fig. 4b shows the detailed structure
of the CIB module: it includes both DWConv and PWConv convolution operations and integrates
the Efficient Channel Attention (ECA) mechanism [29]. This mechanism adaptively assigns weights
along the channel dimension through local convolution operations, enhancing the feature represen-
tation capability. ECA avoids the use of additional fully connected layers, thereby greatly reducing
computational costs while ensuring feature capture ability. Moreover, the CIB module incorporates the
RepVGGDW module, as shown in Fig. 4a. RepVGGDW enhances nonlinear expression capabilities
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through the combination of depthwise convolution and the Mish activation function [30] and improves
inference efficiency during the deployment phase through convolution fusion. These designs ensure
the high efficiency and nonlinear expression capabilities of the CIB module, enabling it to extract key
features more accurately in different scenarios.

In contrast, although the C3 module employs the Bottleneck structure, its computational com-
plexity increases with the depth of the network. To tackle this problem, the C3CIB module replaces
the Bottleneck structure in the C3 module by introducing the CIB module, thereby significantly
reducing computational costs. Simultaneously, the C3CIB module retains the dual-branch design of
the C3 module, allowing input features to be processed along different paths separately, preserving
more fine-grained feature information. Additionally, the ECA mechanism within the CIB module
further enhances the model’s feature capture capability while maintaining efficiency. Compared to the
traditional C3 module, the C3CIB module achieves enhanced feature extraction abilities, leading to
further improvements in YOLOVS5’s performance when handling complex scenes.

3.5 NWD Loss Function

In the dataset, several challenges arise, such as small and densely packed flames at the far end of
the image, flames at the edges of the image, and defects in flames within small regions. These issues can
lead to the loss of critical fire features during pre-feature extraction, ultimately resulting in reduced
fire detection accuracy. To address this problem, this paper introduces the Normalized Wasserstein
Distance (NWD) loss function [31] to improve the detection accuracy for small fire targets.

As shown in Fig. 5, the sensitivity of Intersection over Union (IoU) varies significantly for
different sizes of flames. Box A represents the ground truth bounding box, while boxes B and C
represent bounding boxes with diagonal deviations of 1 pixel and 4 pixels, respectively. Specifically, for
tiny objects with a size of 7 x 7 pixels, even a small positional deviation can cause a significant drop
in IoU (from 0.58 to 0.1), leading to incorrect label assignment. In contrast, for normal objects of 21
x 21 pixels, the IoU changes less under the same positional deviation (from 0.83 to 0.49), indicating a
certain degree of degradation in IoU. This degradation affects the label assignment process, ultimately
influencing detection accuracy.

ki
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(a) Tiny scale object (b) Normal scale object

Figure 5: Comparison between tiny and normal-scale objects

IoU-Loss [32] was introduced to eliminate the performance gap between training and testing.
However, IoU-Loss fails to provide gradients for network optimization in two specific cases: (1) when
there is no overlap between the predicted bounding box P and the ground truth box G (i.e., |PNG| = 0);
or (2) when bounding box P completely contains bounding box G or vice versa (i.e., |PNG| = P or G).
Additionally, these two cases are very common in small object detection. Specifically, a slight deviation
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in P can lead to no overlap between P and G, and small objects are easily mispredicted, resulting in
[PNG| = P or G. Therefore, IoU-Loss is not suitable for small object detectors. Although DIoU and
CloU [33] can handle these cases, they are sensitive to positional deviations of small objects as both
are based on IoU.

To solve these issues, this paper introduces the NWD loss function. This function models the
bounding boxes as two-dimensional Gaussian distributions and uses the Wasserstein distance to
measure the difference between the predicted and ground truth boxes. For smaller-scale objects, they
are often not strictly rectangular in practice and usually occupy only a few pixels at the center of
the bounding box, with irrelevant elements like the background distributed near the edges. To more
accurately represent the importance of different pixels within a bounding box, a two-dimensional (2D)
Gaussian distribution can be used to model the bounding box. In this model, the central pixels of the
bounding box receive the highest weight, and the importance of the pixels gradually decreases from
the center to the edges.

Specifically, for a horizontal bounding box R = (c,, ¢,, w, h), where (c,, ¢,), w and & represent the
center coordinates, width, and height respectively. Based on the pixel distribution characteristics, it
can be expressed using the ellipse equation:

G, O
log o’

1 4)

Here, 1, and u, are the coordinates of the ellipse’s center, and o, and o, are the lengths of the
semi-axes along the x and y axes, respectively. Therefore, 4, = c,, u, = ¢,, 0, =w/2,and o, = h/2. The
probability density function of the two-dimensional Gaussian distribution is:

1 (x— )"

J(Xlp, E) = ——=exp (—— 5
272 2> (x—w)

where x, ¢, and X represent the coordinates (x, y), the mean vector, and the covariance matrix,

respectively. Next, the Wasserstein distance is used to measure the difference between two probability

distributions. For two 2D Gaussian distributions u,~N(m,,%,) and u,~N(m,,X,), the second-order

Wasserstein distance between u; and u, can be simplified as follows:

1 12
22
1 2

F

where ||| is the Frobenius norm. For Gaussian distributions N, and N, modeled from bounding
boxes 4 = (¢, ¢, Wo» h,) and B = (c,,, ¢,,, Wy, I,), Eq. (6) can be further simplified as:

5 w, h,71" w, h,]" ’
Wz (Na: Nb) = CXy,s Cyaa 7a 5 5 | CXpy CJ/b, 75 (7)
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However, W;(N,, N,) is a distance measure and cannot be directly used as a similarity measure
(i.e., a value between 0 and 1 like IoU). Therefore, we normalize its exponential form to obtain a new
measure called the NWD:

Wﬁmmm)

(®)

NWD(N,, Ny) = exp (— C

where C is a constant closely related to the dataset. To ensure that the box loss reflects both NWD
and IoU similarity information, we adjust the relative contributions of NWD and IoU in the total
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box loss, setting the weight ratio to 7:3. This gives NWD a greater contribution to the total box loss,
thereby enhancing the model’s ability to detect small objects. The final loss function is expressed as:

1 N
Loss = NZ: (0.7-(1 =NWD)+0.3- (1 —IoU)) )
where N represents the number of detection boxes, and the average value is taken to aggregate the
losses of multiple targets into a single value for further loss computation and optimization.

4 Experiments
4.1 Experimental Environment and Data Preprocessing

The experimental environment was based on a Windows 10 operating system, running on an Intel
Core 15-12400F CPU, an NVIDIA GeForce RTX 4060 GPU, and 16 GB of RAM. The software
environment included CUDA version 11.8 and the PyTorch framework. The input image size was set
to 640 x 640 pixels, with a batch size of 32, and the model was trained for 200 epochs. Starting with
pre-trained weights, the model was fine-tuned for 200 epochs to produce the final trained network.

The dataset used in this experiment comprised 2061 images, including scenes such as forest fires
and aerial drone footage. These images were sourced from public datasets like VisiFire [34], as well
as additional flame and smoke images obtained through online searches. Due to the limited size of
the dataset, we applied data augmentation techniques—including Gaussian blur, cropping, brightness
adjustment, and flipping—to expand the number of samples to 8244. Examples of the augmented
images are shown in Fig. 6. The dataset was randomly divided into training, validation, and test sets
with a ratio of 8:1:1.

Rotation + Noise Cutout + Rotation + Noise

Figure 6: Partial data enhancement results
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To evaluate the model’s effectiveness in detecting small fire targets, we selected 1000 images of
small fire flames from the dataset for testing. The mean Average Precision (mAP)@0.5_tiny in the
following ablation experiments is based on the detection results from this small target test set.

4.2 Evaluation Metrics

To accurately evaluate the performance of the proposed algorithm, precision, recall, average
precision (AP), and mean average precision (mAP) are commonly used evaluation metrics in object
detection. Their calculations are shown in Egs. (10)—(13).

TP
Precision = ———— (10)
TP+ FP
TP
Recall = ———— (11)
TP+ FN
1
AP=/ p ) dr (12)
0
>, 4P

(13)

In this context, TP refers to the number of true positives correctly predicted by the model, FP
represents the number of false positives, and FN denotes the number of false negatives where the
model failed to detect a positive sample. N is the total number of classes in the detection task. AP is
the area under the precision-recall curve for a single class, while mAP is the mean of APs across all
classes. A higher mAP value indicates better performance of the algorithm. In our experiments, we
pay special attention to the metrics mAP@0.5 and mAP@0.5_tiny. Here, mAP@0.5 refers to the mean
Average Precision calculated at an IoU (Intersection over Union) threshold of 0.5, which measures
the overall detection performance of the model. In contrast, mAP@0.5_tiny specifically evaluates the
model’s performance on the test set extracted for small target detection.

In addition to accuracy metrics, FPS (Frames Per Second) and FLOPs (Floating Point Operations)
are also crucial indicators for evaluating model performance. On the current hardware setup, FPS
measures the number of images the model can process per second, with higher values indicating faster
inference speed. FLOPs reflect the total number of floating-point operations required to process a
single image, with lower values indicating lower computational complexity.

4.3 Ablation Experiment

In the ablation experiments, we progressively introduced different improvement modules, as shown
in Table I—including DSConv, C2f-Light, C3CIB, and the NWD loss function—to evaluate their
impact on model performance. The baseline model, YOLOVS5s, achieved an mAP@0.5 of 94%, an
inference speed of 290 FPS, and an mAP@0.5_tiny of 0.9 for small object detection. First, after
incorporating DSConv, the inference speed increased to 328 FPS, and the number of parameters and
FLOPs were significantly reduced, although the mAP@0.5 slightly decreased to 91.5%. Next, after
adding the C2f-Light and C3CIB modules, the mAP@0.5 improved to 92.2%, and the inference speed
significantly increased to 343 FPS. Finally, by introducing the NWD loss function, the model achieved
an mAP@0.5 of 92.5%, the mAP@0.5_tiny for small object detection improved to 0.912, and the
inference speed further increased to 346 FPS, achieving a good balance of performance. Although the
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overall mAP@0.5 slightly decreased compared to the previous configuration, there was a significant
improvement in small object detection.

Table 1: Ablation study results

Modification Params FLOPs mAP@ mAP@ Inference

DSConv  C2f-Light C3CIB NWD (M) (G) 0.5 0.5tiny  FPS
7.01 15.8 0.94 0.9 290

J 497] 11.6] 0915  0.882)  328%
J 6.46] 12.5) 0.925)  0.892]  347¢
J 6.27 15.2 09411 09 2924
J 7.01 15.8 0.94510 09151  295¢
J J 4.43] 8.4 0914  0.885)  375%
J J J 3.69 7.8) 0.922] 0.893]  343¢
Vi v J W/ 3.69] 7.8] 0925, 09121 3461

The final experimental results show that by introducing these improvement modules, the model’s
number of parameters was reduced by approximately 47.3%, from 7.01 million to 3.69 million; FLOPs
decreased by about 50.6%, from 15.8 billion to 7.8 billion; and the inference speed increased by
approximately 19.3%, from 290 FPS to 346 FPS. Each module played a positive role in different aspects
of performance, and the model performs exceptionally well in small object detection.

4.4 Comparison Experiments

In our comparative experiments, as shown in Table 2, the proposed YOLO-LFD model was
systematically compared with the YOLOvV5s baseline and other mainstream object detection models.
YOLOV5s achieved an inference speed of 290 FPS and an mAP@0.5 of 0.94, while YOLO-LFD,
with its optimized structure, attained an inference speed of 346 FPS, representing an improvement of
approximately 19.31%. The mAP@0.5 only slightly decreased from 94% to 92.5%, a reduction of 1.6%.
These results demonstrate that YOLO-LFD significantly enhances inference speed while maintaining
high detection accuracy.

Moreover, YOLO-LFD exhibits substantial advantages in terms of parameter count and FLOPs.
Compared to YOLOvSs, YOLO-LFD reduces parameters by 47.3% and FLOPs by 50.6%, making
it highly efficient for deployment in resource-constrained environments. YOLOv8n offers faster
inference (349 FPS) but achieves an mAP@0.5 of only 0.914, slightly lower than both YOLO-LFD
and YOLOvS5s. Additionally, YOLO-LFD outperforms YOLOv8n in precision and recall, achieving
91.8% and 87.2% respectively compared to YOLOv8n’s 89.8% precision and 85.4% recall. Meanwhile,
YOLOVSs reaches an mAP@0.5 of 0.928 but has a significantly lower inference speed of only 211
FPS. YOLOv7-tiny and YOLOv3-tiny achieve inference speeds of 321 FPS and 355 FPS, respectively;
however, their mAP@0.5 scores of 0.88 and 0.893 indicate lower detection accuracy, particularly in
complex scenarios. YOLOv10n also exhibits a balanced performance, with an inference speed of 332
FPS and an mAP@0.5 of 0.917, but overall, it still falls short compared to YOLO-LFD. YOLOv5n
offers a more balanced performance, with an inference speed of 326 FPS and an mAP@0.5 of 0.918,
though it still lags behind YOLO-LFD overall. As shown in Fig. 7, YOLO-LFD is positioned closest to
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the top-right corner, indicating its superior overall performance and its well-rounded balance between
detection accuracy and inference speed.

Table 2: Detection performance comparison

Model Params (M) FLOPs(G) mAP@0.5 Precision Recall Inference FPS
YOLOvV3-tiny  8.67 12.9 0.893 0.872 0.849 355
YOLOV5n 1.76 4.1 0918 0.892 0.871 326
YOLOVS5s 7.01 15.8 0.94 0.93 0.897 290
YOLOv7-tiny 6.01 13.0 0.88 0.84 0.828 321
YOLOvV&n 3.01 8.1 0914 0.898 0.854 349
YOLOVSs 11.1 28.4 0.928 0.924 0.88 211
YOLOv10n 2.69 8.2 0917 0.904 0.847 332
YOLO-LFD 3.69 7.8 0.925 0.918 0.872 346
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Figure 7: Detection performance comparison

In conclusion, YOLO-LFD’s optimizations in inference speed, parameter count, and FLOPs,
along with its advantages in precision and recall, make it exceptionally well-suited for resource-
constrained environments. It is particularly advantageous for applications like drones and embedded
devices that require efficient real-time detection.

4.5 Forest Fire Detection

In the forest fire detection task, we applied the Layer-CAM [35] method to visualize the detection
features of the YOLO-LFD and YOLOvVSs baseline models, enabling us to observe which regions the
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network focuses on after passing through the backbone and detection head during target recognition
and localization. We compared the detection performance of the YOLOVSs baseline with that of the
improved YOLO-LFD model. As shown in Fig. §, the YOLOvSs model predominantly focuses on the
most prominent fire regions but struggles with detecting flames along the edges or smaller fires, making
it difficult to identify subtle fire characteristics. In contrast, the YOLO-LFD model extracts more
discriminative features from the image, effectively leveraging information from densely packed small
targets. Its heatmaps demonstrate a broader and more detailed attention span, successfully capturing
complex scene features like fire expansion at the edges. YOLO-LFD significantly enhances its ability
to detect small fire sources, reducing both missed detections and false positives, thereby improving the
accuracy and reliability of early forest fire warnings.

(a) original image (b) YOLOVSs (¢) YOLO-LFD

Figure 8: Visualization of model-generated feature maps. (a) Images of forest fires. (b) Attention
heatmap of YOLOVSs. (¢) Attention heatmap of YOLO-LFD

Additionally, Fig. 9 illustrates the specific detection results of both models across various forest
fire scenarios. Compared to the baseline model, YOLO-LFD exhibits stronger robustness in detecting
fires in low-contrast scenes, reducing missed detections and false positives. Especially in scenarios with
severe occlusion and challenging lighting conditions, YOLO-LFD accurately identifies concealed fire
sources, markedly improving the model’s performance in real-world applications.
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(2) YOLOVSs (b) YOLO-LFD

Figure 9: Visualization of the detection results of YOLOv5s and YOLO-LFD

5 Conclusion and Future Work

Fire detection is a critical task in the field of object detection. Based on YOLOVS v7.0, this paper
proposes a lightweight fire detection model named YOLO-LFD. To address issues of computational
complexity and resource consumption in existing models, we have implemented several improvements.
Firstly, we adopted DSConv, which significantly reduces the computational cost and number of
parameters of the model. Secondly, we designed the C2f-Light and C3CIB modules to replace the C3
modules in YOLOVS, optimizing feature aggregation capabilities and effectively enhancing inference
speed. To improve the detection performance for small fire flames, we also introduced the NWD loss
function, further enhancing the detection accuracy for small targets.

Experimental results show that YOLO-LFD improves inference speed by 19.3% compared to
YOLOVSs, with only a 1.6% decrease in mAP@0.5. Additionally, YOLO-LFD reduces the number of
parameters and FLOPs by 47.3% and 50.6%, respectively, fully demonstrating its excellent adaptability
in environments with limited computational resources. This makes it especially suitable for deployment
in scenarios requiring efficient real-time detection, such as drones and embedded devices.

However, we also recognize that deep learning models, especially neural networks like YOLO-
LFD, are often considered “black boxes” [30], with internal decision-making processes lacking
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intuitive interpretability for humans. In safety-critical fields such as fire detection, the interpretability
of models is crucial for enhancing system trustworthiness and reliability. Therefore, our future work
will not only focus on further improving the model’s accuracy and efficiency but also on enhancing
its interpretability. We plan to employ Explainable Artificial Intelligence (XAI) [37] methods, such as
Grad-CAM [38] and feature visualization techniques, to deeply analyze the model’s feature extraction
and decision-making processes, revealing the key regions and features the model focuses on when
detecting flames. This will help users understand the basis of the model’s judgments, increase trust in
the system, and identify potential biases and shortcomings in the model for further improvement.

In addition, we plan to test the model’s robustness in more complex scenarios, such as varied flame
shapes, extreme weather conditions, and multi-object detection tasks. By incorporating optimizations
from the latest versions of YOLO, we aim to further simplify the model architecture and reduce
computational costs, ensuring that the model has greater applicability and deployment flexibility while
maintaining high performance. These improvements to YOLO-LFD not only provide an effective
solution for fire detection tasks but also pave the way for new possibilities in other small-object
detection applications.
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