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ABSTRACT: This research investigates the application of multisource data fusion using a Multi-Layer Perceptron
(MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM,
DaLiAc, MotionSense, and PAMAP2—to develop a generalized MLP model for classifying six human activities.
Performance analysis of the fused model for each dataset reveals accuracy rates of 95.83% for WISDM, 97% for DaLiAc,
94.65% for MotionSense, and 98.54% for PAMAP2. A comparative evaluation was conducted between the fused MLP
model and the individual dataset models, with the latter tested on separate validation sets. The results indicate that the
MLP model, trained on the fused dataset, exhibits superior performance relative to the models trained on individual
datasets. This finding suggests that multisource data fusion significantly enhances the generalization and accuracy of
HAR systems. The improved performance underscores the potential of integrating diverse data sources to create more
robust and comprehensive models for activity recognition.
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1 Introduction
Human Activity Recognition (HAR) is a rapidly growing field within artificial intelligence (AI) and pat-

tern recognition that focuses on the automatic identification and interpretation of human activities through
various data sources [1]. The primary objective of HAR is to enable machines to understand and respond
to human behaviors, which can be applied across diverse domains such as healthcare, security, and human-
computer interaction [2]. As technology continues to advance, HAR systems are becoming increasingly
integral to applications like health monitoring, smart home automation, and user behavior analysis. These
systems aim to enhance user experiences, optimize processes, and improve safety by accurately recognizing
and categorizing human activities [3,4].

Despite its rapid development, HAR faces several challenges due to the inherent complexity of human
behavior, the variability of environmental conditions, and the demand for real-time processing. The inte-
gration of data from multiple sensors, such as accelerometers, gyroscopes, and image sensors, has proven
essential for addressing the limitations of single-sensor approaches. Multisource data fusion techniques, such
as those utilizing Multi-Layer Perceptrons (MLPs) [5], offer promising avenues for enhancing the robustness
and accuracy of HAR systems. Addressing these challenges will be key to unlocking its full potential across
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various industries as the field evolves. MLPs offer a straightforward architecture with fully connected layers,
making them relatively simple to design and implement. This flexibility is helpful in HAR when handling
various types of sensor data from diverse sources [6–8]. HAR has witnessed significant advancements in
recent years, driven by the increasing demand for intelligent systems that can understand and respond to
human behavior. The motivation behind this research stems from the recognition of challenges inherent to
HAR and the need for innovative solutions to enhance its effectiveness [9,10].

• Variability in Human Behavior: Human activities exhibit high variability due to individual differences,
cultural nuances, and evolving behavioral patterns. This variability poses a challenge for HAR systems,
which must be robust enough to adapt to diverse human behaviors.

• Ambient Conditions: HAR often takes place in dynamic and uncontrolled environments, where lighting
conditions, noise, and other environmental factors can significantly impact the accuracy of activity
recognition. Adapting to these changing conditions is a critical challenge for HAR systems.

• Real-Time Processing: Many applications of HAR, such as those in healthcare monitoring and security
surveillance, require real-time processing to provide timely insights and responses. Achieving low-
latency recognition while maintaining accuracy is a complex challenge [11,12].

• Limited Generalization: HAR models trained on specific datasets may struggle to generalize well to
unseen scenarios or populations. The lack of generalization can limit the practical applicability of HAR
systems across diverse contexts.

One key avenue for addressing the challenges in HAR is the exploration of effective feature fusion
techniques. Feature fusion combines information from multiple sources or modalities to create a more
comprehensive representation of human activities [13]. This approach addresses the technical gaps which
have been identified in several ways:

• Improved Discrimination: Fusing features from multiple sources enhances HAR systems’ ability to
differentiate subtle activity variations, thereby overcoming the limited discriminative power of single-
feature models.

• Increased Robustness: Feature fusion mitigates sensor limitations by leveraging the strengths of multiple
sensors, reducing the impact of noise and enhancing data coverage.

• Greater Adaptability: Fusion enables models to adapt to diverse activities and better capture human
behavior variability, addressing the lack of adaptability in current systems.

• Enhanced Context Awareness: Combining features provides a deeper contextual understanding,
improving accuracy in recognizing activities across different scenarios.

The primary motivation behind this study is to enhance the generalization capabilities of HAR models
across diverse datasets and real-world settings. Current models often rely on single-source data, which limits
their ability to adapt to different sensor placements and activity types. By integrating multiple data sources
and employing feature fusion techniques, there is potential to create more robust and adaptable models that
can handle the inherent variability in real-world scenarios. This approach aims to address the limitations of
existing HAR systems, leading to improved accuracy and reliability in activity recognition tasks.

This study makes the following key contributions:

• Multisource Feature Fusion Methodology, which introduces a feature fusion approach that integrates
data from multiple datasets (WISDM, MotionSense, DaLiAc, and PAMAP2) to create a comprehensive
representation of human activities.

• Enhanced Model Robustness and Adaptability, which utilizes an MLP to effectively handle diverse activ-
ity patterns and domain shifts, improving the model’s ability to generalize across different environments.
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• Comprehensive Evaluation Across Diverse Datasets, which can be used to conduct extensive experi-
ments across multiple datasets to demonstrate the effectiveness of the proposed feature fusion approach
in overcoming challenges such as sensor variability and class imbalance.

• Improved Accuracy and Generalization in HAR Systems, which help to achieve higher accuracy and
generalization performance compared to existing single-source models, showcasing the benefits of
integrating multiple data sources for HAR.

The remainder of this paper is structured as follows: Section 2 offers a detailed review of the relevant
literature. Section 3 outlines the proposed methodology, explaining the approach in depth. Section 4 presents
a critical analysis of the experimental results. Finally, Section 5 provides the conclusions and suggests avenues
for future research.

2 Review of Human Activity Recognition
Recent advancements in HAR using wearable devices have showcased significant progress and inno-

vation. Adaimi et al. have presented a comprehensive study on location-invariant and device-agnostic
motion activity recognition, emphasizing the development of a robust dataset and models that maintain high
accuracy across various sensor placements [14,15]. Mishra and Pal focused on energy-efficient HAR through
a pruned CNN-GRU model that demonstrates high accuracy with low computational demands, making it
suitable for lightweight devices [16]. Liu explored impedance sensing as a novel approach to HAR, aiming
for efficient edge device implementation [17]. Hutabarat et al. introduced a feedforward neural network for
HAR, achieving superior accuracy compared to traditional algorithms [18]. Finally, Gkountelos et al. have
discussed compressing CNN models to reduce computational requirements while maintaining performance,
crucial for resource-constrained wearable devices [19].

Transformers offer several advantages in HAR, including enhanced temporal modeling capabilities,
flexibility in handling multi-modal data, and scalability, making them a promising option for complex
activity recognition tasks. However, compared to traditional architectures such as CNNs, RNNs, LSTMs, and
MLPs, they also present certain limitations [20]. These drawbacks include high computational and memory
requirements, reduced interpretability, longer training times, and challenges in deploying them on resource-
constrained devices. Additionally, Transformers are less effective in scenarios requiring incremental learning
or adaptation to new data or activities, as they typically rely on large datasets for optimal performance.
These challenges underscore the trade-offs between advanced Transformer-based models and traditional
approaches in HAR [21].

Sensor-based HAR has become a prominent research area due to the growing availability of var-
ious sensors and their non-intrusive nature. According to Mario [22], wearable sensors like tri-axial
accelerometers are particularly advantageous for HAR applications due to their ability to continuously record
activities across different locations and contexts. The study highlights a novel method where a Convolutional
Neural Network (CNN) is used to process acceleration data, transforming it into georeferenced coordinate
systems for enhanced feature extraction. This approach demonstrated a significant improvement in activity
recognition accuracy, outperforming traditional methods by approximately 8%. Parida et al. [23] proposed a
hybrid approach integrating CNN with Long Short-Term Memory (LSTM) networks to address limitations
in vision-based HAR techniques. While CNNs are effective in extracting spatial features, LSTMs capture
temporal dynamics, leading to improved performance in long-term HAR applications. The integration of
these models offers a comprehensive method for recognizing human activities by overcoming the drawbacks
of traditional vision-based approaches. Machine learning, particularly deep learning, has significantly
advanced HAR. Browne et al. [24] emphasize the efficiency of Temporal Convolutional Networks (TCNs)
over LSTMs for HAR due to their faster training times and superior long-term dependency capture. Their
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study reveals that TCNs, when paired with Convolutional Auto-Encoders (CAE), achieve state-of-the-
art results in fall detection and other applications within smart environments. The strength of 1D-CNN
models lies in their ability to automatically extract hierarchical features from raw sensor data, outperforming
traditional methods in accuracy and efficiency.

In contrast, MLP classifiers, particularly in the fusion stage, provide robust support by integrating
features from multiple sensors, ensuring comprehensive activity detection. MLP classifiers are effective
in the fusion stage of HAR as they integrate multiple sensor inputs to extract meaningful patterns. This
approach is particularly beneficial in scenarios where data from various sources must be combined to
improve recognition accuracy. Miskatul Jannat et al. highlights the use of MLPs in conjunction with CNN-
based transfer learning models, demonstrating significant performance improvements in HAR tasks through
effective data fusion [25].

The integration of data from various sources has been a focal point in recent HAR research. The fusion
of spatial and temporal data using hybrid models like CNN-LSTM has shown promising results. Parida et al.
introduced a hybrid approach combining CNN for spatial feature extraction and LSTM for temporal data
learning, addressing the limitations of standalone models in real-world HAR applications. They discuss the
limitations of vision-based techniques that fail to capture both spatial and temporal data adequately, leading
to sub-optimal performance in real-world scenarios [23].

Data fusion in HAR offers several key benefits, as highlighted in multiple studies. Firstly, data fusion
enhances the reliability and robustness of HAR systems by combining information from multiple sensors,
such as IMU sensors, software-defined radios, radars, and wearable sensors, leading to more precise activity
recognition [2,26,27]. Secondly, fusion techniques like multi-resolution time-frequency analysis and feature
extraction methods like DWT and EMD help in identifying discriminative features and reducing dimen-
sionality, improving classification accuracy significantly. Additionally, data fusion allows for the integration
of complementary advantages of different sensors through hybrid models like CNNs and Recurrent Neural
Networks (RNNs), resulting in more effective multi-modal fusion and better long-term information capture
for improved performance in HAR systems [28].

Traditional models, including CNNs, primarily detect consistent and repetitive patterns within sensor
data. This strength makes them particularly effective for bilateral activities, where movements tend to be
regular and predictable. However, this reliance on regularity poses significant challenges when these models
are applied to imbalanced activities that involve varying movements between the left and right sides of the
body. For instance, activities such as downstairs and upstairs entail complex, non-repetitive motions that
are not easily captured by traditional CNNs. Consequently, these models often exhibit lower accuracy and
higher misclassification rates when classifying such activities. To address these challenges, hybrid models
that combine MLPs with other deep learning techniques have emerged as a promising alternative. A notable
example is the model proposed by Cengiz et al. [29], which leverages the strengths of MLPs in feature
integration and combines them with other methods to enhance both performance and explainability in HAR.
These hybrid models have shown improved capability in recognizing both simple and complex activities,
providing a more robust solution compared to traditional CNN-based approaches.

Recent advancements in the field have further attempted to mitigate the limitations of traditional
models. Mekruksavanich and Jitpattanakul, for example, introduced a deep residual network augmented
with a Convolutional Block Attention Module (CBAM). This approach enhances the recognition of activities
by focusing on critical features within the sensor data. The inclusion of CBAM allows the model to capture
subtle differences in movement patterns often overlooked by conventional CNNs, improving classification
accuracy, particularly for asymmetrical activities [30]. In addition, Bian et al. [31] conducted a comprehensive
survey on state-of-the-art sensing techniques in HAR, identifying ongoing challenges in accurately capturing
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and classifying complex human movements. While advancements in sensing modalities and computational
methods have bolstered the robustness of HAR systems, they have also highlighted the persistent need for
more sophisticated models capable of handling the inherent variability in irregular activities.

This section is organized to provide a comprehensive background and context for the proposed
study. Having reviewed the relevant literature and established the context for our study, we now pro-
ceed to Section 3, which details the proposed methodology. In this section, we outline our approach in
depth, including the architecture, parameters, and data fusion strategies utilized to develop a robust and
generalizable HAR model.

3 Methodology

3.1 Description of the Datasets Used
In Table 1, we highlight the diverse datasets used in building a generalized model for predicting six

primary activities in HAR using an MLP. The table details four distinct datasets: WISDM, MotionSense,
DaLiAc, and PAMAP2, which include 36, 24, 19, and 9 subjects, respectively. These datasets feature different
sensor positions, such as in pants pockets, on a belt, on the right wrist, and either wrist. They cover various
activities, including walking, running, sitting, standing, and navigating stairs (upstairs and downstairs),
offering a comprehensive foundation for developing a robust and adaptable model.

Table 1: Dataset information

Dataset name Position Activities Amounts
WISDM [32] Pants pocket Downstairs, upstairs, sitting, standing, walking, running 869,014

MotionSense [33] On a belt 1,130,181
DaLiAc [34] Right wrist 1,824,389

PAMAP2 [35] On the wrist 747,356

To create a generalized model that can predict only six core activities–downstairs, upstairs, walking,
running, sitting, and standing—these datasets provide a diverse foundation. The variation in sensor place-
ment and the large differences in sample sizes across the datasets, ranging from 747,356 to 1,824,389 data
points, present unique challenges in data preprocessing, normalization, and feature extraction. These aspects
must be carefully managed to ensure the model effectively learns with our data fusion model to generalize
across the different datasets and sensor positions.

In this study, the data fusion approach is crucial, as it seeks to harmonize these varied inputs into a
unified model that can accurately predict the six target activities. We employed an MLP as our base model
due to its suitability for integrating diverse, feature-level inputs derived from multi-source data fusion within
the HAR domain. Compared to more complex architectures (e.g., deep CNNs or RNNs), the MLP offers a
straightforward means of assessing how fused features enhance performance without introducing additional
complexities that could obscure the effects of data integration. This approach leverages the MLP capacity to
handle high-dimensional, heterogeneous features, thereby facilitating robust recognition across all activities.
To ensure that the chosen MLP architecture is both effective and robust, we conducted a systematic grid
search with cross-validation to fine-tune key hyperparameters (e.g., the number of hidden layers, the number
of neurons per layer, learning rate, and regularization parameters). Informed by established HAR literature
and initial empirical trials, this procedure enabled us to rigorously evaluate multiple configurations against
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validation sets and to identify the combination yielding consistent generalization performance. Details of
this procedure are provided in Algorithm 1.

Algorithm 1: Create MLP classifier
Input: For each dataset
Output: Accuracy, Softmax, Best Estimators θ̂MLP, θ̂Voting

1: Initialize: Xtrain ← input_train[new feature]
2: Initialize: Xtest ← input_test[new feature]
3: Initialize: ytrain ← input_train[activity_num]
4: Initialize: ytest ← input_test[activity_num]
5: Define parameter grid search PMLP:

hidden_layer_sizes ∈ {(50), (100), (50, 50), (100, 50)},
activation ∈ {relu, tanh}, α ∈ {0.0001, 0.001, 0.01}

6: Perform grid search:
θ̂MLP ← arg maxθ∈PMLP

1
K ∑

K
k=1 Accuracy (θ; X(k)

train , y(k)
train)

7: Define and train voting classifier:
θ̂Voting ← Best Estimator(θ̂MLP)
θ̂Voting ← fit(θ̂Voting, Xtrain , ytrain)

8: Predict and compute probabilities:
ŷtest ← predict(θ̂Voting, Xtest)
P̂test ← predict_proba(θ̂Voting, Xtest)

9: Compute accuracy and softmax:

Accuracy← 1
ntest
∑ntest

i=1 ( ŷtest, i = ytest, i)

Softmax(P̂test, i) ←
eP̂test, i

∑6
j=1 eP̂test, j

The diagram in Fig. 1 illustrates a multisource data fusion process for human activity recognition using
datasets from four different sources: WISDM, DaLiAc, PAMAP2, and MotionSense. Each dataset contains
accelerometer readings across three axes (X, Y, Z). The data undergoes feature extraction to compute various
metrics such as Mean, Median, Amplitude, and Signal Magnitude Area (SMA) for each dataset, which are
then processed through a MLP model. The outputs of these MLP models are combined using a softmax
function to predict the activity class (e.g., walking, running, sitting, standing). This approach aims to create
a generalized model capable of classifying human activities across different datasets. This diagram illustrates
the end-to-end workflow, from raw sensor data input to final activity prediction.



Comput Mater Contin. 2025;82(2) 2115

Figure 1: Architecture of the data fusion approach with 1D-CNN (a) Experiment I and MLP (b) Experiment II for
activity classification

3.2 Explanation of the Sensor Sources
In analyzing human activities through accelerometer data, it is essential to identify and understand the

different data sources, as variations in sensor placement, sampling rates, and device types can significantly
impact the quality and interpretation of the collected data.

Accelerometer data is fundamental in understanding and analyzing human movements. Various
datasets provide this data, each collected using different devices and methodologies. The following sections
will present and analyze the histogram graphs for different activities, focusing on the insights they provide
into the nature and variability of human movements as captured by these diverse sensor sources.

To compare the accelerometer data distributions for “walking” and “running” activities across the
different datasets (WISDM, PAMAP2, Daliac, Motionsense), we will analyze the histograms for each axis
(accX, accY, accZ) in Fig. 2. To conduct a detailed analysis of the “walking” activity in Fig. 2a for each axis
across different datasets, we can structure the discussion into the following:
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Figure 2: Distribution of walking (a) and running (b) activities from raw accelerometer data across four sources

For the accX Axis, which measures lateral movements, the WISDM dataset shows a moderate spread
with peaks around zero, extending to positive and negative values, indicating general lateral movement.
PAMAP2 exhibits a broader spread with multiple peaks, suggesting variability in lateral movement. Similarly,
DaLiAc is moderately concentrated around zero but shows a noticeable spread, reflecting lateral shifts.
Motionsense behaves similarly to DaLiAc, with a moderate spread around zero.

In the accY axis (forward and backward movements), WISDM also shows a moderate spread with peaks
around zero, indicating forward and backward movement. PAMAP2, on the other hand, displays a wider
spread with more pronounced peaks, suggesting more significant variability in this axis. DaLiAc is mainly
concentrated around zero, with some spread indicating movement along the Y-axis, while Motionsense
shares similar characteristics with DaLiAc, displaying moderate spread around zero.

For the accZ axis, which tracks vertical movements, the WISDM dataset reveals a moderate spread
with peaks around zero. PAMAP2 has a wider spread, with peaks extending to positive values, indicating
more variability in vertical movement. DaLiAc, though concentrated around zero, also displays a noticeable
spread, and Motionsense exhibits behavior similar to DaLiAc, with a moderate spread around zero.

In summary, the distribution analysis between the “walking” and “running” activities in Fig. 2 highlights
the key patterns and differences in their respective data distributions, which can be categorized into three
main points as follows:
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Variability: Walking displays moderate variability across all datasets, with noticeable but moderate
spreads in the accX, accY, and accZ axes. Running shows significant variability, with wider spreads and higher
peaks, indicating more intense movements.

Peak Distributions: In Walking, peaks are generally centered around zero with moderate spreads,
reflecting the regular and repetitive nature of the movement. For Running, peaks remain centered around
zero but have much wider spreads, indicating higher intensity and variability.

Axis Differences: accX (Lateral Movements): Both walking and running show spreads, but running
exhibits significantly wider spreads, indicating greater lateral movement.

accY (Forward/Backward Movements): Patterns are similar to accX, with running showing higher
variability and intensity.

accZ (Vertical Movements): Walking shows moderate vertical movements, while running exhibits
significant vertical movement, reflecting the bouncing motion inherent in running.

The key differences between walking and running activities are the intensity and variability of the
movements. Walking shows moderate and consistent movements across all three axes, while running exhibits
significantly higher variability and intensity. The accelerometer data for running have much wider spreads
and higher peaks, indicating more vigorous and varied movements. This is consistent across all datasets
(WISDM, PAMAP2, Daliac, Motionsense), highlighting the fundamental differences in the dynamics of
these two activities. To compare the accelerometer data distributions for the “sitting” and “standing” activities
across the different datasets (WISDM, PAMAP2, Daliac, Motionsense) in Fig. 3, we analyzed the histograms
for each axis (accX, accY, accZ). For the “standing” activity in Fig. 3a:

Figure 3: Distribution of standing (a) and sitting (b) activities from raw accelerometer data across four sources
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For the accX axis, WISDM shows a narrow distribution with peaks centered around zero, indicating
minimal lateral accelerations. PAMAP2, however, exhibits a wider spread with peaks around zero that extend
to negative values, suggesting some variability in lateral movement. DaLiAc is highly concentrated around
zero, reflecting very little lateral movement, a pattern that is similarly observed in the Motionsense dataset,
which also shows a narrow distribution around zero.

Regarding the accY axis, WISDM shows a narrow distribution with peaks around zero, extending
slightly to both positive and negative values. PAMAP2 demonstrates a wider spread, with peaks around zero
extending more clearly to both positive and negative sides, indicating greater variability. DaLiAc is again
highly concentrated around zero, suggesting minimal forward or backward movement, and Motionsense
follows this pattern, with a narrow spread around zero.

For the accZ axis, WISDM shows a narrow distribution with peaks around zero, indicating minimal
vertical accelerations. PAMAP2 displays a wider spread, with peaks around zero extending slightly to
positive values, indicating more variability in vertical movement. Both DaLiAc and Motionsense show highly
concentrated distributions around zero, indicating limited vertical movement.

To summarize the distribution analysis between the “standing” and “sitting” activities, three key points
are highlighted as follows:

Variability: Both “sitting” and “standing” activities show minimal variability across all datasets, reflect-
ing low movement levels. WISDM and PAMAP2 show slightly more spread than DaLiAc and Motionsense,
suggesting minor movements during these activities.

Peak Distributions: For both “sitting” and “standing,” peaks are close to zero across all axes, indi-
cating minimal accelerations. PAMAP2 displays a slightly wider spread, suggesting more variability in
recorded accelerations.

Axis Differences: The accX, accY, and accZ axes for both activities show narrow distributions, high-
lighting the low movement involved. The accZ axis remains particularly stable, indicating negligible vertical
movements for both sitting and standing.

The key takeaway is that both “sitting” and “standing” activities are characterized by minimal acceler-
ations across all axes and datasets, with the Daliac and Motionsense datasets showing particularly narrow
distributions around zero. This indicates that there is very little movement associated with these activities,
as expected. The WISDM and PAMAP2 datasets show slightly more spread, suggesting minor movements,
but overall, the accelerations remain low for both sitting and standing.

To compare the accelerometer data distributions for the “downstairs” and “upstairs” activities across the
different datasets (WISDM, PAMAP2, Daliac, Motionsense), we analyzed the histograms for each axis (accX,
accY, accZ) in Fig. 4. For the “upstairs” activity in Fig. 4a:

For the accX axis, the WISDM dataset shows a wide distribution with a peak around−10, suggesting var-
ied acceleration experiences during the upstairs activity. PAMAP2 exhibits a broad spread with a peak around
−10, extending into positive values, indicating upward movement. In contrast, DaLiAc presents a more
concentrated distribution around zero, suggesting less variance in lateral movement, while Motionsense
displays a wider spread than DaLiAc, with peaks closer to zero.

For the accY axis, WISDM demonstrates a broader distribution with significant data centered around
zero. PAMAP2 also has a wide distribution but with more data points leaning toward the negative side.
DaLiAc is highly concentrated around zero, indicating minimal variability in forward and backward
movements, whereas Motionsense shows a narrower spread compared to WISDM and PAMAP2.
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Figure 4: Distribution of upstairs (a) and downstairs (b) activities from raw accelerometer data across four sources

Regarding the accZ axis, WISDM’s distribution resembles its patterns in accX and accY, with peaks
around zero. PAMAP2 displays a wider spread with peaks near zero, extending to higher values. DaLiAc, like
in the other axes, is concentrated around zero, and Motionsense mirrors DaLiAc, with peaks also centered
around zero.

To summarize the distribution analysis between the “upstairs” and “downstairs” activities, three key
points are presented as follows:.

Variability: Both “downstairs” and “upstairs” activities exhibit significant variability in the WISDM and
PAMAP2 datasets, indicating pronounced accelerations. In contrast, the DaLiAc and Motionsense datasets
show less variability for both activities.

Peak Distributions: For “downstairs,” peaks are closer to zero across all axes, suggesting smaller
accelerations during descent. For “upstairs,” the peaks shift slightly, particularly in the PAMAP2 dataset,
indicating higher accelerations due to the increased climbing effort.

Axis Differences: The accX and accY axes for “upstairs” display more spread compared to “downstairs,”
reflecting the varied movements and effort involved in ascending stairs. The accZ axis remains more stable
with less spread in both activities, indicating less variability in vertical movements.

The key takeaway is that the “upstairs” activity generally shows higher and more varied accelerations
compared to the “downstairs” activity, especially in the WISDM and PAMAP2 datasets. This is likely
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due to the increased effort required to move upward compared to downward movement. The Daliac and
Motionsense datasets are more concentrated around zero, indicating less sensitivity or variability in recorded
accelerations for both activities.

3.3 Feature Extraction
Feature extraction is critical in data preprocessing, particularly in machine learning and data analysis

tasks. It plays an essential role for several reasons:

• Dimensionality Reduction: Datasets often contain a large number of features, leading to the curse of
dimensionality. Feature extraction techniques help reduce the number of features while preserving the
most important information, thereby simplifying the model and enhancing its performance.

• Improved Model Performance: Extracting relevant features provides the model with more meaningful
and discriminative information, leading to better generalization and predictive performance.

• Noise Reduction: Feature extraction techniques can filter out noisy or irrelevant information from the
dataset, improving the signal-to-noise ratio and making the model more robust.

• Interpretability: Extracted features are often more interpretable than raw data, facilitating a better
understanding of the relationships between variables and the underlying patterns in the data.

• Computational Efficiency: Using fewer, more informative features significantly reduces the computa-
tional resources required for model training and inference.

In HAR, feature extraction plays a critical role by transforming raw sensor data into a structured format
that enhances its suitability for analysis and modeling. This process enables more accurate identification of
relevant patterns, leading to improved model performance and more reliable insights into human activities.

Accelerometer signals from the X, Y, and Z axes are segmented into 10-s windows at a sampling rate
of 20 Hz, yielding 200 data points per window. We then computed statistical features for each axis based
on these 200 points. The original sampling rates differ among the datasets—20 Hz for WISDM, 100 Hz
for PAMAP2, 50 Hz for MotionSense, and 200 Hz for DaLiAc–reflecting the variety of data resolutions
commonly encountered in human activity recognition research. The accelerometer readings for each dataset
are processed at their native sampling rate. Applying a uniform feature extraction process across all datasets
ensures that the resulting features are directly comparable and can be effectively combined after training the
MLP model. By integrating these diverse data sources, the resulting fused representation captures a wider
range of conditions and participant characteristics. This unified feature vector is then input into a multi-
layer perceptron (MLP), allowing the model to learn complex, non-linear relationships across datasets and
ultimately enhancing the robustness and accuracy of activity classification. Let N be the total number of data
points, let w be the size of the sliding window, and let s be the sampling rate, where t is the starting index
of the current window. Xi , Yi , Zi are the acceleration values for each axis at index i. The numerator of each
fraction represents the sum of acceleration values for each axis within the current window as in Eq. (1).

Meansliding(X, Y, Z) = (∑
t+w−1
i=t Xi

w
, ∑

t+w−1
i=t Yi

w
, ∑

t+w−1
i=t Zi

w
) . (1)

Calculating the statistics of a feature provides a measure of its central tendency, offering valuable insights
into the average behavior of the data. The median is another measure of central tendency, but it is less sensitive
to outliers than the mean. This makes it particularly useful for analyzing skewed distributions or datasets
that contain outliers. In Eq. (2), Xt , Yt , Zt are the acceleration values for each axis at index t. The median
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function calculates the median values within the current window for each axis.

Mediansliding(X, Y, Z) = (median(Xt , Xt+1 , . . . , Xt+w−1),

median(Yt , Yt+1 , . . . , Yt+w−1), (2)

median(Zt , Zt+1 , . . . , Zt+w−1)).

Amplitude in Eq. (3), typically quantified as the range of a feature, provides an indication of the
variability or dispersion within the data. Calculating the range of acceleration values along each axis in
accelerometer data is essential for understanding the intensity and magnitude of the observed movements.
This analysis provides valuable insights into the dynamics of human activities.

Amplitudesliding(X, Y, Z) = (max(Xt , Xt+1 , . . . , Xt+w−1) −min(Xt , Xt+1 , . . . , Xt+w−1),

max(Yt , Yt+1 , . . . , Yt+w−1) −min(Yt , Yt+1 , . . . , Yt+w−1), (3)

max(Zt , Zt+1 , . . . , Zt+w−1) −min(Zt , Zt+1 , . . . , Zt+w−1)).

The max function determines the maximum value within the current window for each axis, while the
min function determines the minimum value within the same window for each axis. The difference between
these maximum and minimum values for each axis represents the amplitude, or range, within the window.

Signal Magnitude Area (SMA) measures the overall magnitude of a signal. It is calculated by summing
the absolute values of the signal over a specified time window and then dividing by the window length. SMA
effectively captures the overall intensity or energy of the signal, which can be beneficial for applications such
as activity recognition as in Eq. (4).

SMAsliding(X, Y, Z) = ( 1
w
(

t+w−1
∑
i=t
∣Xi ∣) , 1

w
(

t+w−1
∑
i=t
∣Yi ∣) , 1

w
(

t+w−1
∑
i=t
∣Zi ∣)) . (4)

The absolute value function ensures that negative and positive values contribute equally to the sum. The
numerator aggregates the absolute acceleration values for each axis within the window. The denominator w
represents the window size. Dividing the result by w normalizes the sum by the window size, yielding the
average magnitude. These statistics can serve as informative features within our dataset, offering valuable
insights into the characteristics of the data. This information is crucial for subsequent stages of analysis or
modeling, particularly in HAR data. As we transition to the topic of data fusion, integrating these features
with additional data sources can further enhance the accuracy and robustness of our predictive models.

3.4 Data Fusion Process
Let features_extraction (D, W , S) be the function where D represents the input dataset, W

denotes the window size in seconds, and S refers to the sampling rate in Hz. The window size is calculated
as described in Algorithm 2. In HAR, the selection of an appropriate W is a critical factor for accurately
capturing the temporal dynamics of activities. The window size controls how much time-series data is used
for feature extraction. If the window is too small, the features may fail to encapsulate the full sequence
of movements associated with an activity, leading to suboptimal model performance. Conversely, overly
large windows may encompass multiple activities or introduce noise, thereby obscuring essential temporal
patterns required for distinguishing between activities.
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The calculation of window size in rows, determined as W × S, ensures that the number of data points
in each window is proportional to the dataset’s sampling rate. This standardization enables consistent feature
extraction across datasets with varying sampling frequencies. Algorithm 2 offers a systematic approach to
determining the optimal window size, ensuring that sufficient temporal context is captured, which enhances
the accuracy and reliability of subsequent activity classification.

Algorithm 2: Extract time domain features
1: Initialize Empty DataFrame: Dnew ← ∅
2: Group by SubjectID and Activity; for each group (s,a):

Let Gs,a be the subset where SubjectID = s and activity = a
Sort Gs,a by timestamp.

3: Calculate Window Size: Nw =W × S
4: Iterate Over Windows; for i from 0 to Nw − 1 in steps of Nw:

Gs: Window data, G(i)
s ,a (X , Y , Z) Gs = (G(0)s ,a (X , Y , Z), . . . , G(Nw−1)

s ,a (X , Y , Z))
5: Calculate Mean for j from 0 to W − 1:

μ j = (
1

W ∑
( j+1)W−1
k= jW X(k)

a , 1
W ∑

( j+1)W−1
k= jW Y(k)

a , 1
W ∑

( j+1)W−1
k= jW Z(k)

a )

6: Calculate Median:
Med j = (median(X), median(Y), median(Z))

7: Calculate Amplitude:
Amp j = (max(X) −min(X), max(Y) −min(Y), max(Z) −min(Z))

8: Calculate SMA:

SMA j = (
1

W ∑k ∣X
(k)
a ∣1 ,

1
W ∑k ∣Y

(k)
a ∣1 ,

1
W ∑k ∣Z

(k)
a ∣1)

9: Extract Features:
New Features = (s, a, μx , μy , μz , medx , medy , medz , ampx , ampy , ampz , SMAx , SMAy , SMAz)

10: Output: Dnew ← Dnew ∪New Features

3.5 Description of the Feature Fusion Process
The algorithm create_mlp_classifiers in Algorithm 1 is designed to train an MLP classifier

using grid search for hyperparameter optimization. The best models are then combined into a voting
classifier, which is used for making predictions and evaluating performance. This process involves several
key steps and variables explained in Table 2.

Table 2: Definitions and descriptions of the feature fusion process

Term Definition Description
Input dataframes The set of input dataframes

D = {WISDM, PAMAP2, Daliac, Motionsense}
Dataframes in D contain sensor
data and activity labels used to

train and test classifiers.
Feature matrix X The feature matrix Xd for

dataframe d, where d ∈ D
Xd is a matrix of size nd × 12,

where nd is the number of
samples in d.

(Continued)
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Table 2 (continued)

Term Definition Description
Target vector y The target vector yd for

dataframe d, where d ∈ D
yd is a vector of activity labels

mapped to numeric values (e.g.,
0 for downstairs, 1 for running).

Training and testing sets Xtrain , Xtest and ytrain , ytest for
training and testing

Used to train and evaluate
classifiers, with Xtrain ∈ Rntrain×12

and target vectors in
{0, 1, . . . , 5}ntrain .

MLP parameter grid PMLP Hyperparameters for the MLP
classifier

{hidden_layer_sizes ∈
{(50), (100), (50, 50), (100, 50)},

activation ∈ {relu, tanh}, α ∈
{0.0001, 0.001, 0.01}}.

MLP best parameters θ̂MLP Optimal hyperparameters from
grid search

Best parameters are found by
maximizing accuracy over

5-fold cross-validation.
Voting classifier θ̂Voting Ensemble classifier combining

MLP models
Uses soft voting to combine

predictions from θ̂MLP models.
pred ŷtest, pred_prob P̂test Predicted activity labels and

probabilities for the test set
ŷtest from voting classifier; P̂test

gives class probabilities.
Accuracy and softmax Proportion of correct

predictions and softmax applied
to probabilities

Accuracy is the fraction of
correct predictions, and softmax

normalizes P̂test.

Performing a grid search for hyperparameter tuning in an MLP is crucial for optimizing model perfor-
mance in a structured and rigorous way. By systematically exploring combinations of key hyperparameters,
such as hidden layer sizes and regularization parameters, grid search ensures the model generalizes well to
unseen data and avoids overfitting. Cross-validation is used to evaluate different configurations, providing
a robust method to find the best-performing model. This careful approach enhances both the reliability and
reproducibility of the results, which is critical for sound machine learning research.

Extract the best estimators. This is the step where MLP models are trained using grid search to find the
best hyperparameters. Once trained, the best configurations of MLP models are selected based on the Grid
Search results. Combine the best models using a soft voting classifier: The VotingClassifier is an ensemble
learning method that combines multiple machine learning models to improve overall performance and
robustness compared to individual models. It depends on the voting type ‘soft’, it either uses class probabilities
or majority voting to make final predictions, which means it will average the predicted class probabilities of
the individual classifiers to make the final prediction on the test data. By using the MLP models, the voting
classifier can leverage the strengths of each model. The MLP might capture complex patterns due to its neural
network architecture.

Compute the softmax values of the predicted probabilities: The voting classifier predicts outputs for
the test data and computes softmax probabilities from the predicted probabilities. Softmax probabilities are
computed from the raw output of the VotingClassifier pred_proba method. These probabilities indicate the
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model confidence in each predicted class, which is useful for understanding the certainty of predictions and
can be particularly important in applications requiring probabilistic outputs.

3.6 Integration of Features Fusion from Multiple Sources
Integrating features from multiple data sources is essential for enhancing model performance and

generalization in HAR work. By combining diverse datasets, the model captures a widr rage of activity
patterns and sensor variations, leading to improved predictive accuracy. In this work, we employ an MLP for
feature fusion, as it is capable of modeling complex, non-linear relationships between input features, which
is critical when working with datasets that vary in sensor placement and activity types. The softmax function
is utilized in the output layer to convert the model’s raw predictions into probability distributions, making
it particularly effective for multiclass classification tasks. This approach enables the model to generalize
across different datasets, adapting to variations in sensor setups and activity contexts, which improves its
robustness and effectiveness in real-world applications. The data fusion process involves several essential
steps to integrate features from multiple sources effectively, as outlined in Algorithm 3 and detailed in Table 3.

Algorithm 3: Data fusion algorithm
Input: Dtrain , Dtest
Output: Final MLP classifier θ̂final_MLP, true labels yfinal_test, predicted labels ypred_test

1: Initialize result set R ← {}
2: for d ∈ Dtrain do
3: Rd ← Create MLP classifier(d , Dtrain[d], Dtest[d])
4: R[d] ← Rd
5: end for
6: Compute min_length←min(len(Rd[softmax])∀Rd ∈ R)
7: for d ∈ R do
8: Sd ← R[d][softmax]
9: if len(Sd) >min_length then

10: Truncate R[d][softmax] ← Sd[min_length]
11: else if len(Sd) <min_length then
12: Pad R[d][softmax] ← pad(S_d , ((0, min_length − len(Sd))))
13: end if
14: end for
15: Concatenate softmax scores: S← [R[d][softmax]∀ d ∈ R]
16: Extract final test labels yfinal_test ← R[list(Dtest)][y_test][min_length]
17: Set final MLP classifier: θ̂final_MLP ←MLP(Xfinal_train , yfinal_train , PMLP)
18: Compute predicted labels:

ypred_train ← θ̂final_MLP(Xfinal_train)
ypred_test ← θ̂final_MLP(Xfinal_test)
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Table 3: Definitions and descriptions of features fusion from multiple sources

Term Definition Description
Training datasets (Dtrain) A dictionary containing

training datasets for each
activity recognition dataset

Includes features and labels
used to train the models

Testing datasets (Dtest) A dictionary containing testing
datasets for each activity

recognition dataset

Includes features and labels
used to evaluate the models

Results (R) Storage for the results Contains softmax probabilities
and true test labels for each

dataset
create_MLP_classifier Function that trains an MLP

classifier on training datasets
and predicts on test datasets

Returns best models and
prediction results, stored in

results (Algorithm 1)
Combined softmax (S) Matrix combining softmax

outputs from all datasets
Horizontally stacks softmax

probabilities from each dataset,
ensuring uniform length by

padding or truncating as
necessary

Final testing labels (yfinaltest ) Vector of true labels for the final
test set

Derived from the first dataset in
the test dictionary, truncated to

match the minimum length
across all datasets

Final training fusion model
(θ̂finalMLP )

The final Multi-Layer
Perceptron (MLP) classifier

The model was trained for 200
epochs on the final training set

and evaluated on the final
testing set, utilizing a hidden
layer of 100 neurons, ReLU

activation, and an alpha
regularization term of 0.001

Our proposed MLP model is configured with carefully selected parameters, including the number of
hidden layers, neurons per layer, activation functions, and learning rate. These parameters are optimized to
enhance the model’s ability to capture complex patterns in HAR data. We specifically use Tanh and ReLU
activation functions in the hidden layers to introduce nonlinearity, while the Softmax function in the output
layer enables multi-class classification. The key parameter, tuned through grid search, prevents overfitting
and ensures efficient learning. This configuration allows the MLP to generalize well across multiple datasets,
as demonstrated by its strong performance within the ensemble model.

With the proposed methodology and model architecture established, we now move to Section 4, where
we present and critically analyze the experimental results. This analysis provides insights into the model’s
performance across various datasets and highlights the advantages of the data fusion approach in Human
Activity Recognition.
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4 Experimental Results
Google Colab Pro Plus facilitated the experiments in this study by providing enhanced computational

resources, particularly the NVIDIA Tesla T4 GPU. This GPU, equipped with 16 GB of memory and optimized
for AI tasks, significantly accelerated the training of deep learning models by delivering high computational
performance and efficient energy utilization. The environment was configured with Python 3, and the
following libraries were employed for data processing, model development, and evaluation:

• Pandas: Utilized for comprehensive data manipulation and analysis, including loading datasets, handling
missing data, and performing essential exploratory data analysis (EDA).

• NumPy: Essential for high-performance numerical computations, enabling efficient handling of large
arrays and matrix operations integral to feature engineering and preprocessing.

• Scikit-learn: Deployed for a variety of machine learning tasks, providing tools for data splitting,
normalization, and model evaluation through cross-validation and performance metrics.

• TensorFlow: Served as the primary framework for deep learning model construction, training, and
evaluation. TensorFlow ’s Keras API enabled the design and optimization of neural networks.

4.1 Detailed Description and Analysis
We have provided a comparative analysis of the performance of a one-dimensional convolutional

neural network (1D-CNN) model on two different training regimes: with undersampling (Table 4) and
without undersampling (Table 5). Both tables include combinations of four datasets: WISDM, DALIAC,
MotionSense, and PAMAP2. The goal is to evaluate the impact of undersampling on the training and testing
model accuracies. The table reports the accuracy of the model across these datasets during both the training
and testing phases. In both tables, the training accuracies reflect how well the model has learned from the
training data.

Table 4: Raws dataset with 1D-CNN model with undersampling

Dataset Training accuracy Testing accuracy

WISDM DALIAC MotionSense PAMAP2
WISDM, DALIAC,

MotionSense
0.9268 0.5542 0.4388 0.7588 0.4081

WISDM, DALIAC,
PAMAP2

0.9391 0.4299 0.4991 0.3741 0.4002

DALIAC, MotionSense 0.9596 0.3915 0.4606 0.7119 0.4185
WISDM, DALIAC,

PAMAP2, MotionSense
0.9122 0.4172 0.4235 0.7246 0.4466

Table 5: Raws dataset with 1D-CNN model without undersampling

Dataset Training accuracy Testing accuracy

WISDM DALIAC MotionSense PAMAP2
WISDM, DALIAC,

MotionSense
0.8013 0.7687 0.8888 0.7232 0.3138

WISDM, DALIAC,
PAMAP2

0.8541 0.7688 0.9098 0.3696 0.5170

(Continued)
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Table 5 (continued)

Dataset Training accuracy Testing accuracy

WISDM DALIAC MotionSense PAMAP2
DALIAC, MotionSense 0.8428 0.4428 0.9070 0.7795 0.3756

WISDM, DALIAC,
PAMAP2, MotionSense

0.7894 0.7298 0.8897 0.7223 0.5057

The 1D-CNN model architecture was optimized through a grid search approach, where key hyperpa-
rameters were varied to identify the optimal configuration. The primary components of the model include a
convolutional layer, pooling layer, and multiple fully connected (Dense) layers. Grid search is a critical tool
for optimizing the 1D-CNN model architecture in HAR [26]. By systematically exploring hyperparameter
combinations, it ensures that the model captures the temporal and spatial patterns present in the data,
generalizes well across different activities, and is robust enough to handle variations in sensor readings.
This process is essential for building high-performing HAR models that are accurate. The hyperparameters
subjected to optimization are defined as follows:

Filters ( f ): Number of filters in the Conv1D layer, with values f ∈ {16, 32, 64}
Kernel Size (k): Size of the convolutional kernel, tested with values k ∈ {3, 5}
Activation Function (a): ReLU function, used in all layers, denoted by a = ReLU
Dropout Rate (d): Dropout rate to prevent overfitting, with values d ∈ {0.3, 0.5}
Dense Layers (L): Number of dense layers, where L ∈ {1, 2}
Dense Nodes (n): Number of nodes in each dense layer, with values n ∈ {50, 100, 200}
Batch Size (b): Batch size for training, where b ∈ {32, 64}
Epochs (e): Number of training epochs, tested with values e ∈ {10, 50, 100}
The model structure is mathematically represented as:

1D-CNN Model = Conv1D( f , k) +MaxPooling1D +
L
∑
i=1
[Dense(n) +Dropout(d)] +Dense(Softmax)

The grid search identified the optimal combination of these parameters to maximize the model’s
accuracy, leading to a well-tuned 1D-CNN architecture suitable for the task at hand. The model can learn
from complex time-series patterns. Properly configured parameters ensure the model efficiently captures the
temporal dependencies in the raw data, leading to a more accurate activity classification.

4.1.1 Raw Dataset Combinations
The first column lists, for both tables, the combinations of datasets used for training, while the second

column provides the corresponding training accuracies. The training accuracy is consistently high across
all combinations, indicating effective learning from the training data. A focus on both tables found that
the training accuracies are consistently higher with undersampling, indicating that this technique helps the
model fit better to the training data. This might suggest that undersampling balances the class distributions,
reducing the bias model towards more frequent classes. The testing accuracies provide insights into the ability
to generalize to testing data. A comparison across the datasets reveals significant differences between the
two tables.
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4.1.2 Analysis and Interpretation
The 1D-CNN model demonstrates consistently lower performance on the PAMAP2 dataset compared

to other datasets such as WISDM and MotionSense, as observed in Tables 4 and 5. This reduced performance
can be attributed to the differing feature distributions and ranges within PAMAP2, which lead to poor
generalization when combined with other datasets. For instance, in the undersampling scenario (Table 4),
PAMAP2 achieves a testing accuracy of only 0.4002, while WISDM and MotionSense reach significantly
higher values, indicating that PAMAP2’s feature characteristics are less compatible with those datasets. Even
without undersampling (Table 5), while PAMAP2 shows slight improvement (with a testing accuracy of
0.5170), its performance remains notably lower than that of other datasets, such as WISDM and DaLiAc.

The statistical comparison between models trained with and without undersampling, presented
in Tables 4 and 5, was conducted to compare the training and testing accuracies, highlighting distinct
effects across datasets. In the WISDM dataset, the paired t-test results showing a significant p-value
of 0.0388 suggest that undersampling substantially impacts model performance, typically hindering its
generalization capabilities, as evidenced by better performance without undersampling. In contrast, the
DALIAC dataset’s extremely low p-value (0.00004) indicates that undersampling dramatically changes model
accuracy, reflecting the dataset’s unique demands on model features. For MotionSense and PAMAP2, the
lack of significant p-values (0.7914 and 0.8527, respectively) reveals that undersampling does not notably
influence performance, showcasing its variable effectiveness based on dataset specifics.

These results underscore the importance of tailoring data preprocessing techniques like undersampling
to each dataset’s characteristics to optimize HAR models. This approach highlights the need for adopt-
ing advanced data fusion methods that could mitigate the limitations of simple undersampling, thereby
improving model robustness and adaptability in HAR applications.

At this stage, the study transitions to exploring feature fusion in multisource data, with the results
detailed in Table 6. The data fusion technique improves the model’s performance by integrating multiple
datasets, capitalizing on the strengths of each dataset to achieve better generalization and robustness.

Table 6: Accuracy of our data fusion model

Dataset Training accuracy Testing accuracy

WISDM DALIAC MotionSense PAMAP2
WISDM, DALIAC,

MotionSense
0.7707 0.5870 0.7762 0.7021 0.8320

WISDM, DALIAC,
PAMAP2

0.8736 0.5679 0.7788 0.6870 0.9027

DALIAC, MotionSense 0.9379 0.5160 0.9663 0.6336 0.5341
WISDM, DALIAC,

PAMAP2, MotionSense
0.9733 0.9583 0.9700 0.9465 0.9854

As illustrated in Fig. 5, the model trained on fused datasets achieves high testing accuracies across
individual datasets, with values such as 0.9583 for WISDM, 0.9700 for DaLiAc, 0.9465 for MotionSense, and
0.9854 for PAMAP2, as shown in Table 6. These high accuracies, along with low loss values, highlight the
model’s enhanced generalization ability and stability across diverse datasets. The minimal differences in loss
between training and testing further suggest that the model effectively avoids overfitting, underscoring data
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fusion as a robust strategy for building adaptable HAR models that can perform consistently across varying
environments and user groups.

Figure 5: Accuracy and loss for data fusion (WISDM, DALIAC, PAMAP2 and MotionSense combined)

The data fusion method described in Algorithm 3 effectively mitigates the variability and biases inherent
in individual datasets. This approach leads to more robust and consistent performance, as demonstrated
by the comparative analysis in Tables 7 through 10 compared with other research. This approach enhances
generalizability by training the model on a combination of datasets representing diverse sensor placements,
environments, and activity patterns. This broader exposure allows the model to learn more general features,
resulting in high testing accuracy across various datasets. Single models often excel on their specific
dataset alone, but the data fusion approach achieves competitive accuracy across all datasets with minimal
overfitting, as indicated by the low differential values in testing accuracy.

Table 7: Comparison with other models on the WISDM dataset

References Dataset Model Accuracy(%) Differential (%)
Nayak et al., 2022 [7] WISDM RF 90.69 +3.69

Heydarian and Doyle, 2023 [36] WISDM CNN 80 +14.38
Kaya and Topuz, 2023 [37] WISDM CNN 97.75 –3.37

Gaud et al., 2024 [38] WISDM CNN-LSTM 99.89 –5.51
Proposed approach WISDM Data Fusion 94.38

Table 7 provides a comprehensive comparison of various machine learning models applied to the
WISDM dataset, notably surpassing the accuracy of the RF model by Nayak et al. and remaining competitive
with the CNN model by Kaya and Topuz. However, it falls short of the accuracy achieved by Gaud et al.’s
CNN-LSTM model. This comparison underscores the effectiveness of the proposed data fusion strategy,
demonstrating strong performance against models trained solely on the WISDM dataset. There remains
potential for further optimization, especially in closing the gap with more advanced architectures like
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CNN-LSTM. The multisource data fusion approach offers a promising direction for improving model
generalizability and performance across diverse datasets in human activity recognition.

Table 8 provides a comparative analysis of the accuracy performance of various models applied to the
DaLiAc dataset. The table includes results from Debache et al., Nhan D. Nguyen et al., and the proposed
approach. This analysis aims to elucidate the effectiveness of our proposed model, which utilizes a data
fusion technique against established methods such as Logistic Regression (LR) and K-Nearest Neighbors
(KNN). The data fusion technique used in our model appears to strike a balance between the simplicity
and effectiveness of LR and the versatility of KNN. Despite not achieving the highest accuracy compared
to LR (−1.47%), the proposed approach significantly outperforms KNN (+6.6%) and provides a competitive
accuracy rate of 95.83%.

Table 8: Comparison with other models on the DaLiAc dataset

References Dataset Model Accuracy(%) Differential (%)
Debache et al., 2020 [39] DaLiAc LR 97.30 –1.47
Nguyen et al., 2020 [40] DaLiAc KNN 89.23 +6.6

Proposed approach DaLiAc Data fusion 95.83

Table 9 presents a comparative analysis of different models applied to the PAMAP2 dataset, showcasing
the accuracy achieved by each approach. The comparative analysis indicates that the data fusion approach
outperforms the traditional CNN and DWCNN models and demonstrates a significant improvement
over the advanced CNN–LSTM hybrid model. This highlights the potential of data fusion in enhancing
model performance by leveraging diverse data sources. The considerable accuracy gain observed (98.54%)
underscores the robustness and generalizability of the proposed method.

Table 9: Comparison with other models on the PAMAP2 dataset

References Dataset Model Accuracy(%) Differential (%)
Kaya and Topuz, 2023 [37] PAMAP2 CNN 91.92 +6.62

Vuong et al., 2023 [41] PAMAP2 DWCNN 91.85 +6.69
Gaud et al., 2024 [38] PAMAP2 CNN-LSTM 97.28 +1.26
Proposed approach PAMAP2 Data Fusion 98.54

Table 10 presents a comparative analysis of different models on the MotionSense dataset. This ensemble
learning method used by Ibrar et al. combines multiple decision trees to improve classification performance.
RF is known for its robustness and ability to handle overfitting, which likely contributed to its high accuracy.
The MLP model utilized by Hossain et al. is a feedforward artificial neural network that consists of multiple
layers of nodes. Despite its simplicity compared to more complex architectures, its performance on the
MotionSense dataset is relatively lower at 89.03%. Saha et al. employed a combination of residual blocks and
CNNs. Residual blocks help mitigate the vanishing gradient problem, enhancing the learning capability of
deep networks. This sophisticated model achieved a high accuracy rate of 95.35%. The proposed approach
integrates data from multiple sources (a combination of four datasets) to enhance model performance. Data
fusion techniques often provide a more comprehensive representation of the input data, potentially capturing
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more nuanced patterns. This approach achieved an accuracy rate of 94.65%, which is competitive with the
top-performing methods.

Table 10: Comparison with other models on the MotionSense dataset

References Dataset Model Accuracy(%) Differential (%)
Ibrar et al., 2022 [42] MotionSense RF 95.84 –1.19

Hossain et al., 2024 [43] MotionSense MLP 89.03 +4.81
Saha et al., 2024 [10] MotionSense RB+CNN 95.35 –0.7
Proposed approach MotionSense Data fusion 94.65

Data fusion also increases robustness across different environments, a crucial factor for real-world
applications in HAR. By combining datasets with different sensor modalities and data distributions, the
model becomes less sensitive to specific variations found in individual datasets. This robustness is valuable
when deploying HAR models in diverse contexts where environmental conditions or sensor placements may
differ from those seen during training.

Finally, data fusion provides adaptability to multiple datasets, highlighting its potential for scalable HAR
solutions. Unlike single-dataset models that may require retraining or fine-tuning for new environments,
the data fusion approach performs consistently across new data sources without significant performance
loss. This adaptability makes data fusion a suitable choice for applications that demand reliable performance
across varied user populations and settings, supporting its practical use in heterogeneous environments.

Fig. 6 showcases confusion matrices for four different datasets—WISDM, DaLiAc, PAMAP2, and
MotionSense–using a multi–layer perceptron (MLP) classifier trained on a fused dataset and tested indi-
vidually on each dataset. Each confusion matrix visualizes the classifier’s performance in terms of true
positive rates for each activity class, highlighting both the strengths and weaknesses of the model. In Fig. 6a,
the classifier shows moderate accuracy, particularly struggling with distinguishing between downstairs and
upstairs, walking and running. The WISDM dataset sensor placement in a pants pocket occasionally results
in the model misclassifying “downstairs” as “upstairs”. Although both activities share similar locomotive
patterns, a hip–level sensor may not fully capture subtle distinctions in leg angles, foot strikes, or posture.
These misclassifications suggest that the extracted features may overlap or lack sufficient specificity to
differentiate between these closely related activities. Consequently, refining feature extraction techniques
or considering alternative sensor placements may improve the model’s ability to distinguish between such
activities accurately.

In contrast, regarding the DaLiAc dataset shown in Fig. 6b, the model demonstrates significantly better
performance, particularly for dynamic activities such as walking and running, which are almost perfectly
classified. This suggests that the features in the DaLiAc dataset are more distinctive or that the model
generalizes better with this dataset. In Fig. 6c, the PAMAP2 dataset exhibits the highest overall performance,
with nearly perfect classification across all activities. This suggests that PAMAP2 has the most distinctive and
well–represented features for the activities, making it easier for the model to distinguish between classes.

Lastly, regarding the MotionSense dataset shown in Fig. 6d, the model also shows strong performance,
though it does not match the near-perfect accuracy of the PAMAP2 dataset. These minor confusions between
similar activities suggest that, although the dataset generally provides a solid basis for feature extraction,
there remains potential to enhance the model accuracy or adjust the belt–level sensor placement to minimize
misclassifications. For instance, a small proportion of “downstairs” steps are misclassified as “walking”, likely



2132 Comput Mater Contin. 2025;82(2)

due to the subtlety of vertical displacement cues at waist height. Additionally, slight misalignments between
“upstairs” and “downstairs” may arise from participant–specific differences in speed, stride length, and
overall intensity. These results highlight the variability in model performance across different datasets and
emphasize the importance of feature representation, sensor placement, and data quality in developing robust
activity recognition models.

Figure 6: Confusion matrix for (a) WISDM, (b) DaLiAc, (c) PAMAP2, and (d) MotionSense datasets tested by the data
fusion model

Following the analysis of experimental results and the demonstrated effectiveness of our approach, we
conclude with Section 5, which summarizes the key findings, discusses the implications of this study, and
suggests directions for future research in the HAR task.
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5 Summary
Our research demonstrates the effectiveness of a multisource data fusion approach using MLP for HAR,

significantly enhancing both training and testing performance across diverse datasets. This study leverages
the complementary information inherent in multiple data sources, which results in a richer and more
comprehensive training set, ultimately enabling the model to learn more discriminative features essential for
accurate activity recognition.

Key Contributions and Experimental Insights:

• Enhanced Model Performance: The integration of datasets such as WISDM, DALIAC, MotionSense,
and PAMAP2 through our fusion approach has been shown to improve model robustness and adapt-
ability. Statistical analyses reveal that models employing data fusion notably outperform those using
single-source data, particularly in complex activities where subtle distinctions are crucial. For example,
our fusion model achieved a marked improvement in testing accuracy on the PAMAP2 dataset (p =
0.0174), indicating its superior capability in handling complex data distributions.

• Statistical Feature Extraction: The extraction of statistical features-Mean, Median, Amplitude, and
SMA–plays a critical role in summarizing and reducing the complexity of raw data. This reduction
strategy simplifies the input to the model and maintains essential informational cues critical for
accurately recognizing various activities.

• Strategic Undersampling: Our approach includes strategic undersampling to balance the dataset, which
is essential for preventing model bias towards more frequent activities. This methodological choice
has been validated through statistical testing, which indicates that undersampling contributes to the
balanced performance across different classes, enhancing the generalizability of the model.

• Robustness and Generalizability: The data fusion method has proven robust and generalizable across
different real-world settings. It successfully captures the complex temporal dependencies of sequence
data, which is pivotal for deploying HAR systems in dynamic environments.

While this study demonstrates promising results, several limitations require acknowledgment. Varia-
tions in sensor placement, sampling rates, and participant demographics across datasets may impact the
model’s ability to generalize effectively to new or real–world scenarios. Furthermore, the framework’s appli-
cability to low sampling rate data and resource-constrained environments remains insufficiently explored.
Addressing these challenges presents significant opportunities for future research.

Future efforts should focus on integrating additional sensor modalities, such as magnetometers or
gyroscopes, to enhance robustness across diverse configurations. Investigating advanced fusion techniques
and incorporating larger, more diverse datasets will further refine the capabilities of HAR systems. Moreover,
leveraging state-of-the-art architectures, such as transformer-based models or self-supervised learning
approaches, could improve the model’s adaptability and generalization to unseen conditions. Expanding
this work into real–time applications by assessing model performance under streaming data and dynamic
environmental conditions will be critical. Finally, the development of incremental learning strategies and
domain adaptation techniques will extend the framework’s applicability to evolving, real-world scenarios.

In conclusion, our multisource data fusion approach using MLP provides a powerful framework for
enhancing the accuracy and reliability of HAR systems. By addressing the challenges posed by dataset
variability and model adaptability, this study contributes significantly to the field, offering a pathway toward
more sophisticated and adaptable HAR solutions.
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