
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058931

ARTICLE

A Software Defect Prediction Method Using a Multivariate Heterogeneous
Hybrid Deep Learning Algorithm

Qi Fei1,2,*, Haojun Hu3, Guisheng Yin1 and Zhian Sun2

1College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China
2Information Technology Research Department, Jiangsu Automation Research Institute, Lianyungang, 222062, China
3School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, 518055, China
*Corresponding Author: Qi Fei. Email: feiqixia@163.com
Received: 24 September 2024 Accepted: 05 December 2024 Published: 17 February 2025

ABSTRACT

Software defect prediction plays a critical role in software development and quality assurance processes. Effective
defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency.
Additionally, this technology provides developers with a means to quickly identify errors, thereby improving
software robustness and overall quality. However, current research in software defect prediction often faces
challenges, such as relying on a single data source or failing to adequately account for the characteristics of
multiple coexisting data sources. This approach may overlook the differences and potential value of various data
sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this
study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL).
Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are
extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of
heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency
and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM)
hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated
and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is
evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area
under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that
the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.

KEYWORDS
Software defect prediction; multiple heterogeneous data; graph convolutional network models based on adjacency
and spatial topologies; CNN-BiLSTM; TabNet

1 Introduction

In the field of software engineering, improving software quality and reliability is always an
important and continuous challenge. Effective identification of software defects plays a key role in
reducing operation and maintenance costs, improving user satisfaction and ensuring software security.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.058931
https://www.techscience.com/doi/10.32604/cmc.2024.058931
mailto:feiqixia@163.com


3252 CMC, 2025, vol.82, no.2

In this context, Software Defect Prediction (SDP) technology has emerged. With SDP, development
teams are able to identify potential defects in the early stages of the software lifecycle, thus avoiding
costly fixes at a later stage. Studies have shown that the cost of remediation increases exponentially
with the time of defect discovery [1]. In addition, SDP can help development and testing teams achieve
more targeted testing by focusing on modules with higher defect risk rather than distributing resources
evenly across all codes. This prioritization strategy effectively improves testing efficiency and reduces
unnecessary testing overhead. At the same time, SDP can help the maintenance team locate and fix
problems more quickly during operation and maintenance, shortening fault recovery time. The data-
driven testing and maintenance strategy not only improves the overall operation and maintenance
efficiency, but also enhances team collaboration and the effectiveness of problem solving.

1.1 Motivation

Software Defect Prediction (SDP) utilizes historical project datasets, after data cleaning and
feature selection, to train prediction models to identify defect-containing files, classes, or statements
in new projects to improve software quality and security. The existing studies can be divided into three
directions:

(1) Apply artificial intelligence techniques to manually designed software metric data for defect
prediction, e.g., Chidamber and Kemerer (CK) metrics [2], MCcabe metrics [3], Halstead
metrics [4].

(2) Extract defective features using program tree representations and deep learning techniques.
(3) Mix manually designed metric data and program syntsax trees as defect prediction factors to

predict software defects by deep learning techniques.

Artificially designed software metrics data can correctly reflect the statistical characteristics of
the software code and measure the complexity of the code from different perspectives, Chen et al. [5]
proposed software defect prediction based on nested superposition of integrated learning models and
heterogeneous feature selection; Zain et al. [6] proposed a novel one-dimensional convolutional neural
network deep learning model and applied this model to software defect prediction; Khleel et al. [7]
predicted software defects based on Convolutional Neural Networks (CNN) and Gated Recursive
Units (GRU) combined with synthetic few oversampling techniques. The studies in the above literature
proved that software metrics data and software defects are correlated, but software metrics data cannot
reflect the specific structural information of the code and internal control information. For example,
as shown in Fig. 1, the code above has no defects while the code below has defects under the same
metrics such as the number of lines of code and complexity. Therefore, it is difficult to comprehensively
measure the characteristic information of the code through a single software metric data.

To overcome the limitations of code metrics data to explain code features, researchers have
turned to parse source code and extract syntax trees to enrich semantic and structural information
to predict potential defects. This approach provides new perspectives for software defect prediction
research. Farid et al. [8] use a hybrid model (CBIL) of convolutional neural network (CNN) and
bidirectional long short-term memory (Bi-LSTM) based on AST syntax tree for software defect
prediction; Dam et al. [9] construct a tree-structured long short-term memory network to match the
abstract syntax tree of source code for software defect prediction; Fan et al. [10] used recurrent neural
network of attention for software defect prediction based on Abstract Syntax Tree (AST). The studies
in the above literature proved that AST syntax trees can reflect software defect information, but when
using AST to extract defect predictors, the vast majority of defect prediction models treat AST nodes



CMC, 2025, vol.82, no.2 3253

as linear sequences and use natural language models to generate embedding vectors for the sequences,
ignoring the structural information of AST syntax trees.

Figure 1: An example for bugs

Other researchers perform defect prediction by fusing code metric data and AST. Wang et al. [11]
proposed a gated hierarchical long short-term memory network model and applied this model to
extract semantic features and predict software defects from code metric data and abstract syntax trees
of source code files; Zhang et al. [12] utilized Convolutional Neural Networks (CNNs) and Attention
Based Mechanisms based of Long and Short-Term Memory (Bi-LSTM+Attention) respectively to
extract valuable features from code metric data, AST syntax tree and other feature data, and integrate
all the sub-models through integrated learning method to get the final defect prediction model. The
above literature enriches the defect prediction input data feature information, but when fusing different
data features, the existing models often do not perform in-depth analysis for different types of data
features, but uniformly adopt the same model for prediction. This may lead to poor model prediction
accuracy.

In view of the above analysis, we propose a multivariate heterogeneous hybrid deep learning
algorithm for software defect prediction(DP-MHHDL). In this method, we first obtain the quality
metric data, abstract syntax tree and file dependency network of the code through the analysis of
the source code, and then extract the deep features by using the graph convolutional neural network
optimization model based on adjacency topology and spatial topology, the Convolutional Neural
Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model,
and the TabNet model, respectively, and then finally, the extracted deep features are fused to obtain
the final defect prediction framework is obtained by fusing the extracted deep features. The proposed
framework is applied to cross version software defect prediction within a project. The experimental
data comes from 10 projects in the promise defect repository, and the proposed framework is evaluated
using three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC).
The experimental results show that the proposed algorithm multivariate heterogeneous hybrid deep
learning algorithm for defect prediction (DP-MHHDL) is the state-of-the-art approach.

1.2 Contributions

The main contributions of this paper are as follows:



3254 CMC, 2025, vol.82, no.2

(1) A graph convolutional neural network optimization model based on adjacency topology and
spatial topology is proposed to identify defective software modules from AST abstract syntax
trees.

(2) A mixed deep learning frame from Polyisomerization Data is proposed. Three types of
heterogeneous data, code syntax, code quality metrics and code dependency networks, are
merged.

(3) In the experiments of this paper, We designed a large number of experiments to prove the
effectiveness of the proposed framework through the indicators F1, AUC, and MCC. The
experimental results show that the proposed framework is superior to the existing state-of-
the-art methods.

1.3 Organization

The remainder of the paper is organized as follows. Section 2 briefly describes the background
knowledge related to the software defect prediction framework for multivariate heterogeneous hybrid
deep learning models. Section 3 elaborates on the software defect prediction framework for multi-
variate heterogeneous hybrid deep learning models. Section 4 demonstrates our experimental setup.
Section 5 shows the results of our experiments. Section 6 presents related work. Section 7 discusses
threats to validity. Section 8 summarizes our work and looks ahead to future research.

2 Background

In order to clearly introduce our approach, it is necessary to briefly introduce the deep learning
model and related technologies involved in our approach.

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning technique that parses data by mimicking
the processing of the human brain. CNNs have achieved remarkable success in the field of computer
vision due to their excellent image recognition capabilities. CNNs typically consist of a convolutional
layer, an activation layer, a pooling layer, and a fully connected layer. The convolutional layer
extracts features from the input data through convolutional operations; the activation layer introduces
nonlinear factors to increase the expressive power of the network; the pooling layer is used to reduce
the spatial size of the features and reduce the computational effort; and the fully connected layer will
map the features to the final output space. Due to its excellent feature extraction ability, Li et al. [13]
innovatively applied convolutional neural network (CNN) to the field of software defect detection.
by extracting the labeled vectors from the abstract syntax tree (AST) of a program and transforming
them into numeric vectors through mapping and word embedding, they successfully utilized CNN’s
ability to extract spatial hierarchical features to achieve binary classification detection of software
defects. although CNN is good at extracting spatial structural features, it is unable to extract sequential
features, so some researchers proposed the long and short-term memory neural network [14].

2.2 Long ShortTerm Memory Network

Long Short-Term Memory (LSTM) is a special Recurrent Neural Network (RNN) architecture
specialized in dealing with long-term dependency problems in sequential data. Its core mechanism lies
in the introduction of a unique gating mechanism, where the gating unit consists of a forgetting gate,
an input gate and an output gate. The forgetting gate is responsible for deciding what information
to keep from the previous moment’s unit state, the input gate decides which of the current moment’s



CMC, 2025, vol.82, no.2 3255

input information should be integrated into the unit state, and the output gate regulates how much
information should be output from the unit state. The structure of the LSTM network is shown in
Fig. 2, and similar to the CNN, Deng et al. [15] have used the code abstraction grammar tree as the
input to the LSTM model for conducting a study on software defect prediction.

Figure 2: Schematic representation of LSTM model

2.3 Graph Convolutional Neural Networks

Different from the traditional network models of CNN and LSTM that can only be used to
process grid-structured data, Graph Convolutional Neural Networks (GCNs) is a more powerful deep
learning model, especially suitable for processing data with complex topology. By extending traditional
convolutional operations to graph data, GCNs are able to efficiently aggregate information about
neighboring nodes, capture spatial dependencies between nodes, and learn embedded representations
of nodes. Graph Convolutional Neural Networks (GCNs) can be applied to tasks such as node
prediction and graph classification due to their excellent performance. In the node prediction task,
GCNs are capable of accurately predicting the attributes or labels of a node by learning the node’s
graph structure information and node features. And in the task of graph classification, GCNs can
realize level classification of graphs by feature extraction and classification of the whole graph
structure. In the field of software defect detection, Šikić et al. [16] proposed a source code software
defect prediction model based on graph neural networks, which proved the effectiveness of the graph
neural network model.

2.4 TabNet

In the field of structured data mining, traditional machine learning models are still dominant due
to the challenges of deep learning models in dealing with sparse and small sample datasets, and the
lack of interpretability of the models themselves. In 2019, Google introduced the TabNet model [17],
which mimics the behavior of a decision tree using the idea of a sequential attention mechanism that
consists of a series of decision steps, each of which selects relevant features and updates the internal
representation of the data. This mechanism allows the model to efficiently capture complex nonlinear
relationships between features, making it very effective for structured data feature extraction. The
TabNet network model has three important properties:

(1) The model works directly with tabular data without pre-processing, and uses gradient descent-
based optimization, making it easy to incorporate into an end-to-end model.



3256 CMC, 2025, vol.82, no.2

(2) At every decision time step, the sequential attention model is utilized to select important
features and learn the most salient features to make the model interpretable.

(3) TabNet shows the same modeling effect as other models in both classification and regression.
The TabNet model has been successfully applied to business areas such as credit risk prediction
and disease prediction, but so far this model has not been applied to the application area of
software defect prediction.

3 Approach

Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), Graph
Convolutional Neural Networks (GCN), and TabNet models each have their own unique advantages
in processing data. Specifically, CNN is suitable for processing image data with local spatial structure
and some 1D temporal data, and can effectively extract local features, while LSTM is good at
processing sequential data with strong temporal order, especially in tasks that need to capture
long-term dependencies, and GCN is suitable for processing graph-structured data, which is able
to effectively capture the relationships and structural information between nodes in the graph by
aggregating information from neighboring nodes, and TabNet is designed for processing graph-
structured data, which is able to efficiently extract structural information. TabNet, on the other hand,
is designed for tabular data and utilizes the attention mechanism to automatically select important
features, thus reducing the reliance on manual feature engineering. Based on the characteristics of
the above four models, this chapter proposes a hybrid deep learning model that aims to improve the
performance of defect prediction.

In most previous studies, researchers conducted defect prediction using either static metric data
or abstract syntax trees as standalone data sources. A few studies have combined both data types
for defect prediction, but these efforts often overlooked the distinct characteristics of each data
source, applying the same model uniformly. To maximize the extraction of valuable features from
each data source, this study proposes a multivariate heterogeneous hybrid deep learning algorithm
for software defect prediction. As illustrated in Fig. 3, the DP-MHHDL first extracts three types of
data-abstract syntax trees, file dependency relationships, and code quality metrics-from labeled source
code files. Next, for the abstract syntax tree data, a graph convolutional neural network optimization
model based on adjacency topology and spatial topology is constructed to extract defective feature
information, for the file dependency data, a hybrid CNN-Bilstm neural network model is constructed
to extract defective feature information, and for the code quality metric data, a TabNet model is used
to extract defective feature information, and finally the features extracted from the models are fused
and passed through a fully connected neural network to predict whether the software is defective or
not. Finally, the features extracted from each model are fused and passed through the fully connected
neural network to predict whether the software has defects or not.

3.1 Data Processing

3.1.1 AST Extraction and Feature Coding

AST expresses the programming language structure in the form of tree visualization, each node
represents a structure of the source code, e.g., control node, method declaration node, etc. By parsing
the AST tree, code syntax error checking, change code checking and so on can be realized quickly.
This study mainly focuses on java code for defect prediction, so we use the open source python library
Javalang to extract the AST structure from the source code, and the extracted structure is shown in
Fig. 4. The AST node types of Java files contain 78 categories, based on the research of others [12,18],



CMC, 2025, vol.82, no.2 3257

we selected 39 node types related to defect prediction, and the selected node types and node names
are shown in Table 1. Considering that the number of different node types in the source code file may
have an impact on the quality of the code, e.g., good code should not contain too many nested control
statements; more loops in the source code file will have an adverse effect on the readability of the code
and defect localization. Therefore, when constructing the connection of the selected 39 node edges, we
not only consider the connection relationship of the contextual semantics between the nodes, but also
add edges to the node names of the same type.

Figure 3: Overall architecture

Figure 4: Java code and corresponding abstract syntax tree case



3258 CMC, 2025, vol.82, no.2

Table 1: AST nodes under consideration

Type Node

Classes, interfaces, enumerations ClassDeclaration EnumDeclaration
InterfaceDeclaration

Methods, constructors MethodDeclaration ConstructorDeclaration
Variables, fields FieldDeclaration ConstantDeclaration

LocalVariableDeclaration VariableDeclaration
VariableDeclarator

Control IfStatement WhileStatement
DoStatement ForStatement
AssertStatement BreakStatement
ContinueStatement ReturnStatement
ThrowStatement

Exception, synchronization SynchronizedStatement ExplicitConstructorInvocation
SwitchStatement

Blocks, statements BlockStatement ExplicitConstructorInvocation
MethodInvocation SuperConstructorInvocation
MethodReference SuperMethodInvocation
MemberReference SuperMemberReference
ClassReference VoidClassReference

Array, object creation ArrayCreator ClassCreator
InnerClassCreator

Annotation Annotation ArrayInitializer

Based on the encoding of the AST graph, we mainly use the unique heat encoding to represent
the node features, in addition to that, from the AST we also extracted the contextual semantic based
adjacency matrix and the spatial topology matrix based on the same type of nodes respectively.

3.1.2 Code Dependency Network (CDN) Extraction and Feature Coding

AST retains the syntactic semantic information of the source code of individual files, but it cannot
reflect the importance of individual files in the whole project engineering. In order to obtain the
feature information of a single file in the project engineering, we firstly use the static code analysis tool
Understand to generate the class dependency invocation relationship graph for the project engineering,
the class dependency invocation relationship is shown in Fig. 5, where each node in the network
represents one class, and the edges represent the dependency relationship between two class nodes, and
secondly, in order to express the feature information of each node, we generate the class dependency
invocation relationship graph for each file (i.e., the class dependency invocation relationship in the
graph) by applying the Node2Vec to our class dependency call relationship graph, thus generating
rich feature vectors for each file (i.e., node in the graph), the learned vectors contain information such
as the relationship between nodes and the network structure. Finally, we can use the obtained vectors
for each node to predict whether it is defective or not.



CMC, 2025, vol.82, no.2 3259

Figure 5: Java code and corresponding Code Dependency Network (CDN)

3.1.3 Code Quality Metrics Data Extraction

Traditional static code quality metrics have been shown to correlate with software defects [11,19–
21], Based on previous studies, we selected 20 metrics that correlate with software defects, and the
selected metrics are shown in Table 2.

Table 2: 20 traditional measurement metrics

Weighted methods per class (wmc) Depth of inheritance tree (dit)
Number of children (noc) Coupling between object classes (cbo)
Response for a class (rfc) Lack of cohesion in methods (lcom)
Afferent couplings (ca) Efferent coupling (ce)
Number of public methods (npm) Lack of cohesion in methods (lcom3)
Lines of code (loc) Data access metric (dam)
Measure of aggregation (moa) Measure of functional abstraction (mfa)
Cohesion among methods of class (cam) Inheritance coupling (ic)
Coupling between methods (cbm) Average method complexity (amc)
Maximum McCabe’s cyclomatic complexity
score (max_cc)

Average of the McCabe’s cyclomatic complexity
score (avg_cc)

Each software metric has a different scale, so in order to avoid bias towards certain key features,
the metric metadata were normalized with the following normalization formula:

x̃i = xi − x̄
δ

(1)

where x̄ is the mean of the specified metric element data, and δ is the standard deviation.



3260 CMC, 2025, vol.82, no.2

3.2 Design of Model

3.2.1 Models for Handling Graph-Structured Data

We employ a unique deep learning model, a graph convolutional neural network optimization
model based on adjacency topology and spatial topology, specifically designed to process abstract
syntax trees (ASTs) for codes. The inputs to the model are mainly graph representations of the AST,
specifically the node features X, the node adjacency matrix A, and the spatial topology matrix K,
which is used to characterize the spatial feature relationships among nodes. In constructing the model,
a 3-layer graph convolutional neural network is used, and the overall modle architecture is shown in
Fig. 6.

Figure 6: Model architecture

In the first layer of the model, the model structure is shown in Fig. 7, we first deployed two parallel
GCN convolutional layers, based on the node features X , the adjacency matrix A and the spatial
feature matrix S to perform operations to generate new node features XA and XS, and such a design
makes the model able to extract the spatial features from two different dimensions: on the one hand,
capturing the direct connections between nodes through the adjacency matrix; on the other hand,
through the spatial feature matrix S mining more complex spatial relationships among nodes. The
goal of this step is to make full use of the graph structure to capture the neighboring features and
spatial features of the nodes, and map these features into a high-dimensional space, so as to provide
rich information for subsequent analysis and learning. The specific implementation is shown in the
following equation:

XA = δ(D̃
− 1

2
A ÃD̃

− 1
2

A XWA) (2)

Ã = A + I (3)

XS = δ(D̃
− 1

2
S SD̃

− 1
2

S XWS) (4)

S̃ = S + I (5)

where Ã and S̃ are the adjacency matrix and spatial identity matrix for adding self-connections, D̃A

and D̃S are the degree matrices of Ã and S̃, respectively, and WA and WS are the weight parameters to
be learned. Secondly, we utilize the attention mechanism to adaptively learn the weight parameters of
XA, XS and XAVG and obtain new node features XW . The specific realization formula is:

XAVG = XA + XS

2
(6)



CMC, 2025, vol.82, no.2 3261

Xw = w1XA + w2XS + w3XAVG (7)

Finally, by introducing the MinCutPool layer, the model realizes the downsampling of the graph,
which not only drastically reduces the complexity of the subsequent computation, but also preserves
the most important information in the graph structure.

Figure 7: Graph convolutional neural network model based on neighborhood topology and spatial
topology

In the second and third layers of the model, we continue to use the combination of GCN layer
and MinCutPool layer to further analyze the graph structure data in depth. By halving the number of
GCN channels layer by layer, the model is able to extract high-level abstract features in a more focused
manner at each step. This hierarchical and progressive design idea not only improves the model’s ability
to understand and capture the complex relationships in the graph structure, but also enables the model
to comprehensively understand the structural and semantic properties of the code from both macro
and micro levels.

3.2.2 Models for Handling Table-Structured Data

In the design of models that deal with structured data, this part of our model is used to process
and analyze code dependency network (CDN) data and software metrics data. These data sources
provide us with in-depth views of inter-code dependencies and metrics for static analysis of software
code, which are key sources of information for understanding software quality and predicting potential
defects. First, for the processing of code dependency network (CDN) data, we adopt a Zhang et al. [12]
approach that combines a one-dimensional convolutional layer (CNN) and a bidirectional long- and
short-term memory network (Bi-LSTM), and the structure of the model framework is shown in
Fig. 8. The one-dimensional convolutional layer can effectively extract local features from CDN data
and capture direct dependencies between code modules. Subsequently, by applying the bi-directional
LSTM, the forward and backward bi-directional time series information is considered in the time
dimension. This design allows the model to not only capture local dependency features between codes,
but also analyze and understand code dependency data from a time series perspective.The CNN layer
consists of a convolutional layer and a maximal pooling layer, which is used to process the input CDN
dependency feature vector X, and is implemented as follows:



3262 CMC, 2025, vol.82, no.2

M = Conv1D(X) (8)

Oc = Maxpooling(M) (9)

Bi-LSTM is used to process the output data of the CNN layer and selectively saves or deletes
some information each time through three gate units, namely, oblivion gate, input gate, and output
gate, which is realized by the following formula:

�ht = −−−−→
LSTM(xt,

−→
ht−1) (10)

ht = ←−−−−
LSTM(xt,

←−
ht−1) (11)

Ht = [�ht; ht] (12)

where �ht represents the forward hidden state of the time step t, ht represents the backward hidden state
of the time step t, and Ht refers to the hidden state made by stitching �ht and ht together. The LSTM
cell realization formula is as follows:

It = δ(XtWxi + Ht−1Whi + bi) (13)

Ft = δ(XtWxf + Ht−1Whf + bf ) (14)

Ot = δ(XtWxo + Ht−1Who + bo) (15)

C̃t = tanh(XtWxc + Ht−1Whc + bc) (16)

Ct = Ft � Ct−1 + It � C̃t (17)

Ht = Ot � tanh(Ct) + It � C̃t (18)

where It is the input gate, Ft is the forgetting gate, Ot is the output gate, C̃t is the candidate memory
cell, Ct is the memory cell, W∗∗ and b∗ are the learning parameters, and � denotes dot product.

Figure 8: CNN1D-BiLSTM model

Second, for processing software static metric data we chose the TabNet classifier, which is a deep
learning-based decision tree model designed for table-structured data. TabNet is able to efficiently
distill the most critical information for software defect prediction from traditional metric data by



CMC, 2025, vol.82, no.2 3263

learning to select the features that are most helpful for the prediction task. In the process, TabNet not
only focuses on feature selection, but also further improves the model’s understanding and utilization
efficiency of the data through feature transformation.

3.2.3 Feature Fusion and Defect Prediction

In this part, we fuse the features learned through GCN, CNN1D-BiLSTM and TabNet models
by concatenating, and we downsize the features and predict whether the code is defective or not by
using fully connected layer. In this paper, we train the prediction model by using binary cross-entropy
loss function and Adam optimizer, in addition, in the defective dataset, there are more non-defective
data than defective data, and we supplement the defective dataset by oversampling to make the two
balanced.

4 Experiment

In this section, we show the experimental data of DP-MHHDL, the dataset used, the evaluation
criteria, and the parameter settings. We also additionally selected six other models to complete the
same experiments in the same setting to compare with DP-MHHDL.

All experiments were run on a machine with a GeForce RTX 2080 Ti with 10 cores and 16 GB
GPUs, and the models were implemented on Tensorflow 2.4.0 using Keras2.4.

4.1 Datasets

The datasets used in the experiments are from 10 open source projects in the promise database,
which have different file counts, error rates, and development teams, and can well reflect the generality
and practicality of our model. When performing defect prediction, we mainly perform cross-version
defect prediction, i.e., we use earlier versions of the file code for generating the training set required
for the experiment, and newer versions of the file code for generating the test set required for the
experiment. The source codes of the projects were collected from github based on the name and version
number of each project, and we also collected 20 metric features that reflect the project metric data and
labels of whether the project is defective or not from github. The project details are shown in Table 3.

Table 3: Dataset description

Project Version Files(#) Detect(%) Description

Ant 1.5 271 10.3% A Java-based build tool
1.6 349 26.4%

Camel 1.4 848 17.1% An enterprise integration framework
1.6 935 20.1%

Ivy 1.4 321 5.0% A popular dependency manager
2.0 477 8.4%

Jedit 4.0 281 23.8% A mature programmer’s text editor
4.1 287 23.7%

Log4j 1.0 115 27.0% A logging library for Java
1.1 100 34.0%

Lucene 2.0 186 48.9% An open-source search software
2.2 234 61.1%

(Continued)



3264 CMC, 2025, vol.82, no.2

Table 3 (continued)

Project Version Files(#) Detect(%) Description

Poi 2.5 375 65.3% The Java API for Microsoft documents
3.0 433 64.2%

Synapse 1.1 230 26.1% A lightweight and high-performance
1.2 269 32.0% Enterprise Service Bus

Xalan 2.5 782 48.3% A program to transform XML documents
2.6 872 46.8%

Xerces 1.2 436 16.1% An open-source XML praser
1.3 446 15.0%

4.2 Evaluation Metrics

For this experiment we used F1 scores, auc scores and MCC to evaluate the performance of the
model [22].

The F1 score balances the accuracy and recall of a classification model and is a weighted average
of the model’s accuracy and recall.The value of the F1 score ranges from 0 to 1, with 0 indicating the
worst performance and 1 indicating the best performance.The F1 score is defined as follows:

F1 = 2 × precision × recall
precision + recall

(19)

Precision = TP
TP + FP

(20)

Recall = TP
TP + FN

(21)

where TP is true positive, FP is false positive, FN is false negative and TN is true negative.

The Auc score is the area under the ROC curve, which can only be used for binary classification
evaluation, and the larger its value, the more correct it is. It generally lies between 0.5 and 1, where 1
indicates the best performance and 0.5 indicates random prediction.

MCC is a metric for evaluating binary classification models for dealing with unbalanced data,
which combines four metrics, TP, TN, FP and FN, and is more advantageous in the case of category
imbalance and small sample size. It takes values between −1 and 1, where −1 means completely wrong,
0 means random prediction, and 1 means completely right, and MCC is defined as follows:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(22)

4.3 Baseline Methods

In order to show the performance improvement of the DP-MHHDL, we have selected the
following seven models as benchmark methods to compare with DP-MHHDL:

(1) RF: Traditional metric data from the source code is trained by a Random Forest classifier.



CMC, 2025, vol.82, no.2 3265

(2) Deep Belief Networks (DBN) [23]: AST is parsed from the source code, and the AST is parsed
into a fixed-length vector using Word2Vec and then sent as input to the DBN model for defect
prediction.

(3) TabNet: traditional metric data from source code is trained by tabnet model.
(4) Convolutional Graph Neural Network for Defect Prediction (DP-GCNN) [16]: Parsing AST

from source code for defect prediction via an end-to-end model based on convolutional graph
neural networks.

(5) GH-LSTM [11]: The AST is parsed from the source code, and after parsing the AST into word
vectors and the static metric data are inputted into the gated hierarchical long- and short-term
memory network (GH-LSTM) model for defect prediction, respectively.

(6) Hierarchical Feature Ensemble Deep Learning (HFEDL) [12]: Parsing AST, CDN, and
traditional metrics data from source code, using these data as inputs to extract features from
CNN and Bi-LSTM+Attention, and finally using an ensemble learning approach to integrate
these sub-models into a final prediction model for defect prediction.

(7) CGCN [24]: Abstract Syntax Trees (AST) and Class Dependency Network (CDN) are
extracted from source code. The AST features are processed by CNN while CDN structure is
learned through GCN. The fusion of AST semantic features and CDN structural information
is then combined with traditional metrics for defect prediction.

4.4 Parameters Setting

The DP-MHHDL is implemented using the Keras deep learning library and Scikit-learn machine
learning library. To ensure data balance, we divided all training sets into several batches, with each
batch containing one positive and one negative data point. For the AST data input processing part,
the vector dimension generated by one-hot encoding of AST node information is set to 39. The model
accepting AST-related data input is graph convolutional neural network optimization model based
on adjacency topology and spatial topology(ASGCN). Based on the research results of DP-GCNN,
ASGCN consists of 3 layers of GCN model and pooling layer model. The input channel number of the
first layer is the maximum number of AST nodes in the current project, and the input channel number
of each subsequent layer is half of the previous layer, gradually reducing feature dimensions to extract
more compact feature representations. All GCN layers use Relu as the activation function. For the
CDN data input processing part, feature vectors are extracted through Node2Vec, with the feature
vector dimension set to 50 (through experiments, we found that the model prediction performance is
optimal when the dimension is 50). The model receiving CDN data input is the CNN1D-BiLSTM
model. For CNN, the number of convolution kernels is 32, the length of convolution kernel is 1, and
the activation function of the middle layer is Relu. For the BiLSTM model, the number of neurons
is 8. For the traditional metric data input processing part, we performed normalization. The model
receiving traditional metric data input is the TabNet model, which finds 16 optimal features among
20 dimensional feature columns, with a final output dimension of 16. Finally, the outputs of the three
models are fused through fully connected layers, with ’sigmoid’ as the activation function of the output
layer. Our model uses the Adam optimizer, with binary_crossentropy as the loss function, and 200
iterations for each project. The proposed method is evaluated in a cross-version context, where the
previous version project is used as training data and the next version as test data. To avoid the impact
of random errors on prediction results, each experiment is repeated 30 times, and the average is taken
as the final prediction result.

The source code files and datasets used in the DP-MHHDL algorithm are publicly available on
GitHub (https://github.com/feiqixia/DP-MHHDL) (accessed on 04 December 2024).

https://github.com/feiqixia/DP-MHHDL


3266 CMC, 2025, vol.82, no.2

5 Result and Analysis

In this section, we test the performance of DP-MHHDL on specific datasets and compare it with
other state-of-the-art software defect prediction models to reflect the validity and reasonableness of
DP-MHHDL. Our results need to answer the following three questions:

RQ1: Does DP-MHHDL outperform other models that utilize a single data source to predict
software defects?

RQ2: Does the performance of DP-MHHDL outperform other models that fuse multiple data to
predict software defects?

RQ3: How do external parameters affect model performance?

5.1 Result and Analysis for RQ1

Tables 4–6 list the AUC, F1 and MCC scores for DP-MHHDL and for the four predictive software
defect models that we compared using a single data source on different versions of the 10 datasets,
where the best scores for the models are shown in red. Fig. 9 shows the data distribution of F1, AUC
and MCC scores for different models in the form of box plots. Based on these graphs it can be seen
that DP-MHHDL outperforms the other four models in terms of F1, AUC and MCC scores.

(1) From Tables 4–6, we can see that DP-MHHDL outperforms the other three models on all
datasets except the TabNet model on all datasets except the lucene_2.0_2.2 dataset, and on
average, DP-MHHDL outperforms RF, DBN, and DP-GCNN by 11, 10, and 2 percentage
points on the AUC scores; by 19, 12, and 4 percentage points on the F1 scores; and by 18, 17,
and 5 percentage points on the MCC scores. For the lucene project, DP-GCNN achieves the
best results in terms of AUC and MCC scores, which are 0.6 and 1 percentage points higher
than DP-MHHDL, respectively, but in terms of F1 scores, DP-MHHDL is 2 percentage points
higher than DP-GCNN, which shows that DP-MHHDL has the same performance as DP-
GCNN on lucene, while on all other datasets the model has to outperforms the other three
models.

(2) For the TabNet method, it was separated from DP-MHHDL and only the tabnet model was
used to train the 20 traditional metrics on the data. As shown in Fig. 8, DP-MHHDL performs
better in general than the TabNet method extracted alone. In Tables 4–6, specifically, DP-
MHHDL achieves an advantage of 22 wins and 8 losses on all measures. It is worth noting
that only on the xalan dataset does our model score worse than the TabNet method on all
three measures, it is possible that the xalan dataset is the most balanced of all the datasets, and
at this point fusing multiple inputs does not provide an advantage over training on a single
data source. However, on the whole, DP-MHHDL, i.e., the model that fuses multiple inputs,
outperforms the model that utilizes a single data source for prediction.

(3) The Wilcoxon signed rank test is a nonparametric statistical test used to determine the
difference between two methods. Usually, if the p-value of the Wilcoxon signed rank statistical
test is less than 0.05, the difference between the two methods is considered to be significant,
otherwise the difference is not significant, and DP-MHHDL shows significant improvement
relative to the single-data-source defect prediction model under the F1, AUC, and MCC
metrics (p < 0.05).

(4) In addition, for the other models, it can be seen from Tables 4–6 and Fig. 9 that under the
three measures of F1, AUC, and MCC, the TabNet model performs much better than RF, and
the DP-GCNN scores much better than DBN. this also confirms that training the traditional
metric data using the TabNet model is superior to RF, and for extracting the semantic features



CMC, 2025, vol.82, no.2 3267

from the AST tree DP-GCNN is better than DBN. this confirms the validity and rationality
of training traditional metric data and AST inputs in DP-MHHDL using TabNet model and
DP-GCNN model, respectively.

Table 4: AUC score of RF, TabNet, DBN, DPGCNN and DP-MHHDL

RF TabNet DBN DPGCNN DP-MHHDL

Log4j_1.0_1.1 0.756 0.777 0.675 0.805 0.807
Lucene_2.0_2.2 0.627 0.624 0.559 0.657 0.651
Ant_1.5_1.6 0.583 0.772 0.709 0.792 0.804
Synapse_1.1_1.2 0.604 0.707 0.647 0.678 0.706
Camel_1.4_1.6 0.602 0.610 0.560 0.628 0.682
Poi_2.5_3.0 0.635 0.716 0.579 0.723 0.748
Xerces_1.2_1.3 0.546 0.677 0.634 0.666 0.692
Jedit_4.0_4.1 0.693 0.785 0.631 0.761 0.775
Xalan_2.5_2.6 0.655 0.693 0.648 0.676 0.687
Ivy_1.4_2.0 0.506 0.766 0.711 0.763 0.807
Average 0.621 0.713 0.635 0.715 0.736
Win/Draw/Lost 0/0/10 3/0/7 0/0/10 1/0/9 –
p-value 0.002 0.027 0.002 0.006 –

Table 5: F1 score of RF, TabNet, DBN, DPGCNN and DP-MHHDL

RF TabNet DBN DPGCNN DP-MHHDL

Log4j_1.0_1.1 0.677 0.704 0.460 0.734 0.743
Lucene_2.0_2.2 0.616 0.768 0.764 0.740 0.764
Ant_1.5_1.6 0.314 0.642 0.579 0.676 0.701
Synapse_1.1_1.2 0.406 0.612 0.567 0.580 0.620
Camel_1.4_1.6 0.355 0.401 0.335 0.409 0.471
Poi_2.5_3.0 0.725 0.767 0.756 0.777 0.828
Xerces_1.2_1.3 0.216 0.372 0.368 0.407 0.428
Jedit_4.0_4.1 0.535 0.632 0.438 0.615 0.638
Xalan_2.5_2.6 0.657 0.717 0.639 0.609 0.689
Ivy_1.4_2.0 0.044 0.453 0.370 0.491 0.561
Average 0.454 0.606 0.526 0.604 0.644
Win/Draw/Lost 0/0/10 2/0/8 0/1/9 0/0/10 –
p-value 0.002 0.019 0.007 0.002 –



3268 CMC, 2025, vol.82, no.2

Table 6: MCC score of RF, TabNet, DBN, DPGCNN and DP-MHHDL

RF TabNet DBN DPGCNN DP-MHHDL

Log4j_1.0_1.1 0.540 0.611 0.407 0.580 0.605
Lucene_2.0_2.2 0.249 0.259 0.124 0.319 0.309
Ant_1.5_1.6 0.258 0.500 0.464 0.518 0.589
Synapse_1.1_1.2 0.264 0.417 0.327 0.342 0.400
Camel_1.4_1.6 0.265 0.193 0.123 0.227 0.307
Poi_2.5_3.0 0.264 0.414 0.162 0.423 0.490
Xerces_1.2_1.3 0.108 0.255 0.276 0.282 0.311
Jedit_4.0_4.1 0.405 0.505 0.261 0.482 0.536
Xalan_2.5_2.6 0.310 0.395 0.297 0.374 0.374
Ivy_1.4_2.0 0.033 0.378 0.292 0.424 0.503
Average 0.269 0.392 0.273 0.397 0.442
Win/Draw/Lost 0/0/10 3/0/7 0/0/10 1/1/8 –
p-value 0.002 0.027 0.002 0.011 –

Figure 9: Box plots of prediction results compared with RF, TabNet, DBN, and DPGCNN models



CMC, 2025, vol.82, no.2 3269

In summary, based on the analysis of the experimental results, the effectiveness of the DP-
MHHDL algorithm can be verified. The results show that extracting features from multiple infor-
mation sources can significantly enhance the performance of defect prediction. This enhancement
is attributed to the fact that our method not only incorporates traditional metric data, but also AST
data and CDN data. Each of the three types of data reflects the code’s characteristic information from
different dimensions, and by extracting and synthesizing features from these three types of data, a more
comprehensive representation is constructed, which improves the effectiveness of defect prediction.

5.2 Result and Analysis for RQ2

Tables 7–9 list the F1, AUC, and MCC scores for DP-MHHDL and three other methods that
incorporate multiple types of inputs, and Fig. 10 shows the distribution of data for these four methods
in box-and-line plots. As shown in the box line plots and tabular data, our model outperforms GH-
LSTM,HFEDL and CGCN.

(1) For the vast majority of the datasets in Tables 7–9, DP-MHHDL outperforms GH-LSTM,
HFEDL and CGCN, with HFEDL achieving the best results only on the poi and xalan
datasets, GH-LSTM having the three highest scores on the camel and jedit datasets and CGCN
receiving the highest score on the dataset synapse. On average, DP-MHHDL is 2, 2 and 5
percentage points higher in AUC scores, 5, 3 and 6 percentage points higher in F1 scores, and
5, 4 and 10 percentage points higher in MCC scores compared to GH-LSTM, HFEDL and
CGCN, respectively. It is clear from the box plots that both DP-MHHDL and the HFEDL
model outperform the GH-LSTM, while DP-MHHDL significantly outperforms the HFEDL
in terms of Auc and slightly outperforms the HFEDL in terms of F1 and MCC scores. The
CGCN model, on the other hand, is more specific in that it performs the worst of the four
models on the AUC and MCC scores, but comes close to the HFEDL and GH-LSTM on the
F1 score. Overall, however, it performs worse than the DP-MHHDL on all three scores.

(2) From the above analysis, we can see that DP-MHHDL is better than other fusion models
in fusing multi-type input data. In addition, the performance of HFEDL is better than GH-
LSTM, and HFEDL has more inputs of CDN type data than GH-LSTM in fusing the data,
therefore, it is reasonable and effective for DP-MHHDL to add the inputs of CDN type data
and train the CDN by using a similar model as HFEDL.

(3) According to the statistical results and experimental analysis, DP-MHHDL showed significant
improvement (p < 0.05) relative to CGCN. Under F1 metrics, DP-MHHDL shows significant
improvement compared to GH-LSTM and HFEDL. Although in the measurement of MCC
and AUC metrics, the p-value of our method with GH-LSTM and HFEDL algorithms is
close to the significance level of 0.05 and fails to reach the significance threshold. However,
considering the mean values of MCC and AUC and the Win/Draw/Lost statistics, our method
still outperforms the GH-LSTM and HFEDL algorithms in terms of performance. Thus, our
algorithm still demonstrates an overall advantage despite not reaching statistical significance
in the p-values of the MCC and AUC metrics.

In summary, the experimental results show that constructing corresponding deep learning models
for different data sources can extract richer and more comprehensive features than using the same deep
learning model for all data sources, thus significantly improving the effectiveness of defect prediction.
This improvement is due to the fact that the specific models designed for different data types (AST,
CDN, and structured data) can better capture the feature information specific to the respective data,
avoiding the limitations of a single model for multiple data sources. Meanwhile, the fusion strategy



3270 CMC, 2025, vol.82, no.2

of the model effectively integrates the heterogeneous features of various types of data, which provides
insights from multiple perspectives for defect prediction and enhances the generalization capability
and prediction accuracy of the model.

Table 7: AUC score of GH-LSTM, HFEDL, CGCN and DP-MHHDL

GH-LSTM HFEDL CGCN DP-MHHDL

Log4j_1.0_1.1 0.762 0.783 0.793 0.807
Lucene_2.0_2.2 0.615 0.635 0.619 0.651
Ant_1.5_1.6 0.726 0.772 0.679 0.804
Synapse_1.1_1.2 0.698 0.695 0.717 0.706
Camel_1.4_1.6 0.689 0.593 0.656 0.682
Poi_2.5_3.0 0.755 0.766 0.587 0.748
Xerces_1.2_1.3 0.678 0.654 0.681 0.692
Jedit_4.0_4.1 0.793 0.761 0.714 0.775
Xalan_2.5_2.6 0.650 0.707 0.676 0.687
Ivy_1.4_2.0 0.794 0.778 0.726 0.807
Average 0.716 0.714 0.685 0.736
Win/Draw/Lost 3/0/7 2/0/8 1/0/9 –
p-value 0.064 0.064 0.005 –

Table 8: F1 score of GH-LSTM, HFEDL, CGCN and DP-MHHDL

GH-LSTM HFEDL CGCN DP-MHHDL

Log4j_1.0_1.1 0.687 0.709 0.730 0.743
Lucene_2.0_2.2 0.700 0.751 0.760 0.764
Ant_1.5_1.6 0.586 0.663 0.528 0.701
Synapse_1.1_1.2 0.595 0.601 0.635 0.620
Camel_1.4_1.6 0.488 0.369 0.441 0.471
Poi_2.5_3.0 0.832 0.837 0.802 0.828
Xerces_1.2_1.3 0.393 0.376 0.379 0.428
Jedit_4.0_4.1 0.654 0.637 0.529 0.638
Xalan_2.5_2.6 0.640 0.702 0.716 0.689
Ivy_1.4_2.0 0.389 0.525 0.365 0.561
Average 0.596 0.617 0.588 0.644
Win/Draw/Lost 3/0/7 2/0/8 2/0/8 –
p-value 0.027 0.019 0.049 –



CMC, 2025, vol.82, no.2 3271

Table 9: MCC score of GH-LSTM, HFEDL, CGCN and DP-MHHDL

GH-LSTM HFEDL CGCN DP-MHHDL

Log4j_1.0_1.1 0.529 0.539 0.611 0.605
Lucene_2.0_2.2 0.224 0.262 0.248 0.309
Ant_1.5_1.6 0.423 0.540 0.324 0.586
Synapse_1.1_1.2 0.386 0.379 0.411 0.400
Camel_1.4_1.6 0.339 0.155 0.261 0.307
Poi_2.5_3.0 0.514 0.534 0.271 0.490
Xerces_1.2_1.3 0.281 0.274 0.261 0.311
Jedit_4.0_4.1 0.536 0.525 0.367 0.536
Xalan_2.5_2.6 0.319 0.418 0.362 0.374
Ivy_1.4_2.0 0.362 0.462 0.296 0.503
Average 0.391 0.409 0.341 0.442
Win/Draw/Lost 2/1/7 2/0/8 2/0/8 –
p-value 0.051 0.105 0.009 –

Figure 10: Box plots of prediction results compared with GH-LSTM, HFEDL and CGCN models



3272 CMC, 2025, vol.82, no.2

5.3 Result and Analysis for RQ3

In this section, we first discuss the impact of the learning rate on the performance of the prediction
model, and then, discuss how the word vector embedding dimension of the elements in a CDN affects
the performance of the prediction method.

The setting of the learning rate is particularly important in the training of deep learning models.
A learning rate that is too large will lead to an increase in the step size of the weight update, and the
training results show a high degree of instability and may not converge to miss the optimal solution.
A learning rate that is too small leads to a very small step size for weight update, slow training speed,
and may fall into a local minimum of the loss function.

Bayesian optimization [25] It is an efficient global optimization algorithm that uses a Gaussian
process to continuously update the prior values in order to find the optimal solution for the return
value of the objective function. Bayesian optimization intelligently selects sampling points, reduces the
number of evaluations to find the optimal solution, and can handle noisy data and uncertainty well.

In our experiments, we take Bayesian optimization to optimize the learning rate during model
iterations. In each epoch, the Bayesian optimization method calculates the theoretical optimal learning
rate of the current model. At the end of each epoch, we reset the learning rate of the current model to
the optimal learning rate calculated by Bayesian optimization. The range of the Bayesian optimization
learning rate was set to between 1e-6 and 1e-3, and to balance the three measures, the return value of
the Bayesian optimization function we chose to be the reconciled mean of the normalized F1, AUC,
and MCC scores.

In order to verify the advantages and effectiveness of Bayesian optimization, we tested the learning
rate of 1e-4 and 1e-6 in the case of the environment and other hyper-parameters are exactly the same
(the reason for not choosing 1e-3 is that for some datasets, the learning rate of 1e-3 is too large to
lead to the model always fail to converge, and the data is not indicative), and the results of the test are
shown in Figs. 11–13. As shown in the figures, the F1 scores under Bayesian conditioning outperform
the other two learning rates for all items, and the AUC and MCC scores, except for the item poi,
outperform the other two learning rates for the other items’ computed scores. On average, the F1,
AUC and MCC scores under Bayesian parameterization are about 4 percentage points higher than the
other two learning rates, while the F1, AUC and MCC scores computed when the learning rates are
1e-4 and 1e-6 do not differ much, which indicates that adjusting the value of the constant learning rate
does not have much effect on the results of the prediction model, whereas using Bayesian optimization
to dynamically change the learning rate in the learning process has a significant improvement.

In this paper, we use Node2Vec to extract feature vectors from CDN data, in order to investigate
the effect of different vector dimensions on the prediction performance of the DP-MHHDL method.
We set the dimensions to 10, 20, 30, 40, 50, and 60 sequentially and evaluate the prediction performance
under these different dimensions. The experimental results are shown in Fig. 14, which illustrates the
trend of the average prediction performance under each dimension over 10 experiments. It can be seen
that the overall prediction performance maintains a relatively smooth trend as the dimensions change,
and the prediction performance reaches a relative optimum when the vector dimension is set to 50.
Therefore, the dimension is set to 50 in the CDN node word vector.



CMC, 2025, vol.82, no.2 3273

Figure 11: Histogram of AUC for different learning rates corresponding to different programs

Figure 12: Histogram of F1 for different learning rates corresponding to different programs



3274 CMC, 2025, vol.82, no.2

Figure 13: Histogram of MCC for different learning rates corresponding to different programs

Figure 14: Predicted results for different embedding dimensions corresponding to the three metrics

6 Related Work

Traditional software defect prediction: For traditional metrics data, most of the earliest researchers
used plain Bayes, Random Forest, and support vector machine algorithms. Okutan et al. [26] integrated
8 traditional static features to construct and analyze a Bayesian network from a dataset focusing on
the dependencies between the metrics and their impact on software defects. The study conducted by



CMC, 2025, vol.82, no.2 3275

Kaur et al. [27] conducted a study using Random Forest algorithm to predict error-prone software
classes and they used the same 8 traditional static features. Elish’s [28] study used Support Vector
Machines to learn predictions on 21 static features data extracted from source code and their
results were also better than Random Forest and Bayes, which also proves that usually the more
comprehensive static features obtained from a project are more beneficial to the accuracy of software
defect prediction.

Abstract Syntax Tree in software defect prediction: Due to the lack of semantic information in
traditional metric data, more and more work chooses to extract abstract syntax trees from the source
code of a program and perform feature extraction and prediction by the rapidly developing deep
learning models. Wang et al. [23] use Deep Belief Networks (DBNs) to extract semantic features
from token vectors originating from the program’s Abstract Syntax Trees (ASTs) for a file-level
defect prediction model, and from the source code changes for change-level defect prediction models.
Li et al. [13] converted the acquired AST tree into an input for a CNN, which analyzed the code defect
information embedded in the AST. Liang et al. [18] used LSTM to extract semantic information from
the AST tree for defect prediction. Zhang et al. [29] used mapping and word embedding to convert the
AST tree into a numeric vector, and extracted the information from it using a Transformer model to
extract the syntactic and semantic features into a logistic regression classifier. Šilić et al. [16] converted
the Abstract Syntax Tree (AST) of a software module into a graph representation, which was then
processed by a GCNN to categorize the module as defective or non-defective. It can be seen that
the models used to train the AST are becoming more and more complex, the semantic information
extracted from them is becoming more and more complete, and the training results are superior to
those of the previous simple models.

Extract features from multiple information sources: Given that extracting features from a single
source of information cannot fully reflect the defects of the code, most of the current state-of-the-
art methods extract features from multiple sources of information. Qu et al. [22] use Node2Vec to
parse the CDN graph of a project into vectors and fuse the traditional features to input them into a
traditional classifier for defect prediction. Zeng et al. [30] also use Node2Vec to parse the CDN graph
of a project into vectors and fuse the traditional features, and process the fused features through a
modified GCN model. Wang et al. [11] parsed the AST and traditional metrics data from the source
code, and parsed the AST into word vectors and fed them into a hierarchical LSTM model for defect
prediction. Fan et al. [31] extracted vector representations from ASTs, encoded them into numeric
vectors through mapping and word embedding, and then used a recurrent neural network (RNN) to
automatically learn semantic features from these numeric vectors and apply self-attention mechanisms
to establish relationships between these features. Finally, these semantic features are combined with
traditional static metrics to more accurately predict software defects.By integrating Abstract Syntax
Trees (ASTs) and Control Flow Graphs (CFGs), Zhao et al. [32] relied on a graph attention mechanism
to capture local features within code blocks and contextual features between different code blocks.
Tao et al. [21] used a BiLSTM-based model to fuse features of the AST labeling sequence and code
change tagging sequence features together to generate semantic features, and used a gated fusion
mechanism to integrate these features with software metric data. Zhang et al. [12] parsed AST, CDN,
and legacy metric data from the source code, extracted these data as inputs to extract features from
CNNs and Bi-LSTM+Attention, and finally integrated these sub-models into the final LSTM model
using an integrated learning approach to integrate these sub-models into the final prediction model
for defect prediction.



3276 CMC, 2025, vol.82, no.2

Summary: From the existing studies, it can be seen that most of the current studies only extract
features from a single information source or rely on a single deep learning model for defect prediction.
Although this approach can capture some of the code features, the limitation of the information source
and the singularity of the model lead to the one-sidedness of the extracted features in expressing
the semantic complexity of the code, which affects the generalization ability and performance of
the prediction model. In contrast, this paper proposes a more comprehensive solution that not only
combines multiple deep learning models to automatically learn valuable features, but also enhances the
performance of the model by extracting rich features from multiple information sources. Specifically,
the approach in this paper incorporates multiple sources of information such as traditional metric
data, AST abstract syntax trees and CDNs, and constructs different deep learning models TabNet,
ASGCN, and CNN1D-BILSTM to process these features respectively, to fully explore the potential
semantic features of various information sources. At the same time, we introduce an integrated learning
approach to fuse the prediction results of multiple sub-models to improve the prediction performance
of the overall model. This multi-model, multi-information source fusion strategy effectively overcomes
the limitations of a single approach and can predict software defects more comprehensively and
accurately. Compared with previous studies, the method in this paper not only has advantages in the
comprehensiveness of feature extraction, but also substantially improves the accuracy and stability of
prediction through multi-model integration. This provides a more prospective and practical solution
for future software defect prediction in complex code environments.

7 Threats to Validity
7.1 Threats to Internal Validity

In this paper, we reproduce four other models as described in other papers and compare the
results of these models with ours to demonstrate the validity and superiority of our model. However,
even though we have completely built their models according to the descriptions of the papers,
we still cannot guarantee that some parameter settings, method implementations, and environment
configurations are exactly the same, which may affect the final results. Therefore, in order to fairly
compare the performance of the models, each model is tested in the same environment, and other
parameter settings and methods that are not mentioned in the paper are set to be the same as our
model to ensure the validity of our model.

7.2 Threats to External Validity

In our experiments, we selected 10 projects from the promise open source library as datasets
to evaluate the performance of our model. These 10 datasets are widely used in software defect
prediction methods and have wide coverage, which is helpful in proving the effectiveness of our
method. However, several limitations of the promise dataset may affect the generalizability of our
results. First, since these projects are from older versions, they may not fully represent modern
software development practices and contemporary defect patterns. Modern software systems often
have different architectural patterns, coding standards, and complexity levels. Besides, the datasets
mainly contain Java projects, which may limit the generalizability to other programming languages.
Finally, the relatively small size of some projects in the dataset may not capture the complexity of
large-scale industrial applications.



CMC, 2025, vol.82, no.2 3277

8 Conclusion and Future Work

Current software defect prediction research faces the challenge of failing to adequately consider
the characteristics of different data sources either from a single data source or in real-world scenarios
where multiple data sources coexist, and usually adopts a unified deep learning model for defect
prediction. This approach ignores the variability among different data sources and their potential
value, which may lead to limited accuracy and generalization performance of the prediction results.
To this end, this paper proposes a multivariate heterogeneous hybrid deep learning algorithm (DP-
MHHDL), which aims to fuse multivariate heterogeneous data to enhance the performance of
software defect prediction. First, for the feature extraction of AST data, utilizing the advantages of
GCN in processing graph-structured data, this paper proposes a deep learning model based on GCN
(ASGCN), which is not only able to learn the semantic information in the context, but also able to
capture the spatial feature information among similar nodes, which enhances the representation of
graph-structured data. Second, although AST data retains the syntactic and semantic information of
a single document, it cannot reflect the global importance of that document in the whole project.
To solve this problem, this paper further integrates the features of CDN data and constructs the
CNN1D-BiLSTM model based on LSTM’s ability to excel in capturing temporal features, which not
only captures the temporal dependence of local features, but also improves the understanding of the
temporal data, thus extracting the features of CDN data in a more comprehensive way. Finally, for
feature extraction of traditional metric data, unlike other studies that use machine learning models
such as Random Forest or SVM, this paper selects the TabNet model as a more suitable model for
handling table-structured data for feature extraction. The experimental results show that TabNet has
better results in processing defective metric data. To verify the superiority of the proposed algorithm,
the performance of the algorithm is tested on 10 different datasets in this paper. The results show
that the DP-MHHDL algorithm proposed in this paper achieves the optimal prediction results, both
compared with the single data source model and the multi-data source fusion model.

In future work, we will further improve the data sources and models of our approach, consider
adding control flow and data flow to AST to form code property graphs (CPG) to enhance the
semantic features of the code, and adaptively select the optimal model and model structure and
parameters via AutoML. Besides, we would like to utilize our method on C/C++ datasets if possible.

Acknowledgement: I express my sincere gratitude to all individuals who have contributed to this paper.
Their dedication and insights have been invaluable in shaping the outcome of this work.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Qi Fei, Haojun Hu; data collection: Qi Fei, Haojun Hu; analysis and interpretation of
results: Qi Fei, Haojun Hu; draft manuscript preparation: Qi Fei, Haojun Hu, Guisheng Yin, Zhian
Sun;manuscript final layout and preparation for submission: Qi Fei, Haojun Hu, Guisheng Yin, Zhian
Sun. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The source code files and datasets used in our DP-MHHDL
algorithm are publicly available on GitHub (https://github.com/feiqixia/DP-MHHDL) (accessed on
24 October 2024).

Ethics Approval: Not applicable.

https://github.com/feiqixia/DP-MHHDL


3278 CMC, 2025, vol.82, no.2

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] D. Leffingwell and D. Widrig, Managing Software Requirements: A Use Case Approach, 2nd ed. USA:

Addison-Wesley Professional, 2003.
[2] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” IEEE Trans. Softw. Eng., vol.

20, no. 6, pp. 476–493, 1994. doi: 10.1109/32.295895.
[3] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2, no. 4, pp. 308–320, 1976. doi:

10.1109/TSE.1976.233837.
[4] M. H. Halstead, Elements of Software Science (Operating and Programming Systems Series). USA: Elsevier

Science Inc., 1977.
[5] L. Qiong Chen, C. Wang, and S. Song, “Software defect prediction based on nested-stacking and

heterogeneous feature selection,” Compl. Intell. Syst., vol. 8, pp. 3333–3348, 2022.
[6] Z. M. Zain, S. Sakri, N. H. A. R. Ismail, and R. M. Parizi, “Software defect prediction harnessing on

multi 1-dimensional convolutional neural network structure,” Comput. Mater. Contin., vol. 71, no. 1, pp.
1521–1546, 2022. doi: 10.32604/cmc.2022.022085.

[7] N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction using CNN and GRU
based on SMOTE tomek method,” J. Intell. Inf. Syst., vol. 60, no. 3, pp. 673–707, May 2023. doi:
10.1007/s10844-023-00793-1.

[8] A. B. Farid, E. M. Fathy, A. Sharaf Eldin, and L. A. Abd-Elmegid, “Software defect prediction using
hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory
(Bi-LSTM),” PeerJ. Comput. Sci., vol. 7, 2021, Art. no. e739. doi: 10.7717/peerj-cs.739.

[9] K. H. Dam et al., “A deep tree-based model for software defect prediction,” 2018, arXiv:1802.00921.
[10] G. Fan, X. Diao, H. Yu, K. Yang, L. Chen and A. Vitiello, “Software defect prediction via attention-based

recurrent neural network,” Sci. Program., vol. 2019, no. 1, pp. 1–14, Jan 2019. doi: 10.1155/2019/6230953.
[11] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based on gated hierarchical lstms,” IEEE

Trans. Reliab., vol. 70, no. 2, pp. 711–727, 2021. doi: 10.1109/TR.2020.3047396.
[12] S. Zhang, S. Jiang, and Y. Yan, “A hierarchical feature ensemble deep learning approach for soft-

ware defect prediction,” Int. J. Softw. Eng. Knowl. Eng., vol. 33, no. 04, pp. 543–573, 2023. doi:
10.1142/S0218194023500079.

[13] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via convolutional neural network,” in 2017
IEEE Int. Conf. Softw. Qual., Reliab. Secur. (QRS), 2017, pp. 318–328.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[15] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via LSTM,” IET Softw., vol. 14, no. 4, pp. 443–450,
Aug 2020. doi: 10.1049/iet-sen.2019.0149.

[16] L. Šikić, A. S. Kurdija, K. Vladimir, and M. Šilić, “Graph neural network for source code defect
prediction,” IEEE Access, vol. 10, no. 1, pp. 10 402–10 415, 2022. doi: 10.1109/ACCESS.2022.3144598.

[17] S.Ã. Arik and T. Pfister, “TabNet: Attentive interpretable tabular learning,” Proc. AAAI Conf. Artif. Intell.,
vol. 35, no. 8, pp. 6679–6687, May 2021. doi: 10.1609/aaai.v35i8.16826.

[18] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic LSTM model for software defect prediction,”
IEEE Access, vol. 7, pp. 83 812–83 824, 2019. doi: 10.1109/ACCESS.2019.2925313.

[19] A. K. Jakhar and K. Rajnish, “Software fault prediction with data mining techniques by using fea-
ture selection based models,” Int. J. Electr. Eng. Inform., vol. 10, no. 3, pp. 447–465, 2018. doi:
10.15676/ijeei.2018.10.3.3.

[20] R. R. Kumar and A. Chaturvedi, “Software fault prediction using data mining techniques on
software metrics,” in Machine Learning and Big Data Analytics. Cham: Springer, 2021. doi:
10.1007/978-3-030-82469-3_27.

https://doi.org/10.1109/32.295895
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.32604/cmc.2022.022085
https://doi.org/10.1007/s10844-023-00793-1
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.1155/2019/6230953
https://doi.org/10.1109/TR.2020.3047396
https://doi.org/10.1142/S0218194023500079
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.1109/ACCESS.2022.3144598
https://doi.org/10.1609/aaai.v35i8.16826
https://doi.org/10.1109/ACCESS.2019.2925313
https://doi.org/10.15676/ijeei.2018.10.3.3
https://doi.org/10.1007/978-3-030-82469-3_27


CMC, 2025, vol.82, no.2 3279

[21] C. Tao, T. Wang, H. Guo, and J. Zhang, “An approach to software defect prediction combining semantic
features and code changes,” Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 09, pp. 1345–1368, 2022. doi:
10.1142/S0218194022500504.

[22] Y. Qu and H. Yin, “Evaluating network embedding techniques’ performances in software bug prediction,”
Empirical Softw. Engg., vol. 26, no. 4, Jul. 2021. doi: 10.1007/s10664-021-09965-5.

[23] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for software defect prediction,” IEEE
Trans. Softw. Eng., vol. 46, no. 12, pp. 1267–1293, 2020. doi: 10.1109/TSE.2018.2877612.

[24] C. Zhou, P. He, C. Zeng, and J. Ma, “Software defect prediction with semantic and structural information
of codes based on graph neural networks,” Inf. Softw. Tech., vol. 152, 2022, Art. no. 107057. doi:
10.1016/j.infsof.2022.107057.

[25] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algo-
rithms,” in Proc. 26th Annu. Conf. Neural Inform. Process. Syst., Lake Tahoe, NV, USA, Curran Associates
Inc., 2012, pp. 2951–2959.

[26] A. Okutan, “Software defect prediction using bayesian networks,” Empir. Softw. Eng., vol. 19, no. 1, pp.
154–181, 2014. doi: 10.1007/s10664-012-9218-8.

[27] A. Kaur and R. Malhotra, “Application of random forest in predicting fault-prone classes,” in 2008 Int.
Conf. Adv. Comput. Theo. Eng., 2008, pp. 37–43.

[28] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using support vector machines,”
J. Syst. Softw., vol. 81, no. 5, pp. 649–660, 2008. doi: 10.1016/j.jss.2007.07.040.

[29] Q. Zhang and B. Wu, “Software defect prediction via transformer,” in 2020 IEEE 4th Inform. Technol.,
Netw., Electr. Automat. Cont. Conf. (ITNEC), 2020, vol. 1, pp. 874–879. doi: 10.1109/ITNEC48623.2020.

[30] C. Zeng, C. Y. Zhou, S. K. Lv, P. He, and J. Huang, “GCN2defect: Graph convolutional networks for
smotetomek-based software defect prediction,” in 2021 IEEE 32nd Int. Symp. Softw. Reliab. Eng. (ISSRE),
2021, pp. 69–79.

[31] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Deep semantic feature learning with embedded static
metrics for software defect prediction,” in 2019 26th Asia-Pacific Softw. Eng. Conf. (APSEC), 2019, pp.
244–251.

[32] Z. Zhao, B. Yang, G. Li, H. Liu, and Z. Jin, “Precise learning of source code contextual semantics via
hierarchical dependence structure and graph attention networks,” J. Syst. Softw., vol. 184, 2022, Art. no.
111108. doi: 10.1016/j.jss.2021.111108.

https://doi.org/10.1142/S0218194022500504
https://doi.org/10.1007/s10664-021-09965-5
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1016/j.infsof.2022.107057
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1016/j.jss.2007.07.040
https://doi.org/10.1109/ITNEC48623.2020
https://doi.org/10.1016/j.jss.2021.111108

	A Software Defect Prediction Method Using a Multivariate Heterogeneous Hybrid Deep Learning Algorithm
	1 Introduction
	2 Background
	3 Approach
	4 Experiment
	5 Result and Analysis
	6 Related Work
	7 Threats to Validity
	8 Conclusion and Future Work
	References


